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Close interactions of 3D vortex tubes 

By M. V. MELANDER' 

Abstract 
The motivation for studying close vortex interactions is briefly discussed in 

the light of turbulence and coherent structures. Particular attention is given to 
the interaction known as reconnection. Two reconnection mechanisms are dis- 
cussed. One is annihilation of vorticity by cross-diffusion, the other is an inviscid 
head-tail formation. At intermediate Reynolds numbers both mechanisms are 
operating. 

1. Introduction 
Close interaction and self-deformation of vortices are intriguing facets of fluid 

mechanics. These interactions occur repeatedly in turbulent flows. We can, 
therefore, expect that insight into fundamental vortex interactions will lead to 
a deeper understanding of turbulence. The theory of turbulence in 2D flows 
illustrates this point clearly. In 2D flows fundamental vortex interactions such 
as axisymmetrization, merger, and dipole formation provide the mechanisms 
for the emergence of large scale coherent structures (McWilliams 1984). These 
structures in turn invalidate earlier statistical theories based on random phases 
(Babiano et a1 1987). Compared to 2D vortex dynamics, our understanding of 
three dimensional vortex interactions is in its infancy. In order to improve this 
level of understanding, it seems logical to begin by investigating the most basic 
vortex interactions. This report marks the beginning of a thorough investigation 
of such interactions. 

We confine the study to unforced incompressible flows with no density vari- 
ations and unbounded domains. Turbulence may then be viewed as a tangle 
of interacting vortices. This follows directly from the integral formulation of 
Navier-S tokes equations. 

w = v x u  

DO - = (W * V)U + UAW 
Dt 
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FIGURE 1.  
by a vortical structure. 

Schematic for the calculation of the velocity field u(r) generated 

When the fluid is at rest at infinity, the potential component in (1) vanishes. 
The Biot-Savart law (1) then shows that the vorticity governs the flow. The 
vorticity transport equation (3) in turn describes how the vorticity evolves with 
the flow. Some attractive features of the formulation (1) - (3) are: I) The 
irrotational part of the fluid does not appear in this description. This fact is the 
motivation behind computational methods known as “vortex methods” (Leonard 
1985). Unfortunately, these methods make strong assumptions concerning the 
local vorticity distribution and may need further development before they can 
safely be used to investigate delicate vortex interactions. 11) The description (1) - 
(3) appeals to our physical intuition. It is conceptually easy to give a qualitative 
prediction of the short time evolution of a given vorticity configuration by means 
of arm-waving and finger-twisting arguments. It is also possible to understand 
vortex dynamics in terms of primitive variables and force-balancing (Moore and 
Saffman 1972); although this approach leads to the same physical results, it 
seems considerably more complicated. 111) A systematic description of how the 
small scale vortical structures influence the far-field u(r) can be obtained from 
the Biot-Savart law (1). 

Let us consider the last point in detail. Let a vorticity configuration be given 
near position r’ (Figure 1). The Biot-Savart integral gives the velocity field 
u(r) generated by this vorticity configuration at position r. The integration 
extends over the entire vorticity configuration. Clearly the integrand depends 
on r, so it is an enormous task to evaluate the integral for many different r 
positions. However, if Ir’ - rI is large, we can expand the integrand in inverse 
powers of lr’ - rl. The coefficients in this expansion are moments of the vorticity 
configuration and hence independent of r. These moments describe the shape 
and internal structure of the vorticity configuration. Far away, only the lowest 
order moment matters, but as we let r approach the vorticity configuration, an 
increasing number of moments must be included. We see that physical space 
moments yield a systematic description of internal structures influence on the 
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far-field. This idea has been used with success in 2D (Melander et a1 1986). 
The above discussion shows that the interaction between well separated vor- 

tices can be calculated efficiently in a straightforward manner. However, when 
(r - r’l is small, we are faced with an entirely different situation. We no longer 
have a natural expansion parameter for the evaluation of the Biot-Savart in- 
tegral. The integrable singularity in (1) tends to amplify the influence of the 
local structure. As a consequence, the local self-induced velocity can become 
very large for slender vortices. Such slender vortices can easily develop through 
vorticity stretching. A more subtle effect of small scale vorticity lies in its ability 
to alter neighboring large scale vortical structures. A concrete example from 2D 
is the axisymmetrization of a single isolated vortex (Melander et a1 1987); here 
the small scale structures (filaments) influence the large scales in such a way as 
to make the vortex core circular symmetric. Because of these effects, we must 
treat the local vorticity structure and the associated small scales carefully. A 
thorough study of close vortex interactions via direct numerical simulations will, 
therefore, be most helpful for modelling of the local vorticity distributions and 
the associated small scales. 

