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Renormalization group analysis of turbulence 

By L. M. SMITH 

1. Objective 
The objective is to understand and extend a recent theory of turbulence based 

on dynamic renormalization group (RNG) techniques. The application of RNG 
methods to hydrodynamic turbulence has been explored most extensively by 
Yakhot and Orszag (1986). They calculate an eddy viscosity consistent with the 
Kolmogorov inertial range by systematic elimination of the small scales in the 
flow. Further, assumed smallness of the nonlinear terms in the redefined equa- 
tions for the large scales results in predictions for important flow constants such 
as the Kolmogorov constant. The authors emphasize that no adjustable param- 
eters are needed. The parameterization of the small scales in a self-consistent 
manner has important implications for sub-grid modeling. 

2. The RNG Transformation 
Renormalization group methods were first developed for quantum field theo- 

ries. They were later applied to the theory of critical points in materials that 
undergo phase transitions (Ma, 1976). Predictions for the universal exponents 
characterizing the behavior of thermodynamic quantities near critical points are 
quite accurate. The common feature of the physical phenomena amenable to 
RNG analysis is a lack of characteristic length and time scales. 

The lack of characteristic length and time scales in turbulence makes RNG 
methods attractive. The universality of the inertial range spectrum in widely 
varying turbulent flows is also suggestive. 

The RNG transformation consists of two steps. First, small scales are elimi- 
nated by an averaging procedure. Second, space is rescaled. New independent 
variables are defined on the original intervals by the rescaling. In most cases, 
the dependent variables must also be rescaled. 

A set of equations is renormalizable if it is unchanged by the RNG transfor- 
mation. Renormalizability implies scale invariance. Usually a set of equations is 
renormalizable only for specific values of its coefficients and the scaling parame- 
ters. These points are called fixed points. However, the physics of more general 
cases is often well described by the physics at a b e d  point. 

The method of attack is to iterate the RNG transformation of the equations. 
With each transformation the coefficients in the equations change. One looks 
for a situation in which this iteration procedure converges. 

In addition to redefining coefficients of existing terms, the scale elimination 
often generates terms of different form than those in the original equations. 
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These new terms can be classified as irrelevant, marginal or relevant according 
to whether they decay, are constant or grow when rescaled. One can ask if a 
fixed point exists in the absence of new terms. If so, all new terms must be 

I irrelevant for the system to be truly renormalizable at that point. 

~ 

3. The Basic Premise of the RNG Analysis of Turbulence 
The theory is based on the postulated equivalence between inertial range solu- 

tions of the Navier Stokes equations subject to initial and boundary conditions, 
and homogeneous isotropic flow driven by a Gaussian random force (Forster et. 
al., 1977, Yakhot and Orszag, 1986). The model equations are then 

aV 1 
at P 
- + (v . V)v = f - -VP + uov2v 

v . v = o  (2) 

where v(x,t) is the velocity, P the pressure, p the density, uo the kinematic 
viscosity and f the forcing. The domain of equations (1) and (2) is unbounded. 

The white noise force is given by its correlation function in wavevector, fre- 
quency space. The correlation is assumed to obey a power law spectrum, 

where the brackets indicate an ensemble average. The exponent y is chosen to 
give the inertial range energy spectrum. Once y is fixed, there are no adjustable 
parameters in the problem. 

4. A Revised RNG Analysis 
Yakhot and Orszag show that analysis of (1)-(3) using the full RNG trans- 

formation yields the scaling laws of velocity correlations, and thus the energy 
spectrum. If y is set equal to the number of dimensions, 3, the Kolmogorov 
spectrum is recovered: E(k) oc &-‘I3 where k = lkl. Amplitudes, however, are 
left undetermined. 

By performing only the scale elimination, and abandoning the rescaling, they 
are able to find both scaling laws and amplitudes. Then E ( k )  = K o R N c € ~ / ~ ~ - ~ / ’ ,  
where E is the dissipation rate and KORNC is the RNG prediction for the Kol- 
mogorov constant. 

Rescaling is used only to justify neglect of new terms generated by the elimi- 
nation procedure. The terms of concern are cubic in the velocity vector and are 
marginal with respect to the k e d  point found in their absence. One wonders 
how the results would change if the cubic terms are retained. A goal of the 
present research is to assess the effect of these terms on the system. 

