N89-22350

A VLSI CHIP SET FOR REAL TIME VECTOR QUANTIZATION OF IMAGE SEQUENCES

Richard L. Baker
Integrated Circuits and Systems Laboratory Department of Electrical Engineering University of California

Abstract

This paper describes the architecture and implementation of a VLSI chip set that vector quantizes (VQ) image sequences in real time. The chip set forms a programmable Single-Instruction, Multiple-Data (SIMD) machine which can implement various vector quantization encoding structures. Its $V Q$ codebook may contain unlimited number of codevectors, N , having dimension up to $\mathrm{K}=64$.

Under a weighted least squared error criterion, the engine locates at video rates the best code vector in full-searched or large tree searched VQ codebooks. The ability to manipulate tree structured codebooks, coupled with parallelism and pipelining, permits searches in as short as $O(\log N)$ cycles. A full codebook search results in $O(N)$ performance, compared to $O(K N)$ for a single-Instruction, singleData (SISD) machine. With this VLSI chip set, an entire video code can be built on a single board that permits realtime experimentation with very large codebooks.

ロVERVIEW

COMFRESSION RESEARCH AT UCLA

- APPLICATIDN SPECIFIC INTEGRATED CIRCUITS
MULTISPECTRAL COMPRESSIGN

(JPL)
1
u
u
7
0
0
0

50 MEGAPIXELS/SEC
ュN甘ヘヨフヨタyI

$\perp \mathbf{N} \boldsymbol{\wedge}$ ・ヨヨヨ

9TH FLGOR
CONFERENCE LEVEL

MEAN SQUARE ERRGR
HAUSDQRFF MEASURE
HUMAN VISION SYSTEM MODELS
MISSION SCIENTIST MODELS

1111

Mean-Residual VQ Encoder (MRVQ)

DISTORTION COMPUTATION

Minimize squared error:

$$
\begin{aligned}
& \mathbf{x}=\text { Source vector, } \quad \hat{\mathbf{x}}^{i}=i \text { th Code vector, } \\
& i=\min _{i=1, \ldots, N}{ }^{-1}\left\{\sum_{k=1}^{K} w_{k}\left|x_{k}-\dot{x}_{k}^{i}\right|^{2}\right\}, \\
&=\min _{i=1, \ldots, N}\left\{\sum_{k=1}^{K} \frac{w_{k}\left(x_{k}\right)^{2}}{2}-\sum_{k=1}^{K} w_{k} \dot{x}_{k}^{i} x_{k}+\sum_{k=1}^{K} \frac{w_{k}\left(\dot{x}_{k}\right)^{2}}{2}\right\}, \\
&=\min _{i=1, \ldots, N}\left\{\sum_{k=1}^{K} z_{k}^{i} x_{k}+c^{i}\right\},
\end{aligned}
$$

where

$$
z_{k}^{i} \triangleq-w_{k} \dot{x}_{k}^{i}, \quad c^{i} \triangleq \sum_{k=1}^{K} \frac{w_{k}\left(\dot{x}_{k}^{i}\right)^{2}}{2}
$$

Basic Finite-State Vector Quantization Block Diagram.

PROBLEM: LIMITED SEARCH TIME

- Given:
- 256×256 resolution image
- 15 frames per second
- 4×4 block size.
$\rightarrow 983,040 \mathrm{pixels} / \mathrm{sec}$
$\rightarrow 614404 \times 4 \mathrm{blocks} / \mathrm{sec}$
or 16.3 microseconds/block
- Assume:
- Pipeline, 10 MHz clock, 1 distortion/clock
$\rightarrow 163$ distortion computations / block
$\rightarrow 163$ codevectors searched / block

THESE \#'S VARY AT RESOLUTION, BLOCKSIZE, RATE, ETC. - BUT:

- Problem:
\rightarrow Prefer $4000+$ codevectors in codebook
\rightarrow Must limit search through codebook

ONE SOLUTION: TREES

- Example

$$
\begin{aligned}
& \mathrm{N} \quad=4096=2^{12}=2^{5} \times 2^{7} \\
& \text { Search }=2^{5}+2^{7}=160 \\
& \text { Memory }=2^{5}+2^{5} \times 2^{7}=32+4096=4128
\end{aligned}
$$

- Problem: data dependency
- Minimize pipeline latency
- Buffer to process several source vectors

OVERALL SYSTEM

NEXT ADDRESS SELECTOR

ORIGINAL PAGE IS
OF POOR QUALITY

SUMMARY			
-	MULTISPECTRAL COMPRESSION STUDY	ALGORITHMS	UNDER
-	WHAT IS RELEVANT?		
	HIGH SPEED VX CHIP SET		
	- 10 MEGADISTORTIQNS/SEC		
	TREE CODEBOOKS (LARGE)		
	INEXPENSIVE TECHNOLGGY		