Vortex dynamics reveals its most useful role when viewed in the light of co- 
herent structures. These vortical structures have been observed in many flows 
that were previously regarded as fully random (Hussain 1986). Often these large 
scale structures are superimposed by fluctuating vorticity (incoherent vorticity), 
which makes the structures less obvious, but not less important. In spite of the 
incoherent vorticity, the large structures still dominate the far-field. The inco- 
herent vorticity does not influence the far-field directly, but can have an indirect 
influence by altering neighboring structures, as discussed above. Many inter- 
esting questions arise concerning the formation, persistence, characterization, 
topology, and interaction of coherent structures. Some of these questions are 
best approached through vortex dynamics. In this report we concentrate on in- 
teractions that can change the topology. These interactions are generally known 
as reconnections, although other names such as cut-and-connect, cross-linking, 
and fusion are also used. We examine a number of reconnection interactions 
under very idealized conditions. The interactions are simulated in isolation such 
that non-local effects do not obscure the dynamics. Also, there is no incoherent 
vorticity in our initial conditions. 

2. Initial Conditions, Simulation Methods, and Diagnostics 
The simulations were performed using a dealiased spectral (Galerkin) method 

with a fourth order predictor-corrector algorithm for the time advancement. 
This algorithm solves the Navier-Stokes equations (or the corresponding equa- 
tions with superviscosity) in a cube with periodic boundary conditions. The 
evolution of a passive scalar at a unity Schmidt number is calculated simultane- 
ously. The initial conditions (Figure 2a-f) were chosen as rectilinear vortices with 
a Gaussian vorticity profile. The evolution starting from the initial condition 
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I FIGURE 2.  Initial conditions for the simulations. 
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shown in Figure 2a was simulated using both Newtonian viscosity (Re = 2000) 
and superviscosity, while in the cases (b-f) only superviscosity was used. The 
spatial resolution in all these cases was 96 meshpoints in each direction. The 
simulation starting from the initial condition shown in Figure 2g is discussed at 
great length elsewhere (Melander and Hussain 1988 a,b,c) . 

The simulations produced databases which were analyzed on graphics worksta- 
tions using the "interactive" program TURB3D. Displays of the spatial vorticity 
distribution at various stages of the evolution were crucial in obtaining a physical 
understanding of the interactions. Cross sections of vorticity and velocity fields 
were also very helpful, whereas displays of other quantities such as helicity, dis- 
sipation, and enstrophy production were found to be of secondary importance. 
Tracing of vortex-lines turned out to be a major disappointment, for it seemed 
impossible to find just the right set of vortex lines to  clearly illustrate a given 
interaction. In general, a few vortex-lines were not enough to reveal the dynam- 
ics, while a larger number such as 20 gave a picture that was too complicated to 
follow. Perhaps displays of vortex tubes via Clebsch potentials would be more 
appropriate. 

3. Discussion 

In order to achieve a higher effective Reynolds number, a superviscosity was 
used in most simulations. The superviscosity leaves the largest scales more in- 
viscid than does a corresponding Newtonian viscosity. However, it is also known 
that the superviscosity generates artificial small scale structures. Comparison of 
two simulations, starting from the same initial condition (Figure 2a) but with 
different diffusion operators, showed similar evolutions. The most important 
difference between these two simulations was the evolution time-scale; it was 
shorter in the superviscosity simulation. A similar effect has also been observed 
by decreasing the Newtonian viscosity, and hence increasing Reynolds number. 
We therefore conclude that the use of a superviscosity mimics a higher Reynolds 
number flow and that the artificial small scale structures do not significantly 
influence the large scale structures. 

