
https://ntrs.nasa.gov/search.jsp?R=19890013409 2020-03-20T03:11:22+00:00Z



THEORETICAL INVESTIGATION OF EM WAVE GENERATION AND 

RADIATION IN THE ULF, ELF, AND VLF BANDS BY THE 

ELECTRODYNAMIC ORBITING TETHER 

Grant NAG 8-63 8 

Final Report 

For the period 1 May 1987 through 31 July 1988 

Principal Investigator 
Dr. Robert D. Estes 

Co-Investigator 
Dr. Mario D. Grossi 

March 1989 

Prepared for 
National Aeronautics and Space Administration 
Marshall Space Flight Center, Alabama 35812 

Smithsonian Institution 
Astrophysical Observatory 

Cambridge, Massachusetts 02 138 

The Smithsonian Astrophysical Observatory 
is a member of the 

Harvard-Smithsonian Center for Astrophysics 



CONTENTS 

I .  

. SECTION 1. 

2. 

3. 

4. 

5. 

6. 

APPENDIX: 

INTRODUCTION 

REVIEW O F  PREVIOUS RESULTS ON TETHER 
WAVE GENERATION 

GENERALIZATION OF THE PREVIOUS 
RESULTS 

ELECTRODYNAMIC TETHER IN A BOUNDED 
IONOSPHERE: BASIC PHYSICS AND METHODS 

METHOD FOR INVESTIGATING WAVE-GUIDE 
EXCITATION 

CONCLUSIONS 

An Examination of the Dobrowolny/Veltri 

Resul t s  a n d  Criticism 

1 

4 

10 

21  

37 

49 

5 3  



Page 1 

1.  INTRODUCTION 

The problem of electromagnetic wave generation by an  electrodynamic tethered 

satellite system is important both for the ordinary operation of such systems and for 

their possible application as orbiting transmitters. The tether's ionospheric "circuit 

closure" problem is closely linked with the propagation of charge-carrying 

electromagnetic wave packets away from the tethered system [Estes. 19881. 

Previous analyses of the waves generated by large conductors moving through a 

magnetoplasma (in our case a tethered system moving through the ionosphere) [Drell. el 

al.. 1965: Belcastro, et al.. 1982: Rasmussen. et al .  1985: Dobrowolny and Veltri, 1986; 

Barnett and Olbert, 1986; Estes. 19881 have considered the conductor to be immersed in 

an  infinite plasma medium. When the boundary with the atmosphere is far enough 

away. this serves as a useful approximation for calculating the ionospheric waves and 

estimating their contribution to the tethered system's electrical impedance; but it tells 

u s  nothing about the electromagnetic signal one should expect to be associated with the 

tethered system in the atmosphere or on the Earth's surface. Heretofore there has not 

been a systematic treatment of the wave reflections and other effects of 

nonuniformities in the plasma medium. The inclusion of ion-neutral collisions in- 

troduces the possibility of coupling to other ionospheric wave modes. The work 

reported here represents a step towards a solution to the problem that takes into 

account the effects of boundaries and of vertical variations in plasma density. collision 

frequencies, and ion species. 

Section 2 recapitulates the theory of AlILCn wave packet generation by an 

electrodynamic lethered system in an infinite plasma medium. A brief summary of 
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previous work on the problem, including an assessment of where things stand with 

regard to controversial points. is given there. 

In Section 3 we present the generalization of our previous analysis that sewes as 

the starting point-the incident wave-packet-for our treatment of the problem with 

boundaries and a nonuniform plasma. 

We present the physics on which our method of attack is based in Section 4. 

There we have examined the consequences of the presence of the boundaries and the 

vertical nonuniformity of the ionosphere. One of the most significant new features to 

emerge when ion-neutral collisions are taken into account is the coupling of the Alfvkn 

waves to the fast magnetosonic wave. This latter wave is important, as  it may be 

confined by vertical variations in the AlfvCn speed to a sort of leaky ionospheric wave 

guide (centered at plasma density maximum in the F-layer). the resonances of which 

could be of great importance to the signal received on the Earth's surface. We take the 

infinite medium solution for the case where the (uniform) geomagnetic field makes an 

arbitrary angle with the vertical as the incident wave-packet. Even without a full so- 

lution, a number of conclusions can be drawn. the most important of which may be that 

the electromagnetic field associated with the operation of a stead!g-citrrerit tethered 

system will probably be too weak to detect on the Earth's surface, even for large tellicr 

currents. This is due to the total reflection of the incident wave at the atmospheric 

boundary and the inability of a steady-current tethered system to excite the ionospheric 

wave-guide. 

An outline of our approach to the numerical problem is then given in Section 5. 

Given our conclusions about the weakness of the steady-current signal on the Earth's 
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surface, we consider slowly varying tether currents.. We propose to use numerical 

integrations and boundary conditions consistent with a conducting Earth to obtain the 

solution for the horizontal electromagnetic field components a t  the boundary of the 

ionosphere with the atmospheric cavity. The proposed method, which is rather com- 

plicated. involves the use of Budden admittance matrices to take into account the 

incident and reflected Alfven waves and the fast magnetosonic wave to which the 

AlfvCn waves are coupled. We have begun software development for this project and 

plan to continue work on this problem under another NASA contract. 

A summary of our conclusions and planned future work is found in Section 6. 
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2. REVIEW OF PREVIOUS RESULTS ON TETHER WAVE GENERATION 

c 

The theory developed in the prior Smithsonian Astrophysical Observatory 

(SAO) study of electromagnetic wave generation by an electrodynamic tether is 

reported in detail in the NASA report NAG8-551. A slightly modified version of a 

section of the report appeared in The Journal of Geophysical Research [Estes, 19881. 

The publication of the results enables us to consider them in the light of the 

response they have received from other investigators in the field. 

Our study built upon previous ones (Barnett and Olbert, 1986; Belcastro et 

al., 1982; Dobrowolny and Veltri, 1986; Drell et al., 1965; Rasmussen et al., 

19851 but sought to obtain more believable results by using a more realistic model 

for the electric current distribution of the electrodynamic tether. Previous 

investigators had modeled the tether current system as a long cylinder. They had 

either considered an orbiting canister with a dimension along the direction of flight 

measured in tens of meters or, at the other extreme, an orbiting wire. Neither 

approach took into account the peculiar dumbbell shape of a tethered satellite 

system, which consists of a long, narrow wire terminated by satellites (or plasma 

clouds) with dimensions along the direction of motion that are much greater than 

the tether diameter. The SA0 study showed that the orbiting canister approach, 

although it had not been thoroughly justified before, should provide a reasonable 

approximation for the purposes of calculating the wave impedance and ionospheric 

currents associated with steady-state (constant current) operation of an electrody- 
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L 

namic tethered satellite system, provided that the current distribution assumes a 

constant value along the length of the tether, i.e., an insulated tether is assumed. 

This is true because it is primarily the changing fields associated with the injection 

of charge into the ionosphere at the ends of the moving system that drive the 

electromagnetic waves. Thus, any two moving systems that inject charge into the 

ionosphere at the same rate over the same area are equivalent from the standpoint 

of wave generation. By the same token, the orbiting wire model was found to be 

a poor model for an electrodynamic tether because it undervalued the dimensions 

of the terminating, charge-exchanging parts of the system by orders of magnitude. 

Barnett and Olbert [1986] of MIT had used calculations based on an 

orbiting wire model to advance the idea that the wave impedance associated with 

the operation of a constant current electrodynamic tethered satellite system would 

be on the order of 10,000 to 100,000 Ohms, as opposed to previous estimates on 

the order of an Ohm. This was not an academic question, since such high 

impedance values would have precluded the use of tethered systems for any 

applications that required substantial currents. This conflict has now been 

resolved, and Barnett and Olbert have acknowledged that their use of the orbiting 

wire model led to a great overestimation of the wave impedance associated with 

the frequency band lying between the lower hybrid frequency and the electron 

cyclotron frequency. In a private communication they expressed complete 

agreement with the SA0 study on this point, and in a recent publication [Barnett 

et al., 19881 they credit R. Estes with pointing out that it is only the 
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system/ionosphere charge-exchange region that matters for wave excitation within 

the steady-state, cold plasma models considered up until now. 