I 
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5. The Effect of the Small Scales 
The theory developed by Yakhot and Orszag is an attempt to calculate the 

effect of the small scales on the large scales in turbulence. Their method deter- 
mines that the large scales 'feel' the small scales as an eddy viscosity. 

Equations (1) and (2) are written in wavevector, frequency space and the 
pressure is eliminated by taking the curl of the curl. The equations for the 
Fourier coefficients of the velocity field are then expanded in a power series via 
the introduction of an ordering parameter which multiplies the nonlinear term. 

A narrow band of wavenumbers is removed by averaging over their force field. 
The averaging procedure replaces the contribution of the nonlinear interaction 
of those wavenumbers with a term h e a r  in the velocity vector for the remaining 
wavenumbers. The nonlinear interaction is only approximately represented in 
this term. The approximation is due to truncation of the power series at sec- 
ond order and neglect of terms cubic in the velocity vector for the remaining 
w avenumbers . 

The coefficient of the linear term is an integral. The integral is evaluated in 
the limit 0 - k << k,, where k, is the low wavenumber cutoff of the eliminated 
band. In this limit the integral is proportional to k 2 .  Thus the large scales see 
the small scales as (approximately) a viscous term. 

Iteration of the elimination procedure produces an equation for the large scales 
and long times identical in form to equation (1).  The molecular viscosity uo is 
replaced by an eddy viscosity, 

where UT is the eddy viscosity and x is the nondimensionalized ordering param- 
eter. The eddy viscosity depends on k,, 

UT = ~ , [ l +  p3e(kL4 - k i 4 ) ] ' f 3  ( 5 )  

where p is a function of x, k, is the last eliminated wavenumber and kd is the 
viscous cutoff. If one now takes the limit k, - k - 0, 

(6) UT N p,1fsk-4f3. 

In this limit the 'renormalized' equation (4) has a k e d  point, at which all 
subsequent analysis takes place. 

6. Evaluation of Universal Flow Constants 
The nondimensionalized ordering parameter x is proportional to (y + 1)'l2, 

where -y is the power of k in the force correlation function (see (3)). Recall 
y = 3 for a Kolmogorov inertial range. Using y = 3, the fixed point value of x 
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is 11.5. However, the RNG results depend on the simultaneous extrapolation of 
IC,  - k - 0 and y approaching -1. 

The assumption of small (y + 1) allows a power series expansion of the renor- 
malized equations. The equation for the zeroth order velocity coefficient is the 
Langevin equation, 

( - iw + y , k 2 ) d 0 ) ( k , w )  = f ,  (7) 
where V(k, w )  is the Fourier amplitude, V = do) + x d l )  + x2d2) + ..., k and 
w are small, and UT is given by equation (6). The value of p at the fixed point, 
evaluated to zeroth order in x, is found to be p = .493. 

Evaluation of the Kolmogorov constant follows a power series expansion at 
the fixed point of the energy equation (the equation for the two-point velocity 
correlations). The analysis is again for k, - k - 0 with UT given by (6). 
When terms to lowest nontrivial order are retained, its value is found to be 
KORNG = 1.617 (Dannevik et. al., 1987). 

The same scale elimination procedure can be performed on the equations for 
the advection of a passive scalar. The renormalized equations for the large 
scales are characterized by an eddy diffusivity. A power series expansion with 
k, - k - 0 leads to a prediction for the Batchelor constant, Ba. 

7. Goals 
a. Further steps in the analysis remain to be understood. For example, the 

RNG K. - E model leads to a prediction for the von Karman constant. 
b. One would like to assess the importance of the neglected new terms gener- 

ated by the scale elimination procedure. These terms are cubic in the transform 
coefficients of the velocity vector for the large scales. 

c. An exploration of other forcing functions will be revealing. 
i. We have already investigated the possibility of a non-white noise, power 

law spectrum. The force correlation is allowed to fall off with frequency and 
considered proportional to k-”w-*. We find that there is no positive value of b 
consistent with both dimensional analysis and a Kolmogorov energy spectrum. 

ii. A completely satisfactory theory of turbulence should account for spatial 
intermittency. In the present RNG formulation, intermittency might be included 
by changing the statistics assumed for the forcing function. 

d. It should be possible to extend the theory to flows other than homogeneous, 
isotropic turbulence. Perhaps one can do away with the artificial forcing for 
realizable kinds of turbulence. 

e. Finally, the RNG sub-grid and K. - .E models should be tested. 
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