Inviscid filament calculations with regularized circular cores show that two 
orthogonally offset vortices become locally antiparallel (Schwarz 1983 and 1985, 
Siggia 1985). Careful studies show that if the same filament calculations are 
continued further in time, then a finite-time singularity develops (Pumir and 
Siggia 1987). This singularity is most likely caused by insufficient degrees of 
freedom in the vortex cores, that is, inadequate modelling. Nevertheless, some 
researchers feel that a similar singularity might be present in the full Euler equa- 
tions (Pumir and Kerr 1987, Kerr and Hussain 1988). It has also been suggested 
that this singularity is present in the Navier-Stokes equations at sufficiently high 
Reynolds number (Pumir and Siggia 1987). Direct numerical simulations have 
failed to capture signs of this singularity. 
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FIGURE 3. Evolution of the initial condition shown in Figure 2a at Reynolds 
number 2000. The panels show isovorticity surfaces at 56% of the initial peak 
value. Time is measured in units of wmsx(0)/20. 
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annihilation of antiparallel vorticity by cross-diffusion in the contact-zone and 
is clearly important for low to medium Reynolds numbers. The result is a 
true reconnection, albeit this reconnection is only partial as the cross-diffusion 
is arrested by the reversal of the dipole propagation direction (Melander and 
Hussain 1988a). The inviscid mechanism is the head-tail formation. The dipole 
propagation velocity is determined almost exclusively by the head; therefore, the 
head-tail formation effectively diminishes the circulation in the dipole. In the 
high Reynolds number limit, this may result in an apparent reconnection. That 
is, the large scale vortical structures appear as though a topological reconnection 
has occurred, where in fact only a topology preserving entanglement has taken 
place. The reasons for this conjecture are as follows. 

Several numerical simulations with different Reynolds numbers and different 
diffusion operators show that the large scale vortical structures rearrange on 
a time-scale T, which does not increase with Reynolds number. Weakening of I 
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FIGURE 4.  
culation ratio is four. The isosurface level and timescaling are the same as in 
Figure 3. 

Asymmetric entanglement and apparent reconnections; the cir- 
I 
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FIGURE 5 .  Sketch of Husain and Hussain's rectangular jet experiment. 

dipole. This stretching is caused by lengthening of the antiparallel vortices in 
the contact-zone and by the strain form outside the contact-zone. From axisym- 
metric vortex dynamics (Stanaway et a1 1988), we know that the lengthening 
effect is insufficient to cause a finite time blow up of [Awl. The external strain 
is also bounded due to the finite length of the contact-zone. 

Neither of the simulations starting from the initial condition shown in Figure 
2a had sufficient resolution to clearly separate the inviscid and viscous mecha- 
nisms. It does not seem likely that sufficient resolution can be obtained in the 
near future. In this respect the asymmetric initial condition (Figure 2b) is more 
promising due to the fact that the circulation ratio can be made small such as 
to allow for combined simulation and analysis. The dynamics of this simulation 
is also much easier to grasp, see Figure 4. The weak vortex wraps around the 
stronger one and thereby forms a large hairpin. Vortex stretching occurs mainly 
in the legs of the hairpin. The tip of the hairpin is unstretched and dispersed 
in the azimuthal direction. Therefore, the curvature of the legs accounts for 
most of the self-induced motion, which is such as to split the hairpin into two 
diverging helical structures. 

The evolutions of the initial conditions shown in Figures 2c-f were also in- 
vestigated and explained. I later became aware that the latter occurs in a 
rectangular jet experiment by F. Hussain, see Figure 5. Pulsing of the jet gen- 
erates rectangular vortex rings, which initially undergo a near-recurrence with 
90 O axis-flip. This phenomenon can be explained by a filament model (Bridges 
and Hussain 1988), except for rapid mixing processes near the corners. Further 
downstream an overtaking collision occurs and the resulting reconnections pro- 
duce four rings. The overtaking collision occurs because the rectangular vortex 
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FIGURE 6. Simulation of an overtaking collision; the fast vortex pair has 
twice as much circulation as the slow pair. The isosurface level and timescaling 
are the same as in Figure 3. 
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rings do not comply with the traditional leapfrog process of axisymmetric vor- 
tex rings. The experiment compares well with the simulation shown in Figure 6 
and clearly validates our selection of idealized initial conditions. 

4. Conclusion 
The insight gained by viewing the evolutions of the above idealized initial 

conditions on graphics workstations has proved to be invaluable in the process 
of constructing mathematical models of the evolutions. The modelling, which is 
now under way, centers around two types of initial conditions. One type is the 
symmetric configuration of two antiparallel vortices with sinusoidal perturba- 
tions (Figure 2g). The analysis of this model also applies to the collisions shown 
in Figure 2e-f. The asymmetric entanglement shown in Figure 2b and Figure 4 
is also being modelled for small values of the circulation ratio. 
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