Agreement has not yet been reached with M. Dobrowolny and his Italian 

colleagues on a number of points, which involve the functional dependence of the 

AlfvCn wave impedance on the AlfvCn and satellite velocities as well as the system 

dimensions. The SA0 study, in agreement with all other studies but that of 

Dobrowolny and Veltri [1986] found that this impedance varies linearly with the 

Alfvkn speed, while being independent of the satellite velocity within the 

approximations used. Dobrowolny and Veltri, however, had found an inverse 

dependence on the AlfvCn speed and a quadratic dependence on the satellite speed. 

They have based their defense of these results largely on the thesis that the 

quadratic dependence on the satellite speed is much more reasonable physically, 

since the effect disappears (as it should) if the system is not moving. 

We will only sketch the argument here. The details of their argument 

and our rebuttal can be found in the Appendix. The Dobrowolny paper aIso 

contained a physical argument to explain the divergence of their results from those 

in the 1965 work of Drell, et al. We have already pointed out flaws in that 

argument [Estes, 19881. The Italian investigators still have not addressed the 

question of why their results differed from all of the other prior studies as well, 

studies which obtained quite different results from those of Drell, et al. and which 

are in fact the relevant comparisons. Although Dobrowolny and his co-workers 
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have not emphasized this part of their results, the linear dependence of the Alfvh  

wave impedance on the tether length that they found is as important a difference 

from the results of other investigators as the inverse dependence on the AlfvCn 

speed is. 

Basically, Dobrowolny and his colleagues maintain that the bulk of the 

plasma current is a “dc” current having nothing to do with wave phenomena. W e  

argue that this amounts to saying that a current pulse traveling down a 

transmission line is a dc current. This approach appears fundamentally wrong 

when dealing with plasma currents, which are essentially wave phenomena. 

Our analysis has shown how the excitation of Alfv6n waves as the dominant 

form of radiation depends on the dimension along the line-of-flight of the charge- 

exchange region between the system and the ionosphere. It was the fact that this 

dimension is necessarily on the order of meters that enabled us to discard the 

higher frequency radiation that Barnett and Olbert were then arguing to be 

important. The vanishingly small dimension used by Dobrowolny and Veltri 

should lead to the same swamping of the AlfvCn band by the lower hybrid band 

radiation observed by Barnett and Olbert in their orbiting wire calculations, but 

since Dobrowolny and Veltri are only looking at AlfvCn waves they do not deal 

with this issue. 

Having failed to find an error in the straightforward SA0 analysis, 

Dobrowolny and his colleague Iess advanced physical arguments about why the 
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SA0 analysis could not be right. They maintain that their result makes sense 

physically because there is an explicit quadratic dependence on the velocity of the 

satellite in their expression for the wave impedance, while the SA0 result (they 

argue) does not go to zero as u, does. 

In the Appendix we demonstrate that our analysis also gives zero 

contribution to the wave impednace when the velocity is zero. The question is 

then: for a given non-zero satellite velocity, what is the proper dependence for the 

wave impedance on the satellite velocity? We have found that the wave 

impedance is very similar to that for a bifilar transmission line and have argued 

that this makes physical sense. If one considers a real bifilar transmission line, the 

property of the medium between the two wires (which are electrically insulated 

from each other along their length-as the magnetic field lines effectively are in 

the ionosphere) which enters into the calculation is the dielectric constant. Now in 

the low frequency approximation, which is applicable to the case of Alfven waves, 

the dielectric constant of the plasma (the diagonal, perpendicular components of 

the dielectric tensor that is) is in fact independent of the frequency. That is, it is 

independent of the satellite velocity, which is the only source of time variation in 

the problem under consideration. 

Thus the A l f v h  wave impedance of an electrodynamic tethered satellite 

system should be roughly independent of the satellite velocity. We can see no 

argument at all that it should be quadratic in u,, nor has anyone made a physical 
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argument for this particular functional form. We think this quadratic dependence 

found by Dobrowolny and Veltri is just the result of their having made an overly 

complicated analysis with some physically inconsistent assumptions. We demon- 

strate in the Appendix that, using the same starting point as the Italian 

investigators, we arrive again at our original results following two different routes. 

Having carefully re-examined our earlier results, we proceed to them as a 

starting point for the solution to the problem of the propagation of tether- 

generated ionospheric waves. 
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3. GENERALIZATION OF THE PREVIOUS RESULTS 

Modeling of the electrodynamic tethered satellite system has heretofore 

been based on some unrealistic assumptions regarding uniformity of the plasma 

medium and constancy of the tether current. In addition, the simplest relationship 

has been chosen for the system velocity vector, magnetic field vector, and the 

vertical. These three directions have typically been taken to define a three- 

dimensional orthogonal system. 

Taking into account the variations in plasma conductivity, density, collision 

frequencies, etc. in the ionosphere and the existence of the non-conducting 

atmosphere between the ionosphere and the earth will be the most difficult part of 

the process of obtaining a more realistic tether model. It will be an iterative 

project to solve the necessary boundary value problems. The analysis presented in 

this report is part of that project. Note that we use Gaussian units throughout 

our calculations. 

As a first step, we generalize our previous results on steady-current tethers 

to the case of arbitrary angles between the vertical direction, the satellite velocity 

vector, and the magnetic field vector. Let us consider the case for which the 

geomagnetic field is not perpendicular to the vertical, but the orbital velocity 

vector of the system is perpendicular to the plane of the vertical and the magnetic 

field (See Figure 3.1). This would correspond to a system at the maximum 
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excursion in latitude for a non-equatorial orbit. Having previously demonstrated 

the equivalence of an orbiting “ribbon” current distribution and the idealized 

dumbbell tether current distribution used in the earlier analysis (NAG8-551), we 

can conveniently define the tether current distribution as 

i =  - 6 ’I [ H ( z  ‘ - L J 2 )  - H ( 2  ’ + L z / 2 ) ]  
Lz 

[ H ( y  I - L / 2 )  - H(y I + L / 2 ) ] 6 ( t I )  (1) 

where Z I  = z - u,t and 6’ lies along the vertical with y I = 0 at the middle of 

the tether. The y - axis, which is orthogonal to B’ (the z axis) and d (the x axis) 

is indicated in Figure 3.1 as well. As in the previous analysis H ( z )  is the 

Heaviside function defined by 

H ( z ) =  1, 2 2 0 

H ( z ) =  0, 2 < 0 
I . 

We now need k‘ 5, where jk is the Fourier transform of the tether current 

density. This is most conveniently calculated in the 2, y I ,z I co-ordinate system, 

where 
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Tether along y '-axis 

Figure 3.1. Tethered system with non-horizontal magnetic field. 
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It is easy to obtain 

Thus 

Since 

and 

have been obtained in the previous analysis, we can write the following expression 

for the Fourier transform of the Alfvh wing or field-line sheet current: 
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- 21 kz sin (( ky COS 8 + k, sin B)L 
2 

J, = - 
,r (k,2 - w2cJc2) 

which differs from the earlier results for mutually orthogonal vectors only in the 

argument of one of the sine factors, which takes into account the dip angle of the 

magnetic field. 

The problem is now to obtain the inverse Fourier transform of (8). The 

integrals over w and ky proceed very much as in the previous analysis, only with 

the results showing an obvious change due to the inclination of the magnetic field 

with respect to the horizontal. That is, the charge-exchange regions at the ends of 

the system are now located at y = f (L/2) cost? The integral over k, also shows 

the effect of the magnetic field's inclination. The final integral over k, takes the 

form 

2 7rLz ~ - L c o s ~ / ~ )  [ 2 H ( z - L s i n B / 2 ) - 1  

- -  6(y+LcosB/2)  [ZH(z+LsinB/2)-  13 
2 ?rL, 

exp( ik,[ z 1 + (z + L sin B / 2 ) a ] )  dk, sin( k,Lz/2) 
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! 

Although this expression looks more complicated than the corresponding expression 

from the previous analysis, the basic content is the same. The AlfvCn wings are 

seen to be field-line sheet currents at the ends of the system. The sign change in 

J, occurs at the charge-exchange interface as before, but these are now located at 

z = f ( L / 2 )  sine. The top and bottom wings are connected by the condition of 

current continuity but otherwise they appear to be independent phenomena 

generated by the disturbances at their respective ends of the system. Except for 

the shift in lines of discontinuity in J, to coincide with those traced by the charge 

exchange terminals, the AlfvCn wing solutions are the same as before. The new 

solution clearly reduces to the old one when the angle 8 goes to zero. 

Another generalization of the previous analysis results when we allow for an 

arbitrary angle between the velocity vector of the system and the magnetic field 

lines. Let us consider the case when the tether lies along the vertical (y) axis and 

the magnetic field is in the horizontal plane antiparallel to the z-axis. The velocity 

vector, which lies in the horizontal plane, is allowed to be at an arbitrary angle p 

with respect to the x-axis ((x,y,z) being a mutually orthogonal set of co-ordinate 

axes), as shown in Figure 3.2. 

As before, the dimension of interest is that of the charge-exchange interface 

perpendicular to the magnetic field lines between the system and the plasma. For 
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Y 

I 

P 

Figure 3.2. Tethered system geometry (viewed from below) for velocity vector not 
perpendicular to magnetic field. 
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a spherical terminating satellite this would be the same dimension Lz as before. 

The value of the current in the tether, assuming it to be induced strictly by the 

system's motion, would be reduced by the factor cos p since the induced voltage 

depends on the component of the velocity perpendicular to 3. Our analysis 

is done in terms of the tether current I without calculating the value of I 

beforehand, but it is good to keep this difference in mind. 

Once again we make use of the equivalence between an orbiting ribbon of 

current and the system under study to write the tether current density as 

jv = - I a(, - ( u  sin p)t) [ ~ ( y  - ~ / 2 )  - ~ ( y  + L / ~ ) I  
LZ 

[ H (  2 ' - LJ2)  - H ( z  ' + L z / 2 ) ]  

where 2'  = z - (ucosp)t .  

This leads to the Fourier transform result 

Our expression for the Fourier transform of Jt is identical to the previous one 

((14) in our JGR paper) except for the changed argument of the delta function. 
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The integration over w and k, can proceed as in the JGR article. The 

singularities on the k, real axis now occur at solutions of 

2 (k , cosp+  k,sinp 
kz2 = - (3 (1 - (k, cos cp + k, sin ( P ) ~ (  u /Q;)2)  

From our previous results we can infer that, so long as p is not too near 7r/2, the 

condition 

should hold. 

Then we obtain 

for the singularities; i.e., we just replace u, with u cos p in our previous analysis. 

The other change occurs in the complex exponentials left in the integrand 

e ikz(z - ucoscpt)eikz(z-  usincpt) 
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After the integration over kz we obtain 

1 4. ’ , Y, z ’ ) = - { [ 6( y - L / 2 )  - 6( y + L / 2 ) ]  2 7TLz 

where z ’  = z - vt  cosp, 

z ’  = - ut sincp, and 

Without getting all the details, we can see that this implies Alfvitn wings that look 

more or less like those shown in Figure 3.3. Seen from above it would appear as a 

winged structure flying along at an angle rather than “straight ahead.” 

There are a number of subtleties that would seem to be important, such as 

the actual shapes of the satellites, however, so that this analysis can only be 

viewed as a first approximation to an adequate description. 
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\ \ 

\ \ 

b Alfv6n wings at time t + A t  

\ \ \ 

Figure 3.3. AlfvCn wing motion (viewed from below) for velocity vector not 
perpendicular to magnetic field. 



Page 21 

4. ELECTRODYNAMIC TETHER IN A BOUNDED IONOSPHERE: 

BASIC PHYSICS AND METHODS 

Having generalized our earlier solution for the AlfvCn wings. we can now apply 

it to the case of a bounded, non-uniform ionosphere. In order to simplify the problem, 

we consider the tethered system to be immersed in a uniform geomagnetic field. The 

system's motion is taken to be in a horizontal plane above the flat, conductive Earth. 

I t s  velocity vector is perpendicular to the plane formed by the vertical and the geomag- 

netic field lines. This corresponds to the situation described in the first part of the 

preceding section and illustrated in Figure 3.1. We will adhere to the notation of the 

previous section in the following analysis. 

The first significant new feature we introduce to the problem is the presence of 

boundaries: the one between the ionosphere and the atmosphere and the one between 

the atmosphere and the Earth. For simplicity, we begin our analysis with the atmo- 

spheric cavity considered as a vacuum and the Earth as  a perfect conductor. For elec- 

tromagnetic problems the first approximation is reasonable, and the second approxi- 

mation greatly simplifies the boundary value problem at the Earth. If the ocean sur- 

face is considered, it is justifiable as a first approximation since its main consequence 

is a small horizontal electric field component at the surface. 

A complete. self-consistent solution to the problem of an  electrodynamic teth- 

ered satellite system operating in the more realistic environment described above is 

beyond the reach of this analysis. We make the assumption that the tethered system is 

sufficiently far from the atmospheric boundary (or any steep gradients in plasnia pa- 

rameters) that we need not be concerned with the boundaries' effects on the system. 
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That is. we assume that the infinite-medium solution previously obtained is a reason- 

able approximation to the 'incident" wave-packet generated by the system operating 

in the bounded ionosphere. We do not claim to have established criteria by which to 

judge what 'far enough away" means, but our feeling Is that the approach can be fruit- 

ful if the system is sufficiently far from a boundary that it (including its local Alfven 

wing structure) moves into a region previously unoccupied by any part of itself within 

twice the transit time of an Alfvh wave to the boundary: Le.. if the system has 'moved 

on" before the reflected wave arrives. It should be noted that TSS- 1 cannot be expected 

to satisfy this condition most of the time because of the steep plasma density gradients 

between its 300 km orbit and the atmospheric cavity. For now we assume a tethered 

system high in the ionosphere. We restrict ourselves to the steady-state operation of 

such a system and take the solution of the previous section as the incident Allven wave 

packet. We allow only vertical variations in ionospheric quantities. 

The complexity of our problem, even in the simplified form stated above, re- 

quires a numerical analysis. There are, however, a number of observations that can be 

made based on the fundamental physics of the system under consideration. Our ap- 

proach follows the general outlines of the analyses of ionospheric waves made by P. 

Greifinger 119723. C. and P. Greifinger [ 19731. and Rudenko. et al .  [ 19851. The particu- 

larities of our moving source require some modifications to the analysis from the out- 

set, however. In order to utilize the formalism of the above-mentioned authors. we 

seek an  incident wave solution written in terms of plane waves in the horizontal 

plane, the amplitudes of these wave components being dependent on the vertical co-or- 

dinate, y' in our notation. A number of transformations, which will be defined in de- 



Page 23 

tail below, are required to obtain this form for our incident wave-packet. We must also 

take into account the relatioilship that exists between the x component of the wave 

vector and the frequency (as seen in the plasma, Le. the terrestrial, rest frame) for the 

steady-state operation of an electrodynamic tethered system: namely, the Diippler re- 

lation o = k,u x .  This consequence of the constant tether current (which, it should be 

remembered, is an assumption about the nature of the interaction between the tethered 

system and the ionosphere) turns out to be of great importance to the electromagnetic 

field on the Earth's surface, which we are hoping to calculate. At this initial stage of 

our analysis we restrict ourselves to the Alfvtn region k x U x  < < ad,  which is 

consistent with our consideration of systems in the upper regions of the ionosphere. 

Following the pattern used to derive expressions (4) and (8) in the preceding sec- 

tion, we obtain the following expressions* for the Fourier transformed electric field 

components 

* In all that follows we will use the notation k'y  P k 
components in the primed system of co-ordinates. 

etc. to represent vector 
Y' ' 
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1. 

i 

. 

where the I subscript refers to components perpendicular to the magnetic field, 

which lies along the negative z direction. 

Thus Maxwell's equations give us  

Since E, = 0 by assumption. Maxwell's equations further yield 

These equations represent only the Fourier amplitudes of the field compo- 

nents. The full expressions include the plane wave complex exponential factors 

exp(- i ( o t -  k -  x ) ) .  

Our first step in obtaining the desired expressions for the horizontal field com- 

ponents in terms of horizontal plane waves is to carry out the inverse Fourier trans- 

form integration over k , . Since we are considering downward moving waves, which 

correspond to the negative z direction in our co-ordinate system. we close the contour 

of integration in the lower half of the complex k plane and pick up the contribution 

of the pole at 
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We thus arrive at 

, 

- 2 1 V A  0 - I d 0  d k ,  dk , { exp (- i[ ot - k x  x - k , y + q z ] )  
E x 4  - m2 

0 
where ki is evaluated wilh k = - - 

u A  

We now use 

k ,  y + k z z =  k ;  y '+  ktzz '  

and the translomiation of variables 
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to obtain 

*. , -2Iv, sin6 
E, = I I d w d k , d k f z ( e x p ( -  i[ot - k ,  x - k ;  yf  - k t Z z f ] )  

nL, c2 

-2Iv, sin8 
E,  = nL, c2 

j d w d k , d k f z { e x p ( -  i [ w t  - k , x  - k ;  y'- k f z z f ] )  

where 

and 

w k ;  = -  - kfzcot  0 v,sin 6 

2 2 2 
k , =  h , + ( k ; c o s e -  k : s i n 8 )  
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\ 
Y ’ (vertically up) 

(in y ’-2 ’ plane) 

The horizontal wave-vector k lies in the x-z’ plane. The 
x axis is in the direction of the orbital velocity. 

. Figure 4.1. The geometry of the problem 
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P All vectors lie in the horizontal plane. 8 is parallel 

to the horizontal k vector. p is chosen to make a right- 

handed orthogonal system of (6, y’, p ) 

Figure 4.2. The co-ordinate system defined by the horizontal wave 
vector 



Page 29 

Equations (18) and (19) imply 

C 
B x , y  = - E y , x  

u A  

The horizontal components of the field are now at hand. The x-component is 

one horizontal component. The other horizontal component of the wave field [the 2’ - 

component) is easily obtained utilizing E, = B,  = 0:  

E‘* = - sin e 

The corresponding expression holds true for the B field components. 

Following the approach of the references mentioned earlier (particularly 

Rudenko. et al.), we now need to obtain the horizontal wave field components parallel 

and perpendicular to the horizontal wave vector. Figures 4.1 and 4.2 show the co-ordi- 

nates to which we refer. Note that each horizontal wave vector ( k  x ,  k’,)  defines a 

dinerent co-ordinate system ( 6, p) . This implies that we will have to carIy out our 

numerical integration separately for each ( h  x ,  k’,) pair. In all that follows the 

vector k with no subscript refers to the horizontal wave vector of magnitude 
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In the ( 6, p) system the wave electric field components are 

E *k 
k E, = 

E =a*( , - )  E x k  
P 
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(29) 

(30) 

The corresponding expressions hold for the components of the B field. 

Having obtained the components of the incident wave packet , we can consider 

some of the general physical characteristics of the system. The equations to be inte- 

grated in the ionosphere will be presented in detail in the next section. We will allow 

for vertical variations in plasma quantities. These variations include the sharp 

changes at  the boundaries in our problem. Since the only variations in our model are 

in the vertical direction, the dependence of our incident AlTvt?n wing wave packet corn- 

ponents on the horizontal co-ordintates remains the same throughout and is given by 

the horizontal plane wave factor. Thus each component of the incident wave packet 

will arrive at the boundary between the ionosphere and the atmosphere with the same 
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!' 
4 

f 

horizontal wave vector that it had high in the ionosphere. 

consequences for the solutions in the atmosphere and on the Earth. 

This has important 

The equations for the horizontal field components in the atmospheric cavity 

are 

where k , the magnitude of the horizontal wave vector, has the same value as in the 

ionosphere. Similarly. the frequency is unchanged across the boundary. 

The incident wave components contain the factor a( o - k, u,) , a conse- 

quence of the steady-state operation that we have assumed up until now. An immedi- 
2 

ate consequence of this is that the factor (5 - in the second term of equations 

(39) and (39) is always negative, since Ik .U, I C I kcl always. 

This means that the AlfvCn wings generated by the steady state operation of an 

electrodynamic tethered satellite system will not propagate info the atmospheric cau- 

ity. That is. there is total reflection at the atmosphere's boundary with the iono- 

sphere. Our solution corresponds to a surface wave at the ionospheric boundary. 
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Taking into account the perfect conductor boundary condition at the Earth’s 

surface, we obtain the solution in the atmospheric cavity 

where 

s i n h ( p ( y ’ - (  Y’b- H ) ) )  
Es, p= E s ,  p (  Y ’ d  s inh(p H )  

io ‘ O s h  ( P ( Y ’ - ( Y ’ b - H ) ) )  B = -  
/3 p c  E 6 ( y ’ b )  si nh(p  H ) 

i p c  cash ( P (  Y’ - (  Y’b- H ) ) )  
B 6  = - -E 0 /3 (Y’b) sinh( p H ) 

(34) 
I , 

(35) 

(36) 

and y’b and H are the values of y’ at the ionospheric boundary and the distance 

of this boundary from the Earth’s surface , respectively. 

Equations (35)-(36) show that the ratio of the magnetic field on the Earth’s sur- 

face to that at the ionospheric boundary is 
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The height of the ionosphere may be taken to be around 100 km. The conse- 

quence of equations (35)-(38) is that the image of the AlfvCn wings on the Earths sur- 

face will be much wider than the wings are in the ionosphere, since only the wave- 

packet components with horizontal wavelengths of hundreds of kilometers will escape 

severe attenuation. Since such long wavelength components make up only a small 

fraction of the wavepacket for a reasonably sized tethered system and since the noise 

level is much higher for the lower regions of the ULF band, we tentatively conclude 

that the magnetic field image of the AlfvCn wings on the Earth's surface will probably 

be too weak to detect in the case of a steady-current tether, even one with a high cur- 

rent. 

Hughes and Southwood [ 19761 reached similar conclusions about the 

'shielding" of ionospheric disturbances with short horizontal wavelengths. These au- 

thors emphasized the role of Hall currents in the lower part of the ionosphere in 

reducing the B component of the ionospheric waves; but it is obvious from the 

analysis that the result is quite general since equation (35) is a consequence of 

Maxwell's equations and the boundary conditions and would hold for different models 

of the ionospheric conductivity 

So far we have not discussed the possible eflects of vertical variations in 

plasma density and ionic composition. Since the AlfvCn speed depends directly on 
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these quantities, their variation changes the effective dielectric constant of the 

plasma. This has consequences for the waves that can propagate in the ionosphere. 

The dispersion relation for the anisotropic AlfvCn wave is 

W =  k z v A  

The dispersion relation for the fast magnetosonic (isotropic Alfvkn ) wave is 

2 2 2  w = k, u A  

(39) 

(40) 

where k ,  is the total wave vector, including horizontal and vertical components. 

For a given horizontal wave-vector, frequency, and AlfvCn speed combination it may 

be impossible to find a real vertical wave vector component that satisfies the disper- 

sion relation(40). In this case the fast magnetosonic mode is evanescent. This is the 

case for the steady-current electrodynamic tether, which excites waves satisrying (39). 

but by virtue of the w = k x u x  condition cannot satisfiy (40) for any real vertical 

wave vector component. The fast magnetosonic mode has thus been discarded in our 

calculations of the AlfLCn wings. As an aside, we note that this neglect of the fast mag- 

netosonic mode, quite justifiable in the infinite plasma case, where only propagzting 

waves are considered, should probably be re-examined in the bounded plasma case. 

We have seen that for a given horizontal k vector and frequency o. the isotropic 

wave will propagate or not depending on the AlfvCn speed. The AlfvCn speed has a 

minimum value in the F-region of the ionosphere, so an isotropic wave can be con- 
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fined to the regionaround this minimum-the ionospheric wave guide. Figure 4.3 

schematically depicts the ionospheric wave-guide. The Greifinger and Rudenko refer- 

ences discuss the ionospheric wave-guide and note the occurrence of wave-guide 

resonances. Rudenko, et al.. make the point that an AlhCn wave, incident from high 

in the ionosphere, can couple to the fast magnetosonic wave , through ion-neutral 

collisions, within the ionospheric wave-guide region for the particular frequency and 

wave-vec tor combination. 

The ionospheric wave-guide traps electromagnetic energy in a horizontal layer 

of the ionosphere. Stimulating resonances of the ionospheric wave-guide with an 

electrodynamic tether would seem to be a possible way of overcoming the difficulties 

in obtaining a measurable signal on the Earth's surface. I t  is easy to see that no 

steady-current electrodynamic tethered system can achieve this in the Earth's iono- 

sphere, however. Since an orbiting steady-current tether cannot stimulate propagat- 

ing fast magnetosonic waves even in the region of minimum AlfvCn speed, it is impos- 

sible for AlfvCn waves generated by a steady-current tether anywhere in the iono- 

sphere to excite propagating fast magnetosonic waves. There is no ionospheric waue- 

guide Jor steady -curren t tethers. 

The next phase of our research into the problem of tether-generated 

electromagnetic waves will focus on the ionospheric wave-guide and its possible 

excitation by electrodynamic tethered satellite systems with time-varying currents. 

In the next section we map out the method we plan to use in our numerical 

investigation of this question. 
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Figure 4.3. The ionospheric wave-guide and other layers of the medium 
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5. METHOD FOR INVESTIGATING WAVE-GUIDE EXCITATION 

We should state from the outset that our approach is not applicable to all types 

of tether wave problems. It should be possible to extend the method, however, once it 

has proven its value. In its present form. the method can be applied to the case where 

the tethered satellite system is well above the ionospheric wave-guide for the the waves 

it generates. That is, it applies to a system that directly excites only anisotropic 

(shear) Alfven waves. The integration method would thus apply to the case of a steady- 

current tether: but. as we have already noted, the ionospheric wave-guide concept does 

not apply to such systems, since there is no region of the ionosphere that will propa- 

gate isotropic AlfvCn waves that concurrently satisfy the shear AlfvCn wave dispersion 

relation appropriate to a steady-current tether. Thus we would expect the method to 

have its greatest utility in the case of slowly-varying tether currents with frequency 

components such that coupling to ionospheric wave-guide modes occurs. 

It should also be noted that we are talking only about variations in the tether 

current sufficiently slow that all of the previous work on steady-current tether wave 

generation applies with only slight modillcation. This means that the tether current 

distribution can still be considered as independent of the vertical co-ordinate along 

the tether's length. The tether is not functioning as an antenna in the normal sense of 

the word in this case, any more than it does in the steady-current case. It is still a 

source of varying current to the ionospheric transmission line, a concept that we have 

emphasized in our previous analysis. The ionospheric waves generated by the tether 

are due to the charge it injects into the ionosphere at  each end of the system, rather 

than to direct radiation from the tether. 
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We assume a tether current distribution that is just expression (1) multiplied by 

cos (mot ) , where a, is the oscillation frequency of the tether current. How this oscil- 

lation is achieved need not concern us too much at this stage. Let us suppose that the 

tethered system is equipped with a suitable power supply to enable it to reverse the cur- 

rent. Any time variation can be broken into its Fourier components, so the choice is 

not restrictive, except that we are explicitly excluding spatial variations in the tether 

current along its length, which implicitly limits the range of frequencies we can con- 

sider. 

Expressions (23) and (24). which define the incident wave packet, are modified 

only by the replacement of the delta function 6( a - k,v,) by 

2 

Having derived the incident AlfvCn wave-packet. we now turn our attention to 

the numerical methods we propose to use for solving the problem. We are following 

the method outlined in Rudenko, et aL. However, our notation diners in some respects 

from that used in the Rudenko reference. In addition there are a few serious typo- 

graphical errors in that paper. For these reasons, and to make this report stand alone, 

we will outline the method here. 

The incident wave solution we have obtained applies to a region where the ion- 

neutral collision frequency is negligible and the Alfven speed is constant. Anticipat- 

ing the variations in plasma quantities that occur lower in the ionosphere, we express 

Maxwell's equations in the following compact way : 
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i r  

d F  
47 

- i - - ,=GF 
(42) 

I. 

J 

where we define F as the four component vector 

with the third and fourth components given by 

v o  
H ,  = - ( -$-)Bp 

- 
H p  = r G ) B 6  

(44) 

(45) 

For our numerical work we use dimensionless quantities. The dimensionless 

frequency is defined by 

- wh 
vO 

w =  - 
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IC 

where his a linear scaling factor and vo is the Alfven speed in the region in which 

the wave-packets originate. The variable y’ is just the vertical spatial co-ordinate in 

unitsof h .  

In expression (42) G represents the 4 X4 matrix 

E 

defined by the 2 X2 submatrices 

1 g l = (  0 0 
- K,cote - K.cot6 

1 0  
g 2 = ( 0  1 )  

c 

g3= 

(49) 
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g,=( - cot8 0 
- l , c o t 8  0 

In the expressions above 6, and 6, refer to the dimensionless horizontal 

The quantities 

and 

wave-vector components defined by the scaling factor h . 

speed U is defined by Ug . 

The normalized AlfvCn 
- u A  

along with the AlfvCn speed, express the dielectric properties of the ionospheric 

medium. Here V i  and flci are the ion-neutral collision frequency and the ion cy- 

clotron frequency, respectively. The AlfvCn speed , V i  , and aCi all vary with altitude 

in our model. 
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For the frequency range and horizontal wave-vectors to which we are limiting 

our analysis, there are four well-defined independent solutions to equation (42) in the 

upper ionosphere: two shear AlfvCn solutions, corresponding to positive and negative 

vertical wave-vector components, and two isotropic AlfiCn solutions, one that grows 

exponentially with increasing y '  and another that falls off exponentially with in- 

creasing y '. The shear AlfvCn solution with negative vertical wave-vector component 

corresponds to our incident wave. The amplitude for each horizontal wave-vector 

component is given by (23)-(27). as modified by the substitution of (41) as specified 

above. The upward traveling shear AlfvCn solution then corresponds to a reflected 

wave. Of the two isotropic AlfvCn wave solutions, only the upwardly decreasing solu- 

tion makes physical sense. This corresponds to leakage of the ducted fast magne- 

tosonic wave from the ionospheric wave-guide. Thus we are left with three physically 

meaningful solutions to equation (42) at 'infinity" (which is the short-hand expres- 

sion we will use to indicate the location of our tethered system, high in the iono- 

sphere). 

While we know the amplitude of the incident wave-packet solution at infinity, 

the amplitudes of the other two solutions are unknown and must be the result of com- 

plex interactions in the lower ionosphere. It turns out that knowledge of the func- 

tional form of these solutions at infinity. combined with the boundary conditions at 

the ionosphere/atmosphere interface and our knowledge of the functional form of the 

solutions in the atmospheric cavity (Equations (34)-(37)) will suffice to determine a so- 

lution at the boundary between the atmosphere and ionosphere and, hence, on the 

Earth's surface. 



Page 43 

Let us now sketch the means by which this can be accomplished. First we in- 

troduce the admittance matrices, which are variations of those defined by Budden in 

the "Bible" of ionospheric wave physics The Propagation oJRadio Waves (19851. We 

define the admittance matrix A (0, E ,  7') as the 2 X2 matrix that satisfies the 

equation 

( i . j )  

i j where F and F are two solutions of (42) and a and p are two arbitrary complex 

constants. In other words, the admittance matrix transforms a linear combination of 

the electric field components of the two independent solutions into the same linear 

combination of the corresponding magnetic field components, as defined by equations 

(43)-(45). 

This is equivalent to 
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I t  is straightforward to obtain from (42) and (60) the following differential 

equation for an admittance matrix A defined as in (59) and (60): 

where the gi are the matrices defined in (481-(51). 

The admittance matrices contain the ratios of electromagnetic field compo- 

nents rather than their absolute values. This has an important advantage for numeri- 

cal integrations down through the ionosphere, since it avoids the problem of numeri- 

cal swamping brought on by the exponential growth of an initially small mix of the 

solution that grows as the altitude decreases. 

Since we know the functional form of the solutions at  infinity, we can con- 

struct the admittance matrices at infinity in the following way: 
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where the X i  are the known functional forms of the F i  solutions at infinity. 

These can then be taken as the initial values for numerical integration down to the 

boundary with the atmosphere. 

Ab, the boundaxy matrix at the atmosphere/ionosphere boundary is defined by 

where the F corresponds to the total solution at the boundary, including the contribu- 

tions from the reflected and ducted waves, as well as the incident wave. 

For the case of a perfectly conducting Earth this corresponds to 

b A = iko th  ( p H )  

The solution at the boundaxy may be written as 
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1 2 

3 

where F and F denote the reflected and incident shear Alfvkn solutions, respec- 

tively. and F denotes the ducted wave solution, with the Bi complex constants. The 

coefficient B, is known from the incident shear AlfvCn solution at infinily. 

An obvious consequence of the definition of the admittance matrices (59) is 

that 

for i # k. 

We can utilize expressions (59). (63). (65), and (66) to obtain the following equa- 

tion, which is true on the boundary of the ionosphere and the atmosphere: 

This expression, which relates the electric field components of the total solu- 

tion (65) on the boundary to the electric field components of the incident wave solution 

on the boundary by means of the admittance and boundary matrices, is the basis for 
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(1 .3)  - 
our numerical method. We can invert the matrix ( A*(C, R )  - A (0, 6 ,  U f b ) )  

on the left hand side of (67) to obtain the electric field components on the boundary. 

Then the boundary matrix Ab yields the magnetic field components on the boundary. 

The atmospheric cavity solution (35)-(36) yields the magnetic field on the Earth’s 

surface and anywhere in the atmosphere. The required admittance matrices and the 

incident wave solution on the boundary are to be obtained by means of numerical 

integration of the equations (61) and (42). 

All of the analysis outlined in the preceding paragraphs must be carried out for 

each horizontal wave vector component. The complete solution on the Earth’s surface 

is obtained by summing over all these solutions to obtain the inverse Fourier trans- 

form. A sort of flow chart of the method is shown in Figure 5.1. 

This is the scheme we propose to carry out to obtain the first approximation to 

the electromagnetic field on the Earth’s surface due to an orbiting electrodynamic 

tethered satellite system with a slowly varying current. It requires a model for the 

ionosphere that includes vertical profiles of the plasma density, the effective ion 

mass, and the ion-neutral collision density. Other assumptions of the theory are dis- 

cussed in the concluding chapter. We have begun software development to carry out the 

program of numerical analysis. 
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STARTING POINT: Electrodynamic Tether serves as  a 
steady-state or slowly varying current source in  the 
ionosphere (considered as  an infinite Alfvbn medium) 
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Figure 5.1. Flow chart of the complete 
computation 
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6. CONCLUSIONS AND PERSPECTIVE 

During the course of this work we have re-examined our previous analysis of 

ionospheric wave excitation.by electrodynamic tethers in an infinite medium. Our 

rebuttal to the criticisms made by Dobrowolny and his co-workers is contained in the 

Appendix. We remain convinced that our analysis was sound, and it appears that most 

investigators in the field concur. We note that Barnett and Olbert of M.I.T. have ac- 

knowledged that our analysis, as contained in the JGR paper, was correct in pointing 

out that their orbiting wire model of the tether lacked physical sense and led to a gross 

overestimation of the contribution of the lower hybrid frequency band to the tether 

wave impedance. 

We have generalized the analysis to the case where the geomagnetic field lines 

make an arbitrary angle with the vertical. The generalized solution thus obtained has 

then served as the starting point for a first approximation to the much more difficult 

problem of tether-generated AlfvCn wave packet propagation through a non-uniform 

ionosphere bounded by the atmosphere, which is in turn bounded below by a conduct- 

ing Earth. 

We have discussed the physics of the ionospheric wave-guide for fast magne- 

tosonic waves and noted the possible importance of the excitation of ionospheric 

wave-guide modes coupled to the incident shear AlfirCn waves generated by the tethered 

system. A steady-current electrodynamic tether will not excite the ionospheric wave- 

guide. however, as we demonstrate in Section 4. 

We have shown that it is possible to gain considerable insight into the physics 

of an electrodynamic tether in a bounded ionosphere without solving the complete 
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problem. In addition to the result stated in the previous paragraph, it was also possi- 

ble to show that the AlfvCn wings generated by a steady-current tether are completely 

reflected at the boundary of the ionosphere with the atmosphere. Thus there is no di- 

rect propagation of the waves into the atmosphere. only a leakage of the associated 

field. On the Earth's surface only wave components with horizontal wave-lengths in 

the 100 km and greater range would have the same strength as at the ionospheric 

boundary . Thus the image of the AlfvCn wings on the Earth's surface would be much 

wider than in the ionosphere. The signal strength would probably be too weak to de- 

tect, even for high current values. 

Thus the problem of time-varying tether currents assumes even greater impor- 

tance from the standpoint of the signal reaching the Earth. We have made the initial 

steps in this analysis, carrying the generalization one step further to consider the case 

of slowly varying tether currents. We have presented in some detail a scheme for ob- 

taining the magnetic field on the Earths surface for an electrodynamic tethered satel- 

lite system with a varying current in orbit above the peak in ionospheric electron den- 

sity, Le.. above the center of the ionospheric wave-guide. This method, which involves 

the numerical integration of the initial AlfvCn wave-packet and Budden admittance 

matrices down through the ionosphere, will be applied in our ongoing work on this 

problem. 

It is always good to keep in mind the limitations and assumptions of a theory. 

The ionospheric plasma is considered to be a linear, dielectric medium. As in previous 

analyses, we have assumed that the plasma temperature is not important to the waves 

under consideration, though we have included ion-neutral collisions in our new model 



Page 51 

for the dielectric tensor. Based on previous experience, we have simplified the prob- 

lem by considering only wave components satisfying the magnetohydrodynamic cri- 

terion. Vertical variations in plasma density, ion content. and collision frequency are 

allowed: but horizontal variations, which could be important in practice, are not in- 

cluded. The Earth is flat, the magnetic field uniform. Furthermore, the incident 

wave-packet has been taken from the infinite medium solution. All of these assump- 

tions could eliminate effects that will turn out to be important. The extension of the 

analysis to higher frequency tether current variations is clearly a necessary step, but 

one that will require greater care than the analyses we have seen so far. since deter- 

mining the current distribution within the tether becomes crucial and requires a self- 

consistent solution to the problem of the interaction between the tether and the iono- 

sphere. 

While acknowledging that much work remains to be done, we feel that the work 

reported here represents an advance in our understanding of the problem of electro- 

magnetic wave generation and propagation from a tethered satellite system and points 

the way to further progress. 
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APPENDIX: An Examination of the Dobrowolny/Veltri Results and 
Criticism 

In this appendix we will consider in detail the analysis of Dobrowolny and 

Veltri, since Dobrowolny and his co-workers have continued to maintain that it 

alone has found the correct solution to the problem of tether wave generation. 

We want to make clear that as regards their criticism of our results we will 

be summarizing verbal remarks Dobrowolny and his colleague Iess have made 

rather than referring to anything they have written. We believe we have 

understood their criticisms and will attempt to make a fair presentation of them, 

while stating from the outset that their arguments have not convinced us. We 

have in fact rederived our results using their formulation of the problem. 

First let us consider their original analysis (as presented in the Nuovo 

Cimento article by Dobrowolny and Veltri) and compare it with the SA0 analysis. 

Dobrowolny and Veltri use a long orbiting cylinder with square cross-section to 

model the tethered system. Since 0, the tether’s transverse dimension, is stated to 

be on the order of 1 mm, it is clear that this is just another variation of the 

orbiting wire model, the inadequacy of which we have previously demonstrated. 

However, the authors do not deal at all with the issue of radiation in other 

frequency bands raised by Barrett and Olbert. Following a different approach 

from that of the SA0 study, they begin by writing down the most general, all- 

inclusive formula for the power radiated by a current distribution in a plasma 
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(equations (9)-(12) in the original): 

and X;j  is the co-factor of the plasma tensor A i  defined by 

using standard notation. 

defined by 

Finally A = det  A ; j ,  and e j  is the polarization vector 

in terms of an “arbitrary complex vector a.” j (e)  is the external current, which 

we have denoted by f Neither at this point nor at any later point do the authors 

ever specify the form of ~ ; j .  The 

meaning of the polarization vector seems particularly obscure to us in this context. 

They maintain a high level of abstraction. 
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For formula (A.l) the authors refer to Plasma Astrophysics: 

Processes in Diffuse Magnetized Plasmas, Volume 1 by D.B. Melrose. 

expression does not appear precisely this way in the reference. 

writes is (equation (3.8) p. 65)  

Nonthermul 

In fact the 

What Melrose 

P =  T - o o  - T J g  JW d3k [ 3"*( g w )  Z( g w ) ]  (A.5) 
- lim 1 

where we have slightly altered the notation to be consistent with Dobrowolny et al. 

The integrand in Melrose is the dot product of the Fourier transform of the wave 

electric field vector and the complex conjugate of the Fourier transform of the 

external current density, which is the tether current in our case. 

Before continuing with our discussion of the analysis of Dobrowolny, et al. 

let us apply this equation, i.e. the equation as it actually appears in Melrose, to the 

SA0 results. 

We have already seen that the contribution of the jz component to the 

radiated power is small, so we consider the contribution of &*Ey. Referring to the 

previous SA0 results, we obtain 
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- 812iw - - 
n c ~  k12(k? - w2c,/c2)kzL2 

Using equation (2 .12)  (p. 27) of Melrose we can make the substitution 

2 lam T 
= T - + c Q ~ T  - S(w - k,u,) [ S(w - k 2 4 ]  

Then we obtain the expression for the power going into waves 

(A**) 
w 6( w - k2v,)sin2( kyL/2)sin( k2L2/2)  

kL2 ( k 2  - w 2 € 1 / c 2 )  k2 
p =  -~ 412i 1 dwd3k 

Lz7r2c2 

where factors of 27r have disappeared because we use a different convention from 

Melrose's in defining the Fourier transform. Performing the integration over u 

and kz exactly as before, we get 

p = -  412vA /" dk, 1 2 k y  sin2( k y L / 2 )  sin( k2L2/2)  /- (A.9) 
h 2 k 2  nL,c2 -KO 

Utilizing the formula 
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(A.lO) 

found in Gradshteyn and Ryzhik's tables (p. 447), we finally obtain 

Dividing by I2 to obtain the impedance ZA, we find we have arrived at an 

expression identical to the one derived previously in the SA0 study. This exercise 

has demonstrated that by starting from the same point as Dobrowolny et al. we 

still arrive at the same result as previously. Since expression (A.5) is completely 

general, this had to be, assuming we had made no errors. 

The purpose of this exercise has been twofold: first to point out that if 

there are errors in the SA0 analysis they must have occurred in the derivation 

of the expression for Ek. Since this derivation is easily followed, it should be 

possible to discover any errors made there. The point that follows from this is 

that we should be doubly careful in evaluating the analysis of Dobrowolny et al. 

which supposedly uses the same starting point. 

The SA0 analysis made use of the E' = 0 approximation to good purpose. 

When this is not done, a great deal of unnecessary apparent complexity remains, 
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with a concurrent increase in the probability that errors in calculations or physical 

reasoning will occur. 

Let us turn our attention to equation (A.l ) ,  the starting point for the 

analysis of Dobrowolny and Veltri. We have already mentioned that it is itself a 

derived expression not found explicitly in the Melrose reference. Although the 

authors have not demonstrated the intermediate steps, we can attempt to 

reconstruct their chain of reasoning. 

Melrose gives the general equation ((3.16), p. 67) 

This follows from the definitions and the basic wave equation. 

Inserting this into equation (A.5) gives 

(A.12) . 

(A.13) 

Now for a given mode a, Melrose defines the polarization vector e;b in the way 

Dobrowolny and Veltri seem to be doing for all modes, inclusively, in expression 

(A.4). We have not examined this issue thoroughly, but it is not immediately 
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obvious to us that this extension makes sense, i.e. that a single arbitrary complex 

vector a’ would yield physically meaningful results for all modes. Granting this 

point (They never say what a’ they use.), we then obtain 

* 
A;j = A, e;ej 

which leads to 

This becomes identical with equation (A.l) if we make the substitution 

- -  1 - 27ri a(ncZ,w)) 
4k7 w )  

(A.14) 

(A.15) 

(A.16) 

At this point, the meaning of 6 ( A )  is somewhat ambiguous. Although the authors 

present the next step in their results without any explanation beyond a 

characterization of the intermediate calculations as “lengthy”, we gather from the 

factor I dA/dw 1-l appearing in their result that they are taking the & ( A )  to mean 

that A is a function of w, which depends parametrically on k‘ insofar as the 

integration over w is concerned. Thus the integration gives a sum of terms from 

the poles of A - l  (i.e. the zeros of A). These poles would correspond to the 
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solutions of the dispersion relation A(  w, k) = 0. Therefore 

where the sum is over the different wave modes. 

Since they were only going to consider Alfvh waves, the authors could have 

saved themselves a lot of computational labor by continuing to follow the analysis 

presented in Melrose’s book. On page 56 of that work we find that following 

results 

(A.17) 

(A.18) 

where tA is the AlfvCn wave polarization vector. 

relevant coordinate axes.) 

(Refer to page 36 for the 

Equation (A.15) thus becomes 
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where w,, is a cut-off frequency such that wo << Oc;. 

Continuing in much 

preceding this one and using 

where KO = wo/Vo. 

that same way as in the calculation immediately 

the Dobrowolny/Veltri expression for J(e) ,  we obtain 

dk,  sin2( k , L / 2 )  sin2( k, V0D/2  VA) sin( T )  k,D ( ~ 2 1 )  1 ( k ,  V0D/2  V A ) ~ (  k z D / 2 ) 2  

We can certainly assume <<1. The integral over k, has been done 

in the preceding calculation. We can apply that result to obtain 

(A.22)  

Since KO << Oc;/V,, , we can take KoD << 1 so long as D 5 25m. Then 
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1 throughout the range of integration, which gives us 
(kZD/2) 

(A.23) 

Again we have arrived at the very same expression as before (equation (A.l l ) )  in 

the limit where kzD << 1 except for a factor of 2. This factor could be due to a 

mistake we’ve made, but the more likely source is from equation (A.16) which we 

inferred from the Dobrowolny/Veltri expression (A.1). 

These authors took an approach different from the one followed above. 

They attempted to carry through the complicated calculations using the general 

expression for A, X;j, and i?, only applying the AlfvCn approximation at a later 

stage in the process. 

Having written down the general formula (A.l), the authors then proceed to 

give results based on calculations which they characterize as “lengthy,” too lengthy, 

evidently, to be summarized even in an appendix. Thus there is no way to follow 

their calculations step by step in order to judge this part of their work. They 

obtain (equations (13)-( 15) in the original): 
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P = e 
7rD4 

J d3k J dw W H (k , t? ,cp)G(k ,e ,p ,w)b(w - kzVo) 

H ( k ,  0,p) = sin2 k,- sin2 k - sin2 kz- ( 3 ( 4  ( 3 
G ( k ,  e,cp, W )  = e3 cos2 B + el  sin2 8 

2 [ c3 + n2 sin2 e ]  + € 2  sin2 cp / \ 

1 e1e2 - n2(e3  cos2 e + el sin2 e 

(A.24) 

(A.25) 

(A.26) 

In formula (A.24), "the notation denotes a summation over all plasma modes 
U 

which are possible in the cold-plasma approximation, w = wO(k) being the 

dispersion relation for the 0 mode." 

At this stage of their calculation, they insert the AlfvCn wave dispeision 

relation into their equations. 

There are two (presumably typographical) errors in the condition obtained 

for the angle 8 that k' makes with the z axis. The authors quote 8 = 
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arc tan( vo ) and say that V,/Vo << 1 implies 8 w 7r/2. In fact, B = 
VACOS (9 

arctan( ), and the assumption (true for TSS) is V,/V0 >> 1. The 
V,COS p 

expression they obtain for the AlfvCn wave power is 

(A.27) 

The Alfvh  dispersion relation is only valid for frequencies much less than the ion 

cyclotron frequency. Thus for the power calculation to make sense as a calculation 

of power into Alfvbn waves, where the AlfvCn dispersion relation is inserted into 

the integrand, the integral over w in Equation (A.24) must be restricted to a range 

I w J<<n,i. We note that there seems to be another typographical error in 

equation (A.27). Presumably a factor [ k,2k,2k,2aA/i3w]-1 should be included in 

the integrand. The more important point is that the integration over all w has 

been carried out and it has not placed any limitation on the size of k, in the 

integrand. If the rest of the integrand were such that only small values of kz 

were important, this would not be significant; but in the orbiting wire 

approximation, which is later carried further to an orbiting mathematical line 

approximation, this cannot be valid. 
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At this point the authors introduce the restriction on kz. The correctness 

of this step is more difficult to ascertain because of the likelihood of a 

typographical error in the preceding step. We did not attempt to reconstruct the 

calculations in full, since it would have required too many guesses about what 

expressions the authors were using for the dielectric tensor, etc. In any case the 

next step involves “very lengthy” calculations, of which no details are reported. 

It is only at this stage of their calculations that Dobrowolny and Veltri 

begin to make approximations about the system dimensions. Their approxima- 

tions are rather extreme and certainly do not correspond to a real tethered satellite 

system. Despite their statement near the beginning of the paper to the effect that 

the earlier work of Belcastro, Dobrowolny and Veltri [1982] had missed the Alfvh  

wings entirely because it had assumed a tether of infinite length, they proceed to 

make the same approximation. Not only that-they also make the extreme 

approximation of an orbiting wire with negligible radius. This approximation is 

also at odds with their previous statement that the finite size of the system was of 

essential importance. The point is that, by making these approximations at this 

later stage in the analysis, the authors have made it difficult to judge their effects. 

The approximations do not seem to be consistent. 

D.f?c;/Vo << 1. Later they take &,, - l/D, which would imply E,,, >> 1, when the 

AlfvCn condition is c,,, << 1. 

At one point they take D 
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Using the D << 1 limit (orbiting wire) they had arrived at the result 

((35) in their paper) 

1 They then take tm - - 
0' 

(A.28) 

Now tm is the maximum value of kzVO/flc; allowed for the A1fvC.n 

Taking dispersion relation to apply. It is thus necessarily much less than 1. 

1 tm - - violates that condition in the extreme. They then take em - 1 to obtain 
D 

(A.29) 

as the AlfvCn wave impedance. 

We note that they calculated the Alfvkn wave impedance at around 1R 

1 before this sleight of hand involving the use of em - - 
0' 

Let us take their final expression (A.29) for this wave impedance and 

it to the 100 km long tethered system with a 1 mm diameter tether. 

apply 
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Since L/D = lo8, -N 2 x and - 2VA corresponds to around 
C2 

0.06Q we find RA cy 1200J?! 

Thus the authors seem to have made a serious mistake in obtaining their 

Perhaps they meant to apply e,,, N 

>> 1 (though they should have said so). Then 

expression for the Alfvkn wave impedance. 

l /Don ly  to the case for which 

they would have obtained 

(A.30) 

(assuming 1 >> -). VA2 
0 2  C2 

But this expression is unlike any previous results and differs from that of 

Drell, et al. by a factor - 

Dobrowolny and Iess have not really argued that the quadratic dependence 

obtained by them is the correct one, only that a dependence on the velocity that 

clearly vanishes as the velocity goes to zero is necessary. There is no 

disagreement on this point. The time variation in the problem is strictly due to 

the relative motion between the satellite system and the magneto-plasma, so there 

would be no waves excited by a motionless tethered satellite, should such a system 
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1 -  

be possible. As we shall demonstrate, the SA0 calculation also gives a null result 

when the velocity is zero. It is also plausible that the Alfvbn wave impedance 

should - not otherwise depend on the velocity, so that the “physical” argument for 

the Dobrowolny/Veltri result turns out to be weak. 

We have now arrived at the SA0 expression three different ways, but 

let us examine the two parts of the criticism of the SA0 results made by 

Dobrowolny and his colleagues. First, let us consider their assertion that the 

SA0 results cannot be correct because they do not go to zero with the system’s 

velocity. Consider our expression for the 

Fourier transform of Eu (equation (18) in our JGR paper). It contains the factors 

w6(w - kzuz). Now the fundamental, defining 

property of the Dirac delta function is 

This assertion is demonstrably false. 

This is to be integrated over w. 

Thus when we take the inverse Fourier transform to obtain Eu, which contains a 

linear factor of w, we obtain zero if the satellite velocity is zero. All subsequent 

calculations thus assume that the satellite velocity is not zero, for indeed there are 

no waves generated in the zero velocity case. Thus for Dobrowolny and his 

colleagues to take us to task for failing to have an explicit dependence on the 

satellite velocity in all our subsequent results, which are various limiting cases (all 
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of which assume a non-zero satellite velocity), is unfair. 

Iess has maintained that, if one first does the inverse Fourier integration 

and - then takes the limit as u, goes to zero, the SA0 expression for the wave 

impedance does not go to zero. It is easy to demonstrate that one cannot expect 

always to get the same result by inverting the order of integration and limit 

taking. Consider 

w 6(w - w,) 
2 2  + w,2 

f ( w , z )  = 

and take the integral over all w and 2. 

w0 dz = T, 
z2 + w,2 

f ( w , z ) d z d ~  = 

which is independent of w,. But it has already been assumed that w, is not zero, 

so that taking the limit as w, goes to zero after the integration is nonsensical. In 

physical calculations we must always be guided by the physics in deciding 

"mathematical" questions; as, for example, causality is frequently invoked to 

determine contour integration paths. Let us apply physical reasoning to the case 

at hand. What is the source of the w factor in our integrand? It corresponds to 

a time derivative. It comes from 

the physical condition that the only time variation in the problem is due to the 

What is the source of the S(w - k,u,) factor? 
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motion 

before 

of the 

ntegrat 

system with respect to the plasma. Thus taking LJ, to be zero 

on is the choice that makes physical as well as mathematical sense. 

Finally, we note again that Dobrowolny and Veltri concentrate on explaining 

their differences with the results of Drell et al. presumably because both analyses 

found a similar dependence on the tethered systems’ dimensions. 

They do not discuss why the Drell formula’s linear variation with the tether 

length and inverse variation with the system’s dimension along the direction of 

motion should apply to the case they had considered at all, since Rasmussen et al. 

[1985] had already pointed out that the Drell results did not apply to a tethered 

system. In fact, Chu and Gross in 1966 ascertained that the Drell results were 

not applicable to any system having a vertical dimension that was not much 

smaller than its dimension along the direction of motion, i.e. just the opposite 

situation from what applies in the case of a tethered satellite. 

c 

* 
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