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ABSTRACT

Numerical techniques for calculating the low frequency vibrational
resonances of submerged structures are reviewed. Both finite element and
boundary element approaches for calculating fully-coupled added mass matrices
for use in NASTRAN analysis are described and illustrated. The finite element
approach is implemented using existing capability in NASTRAN. The boundary
element approach uses the NASHUA structural—acoustics program to compute the
added mass matrix. The two procedures are compared to each other for the case
of a submerged cylindrical shell with flat end closures. It is concluded
that both procedures are capable of computing accurate submerged resonances
and that the more elegant boundary element procedure is easier to use but may
be more expensive computationally.

INTRODUCTION

One problem of interest in numerical structural—-acoustics is that of
| determining the natural vibrational frequencies of general submerged
structures. At low frequencies, it is knownl that the fluid appears to the
structure like an added mass (i.e., the fluid pressure on the wet surface is
in phase with structural acceleration). At higher frequeuncies, the fluid

impedance (the ratio of fluid pressure to velocity) is mathematically complex,
since it involves both mass-like and damping-like effects. The primary

difference between these two situations from a computational point of view is
that the low frequency calculation can be performed using standard real
eigenvalue analysis techniques, whereas the higher frequency calculation
requires more expensive complex eigenanalysis. In addition, as frequency
increases, the added mass effects decline and the damping (or piston) effects
increase, so that the interpretation of the complex eigenvectors as "normal
modes"” becomes more difficult. For shell structures, such complications
become somewhat academic, since shells have high modal density above the
first few modes, making the usefulness of computing such modes in doubt
anyway.

Consequently, for this paper, we restrict our interest to the calculation
of low frequency modes, in which case the finite element calculation of
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submerged resonances reduces to that of computing the added mass effects of
the surrounding fluid on the structure. The added mass calculation requires
solving Laplace's equation in the fluid domain exterior to the structure, a
calculation which can be performed using either finite element or boundary
element techniques, among others. Here we describe the NASTRAN computation
of submerged natural frequencies using both approaches. We start by
summarizing the relevant theory and then illustrate the two approaches using
as an example the vibrations of a submerged cylindrical shell with flat end
closures.

THEORETICAL APPROACHES

Consider an arbitrary three-dimensional elastic structure submerged in a
heavy fluid like water. The structure is modeled mathematically using the
equations of elasticity and the engineering approximations for beams, plates,
and shells. A finite element model of a free, undamped structure yields the
matrix equation

Md + Ku = 0, (1)

where M and K are the structural mass and stiffness matrices, respectively,
and u is the vector of displacement components. The fluid is modeled
mathematically as a medium for which the pressure satisfies (in the time
domain) the scalar wave equationZ,3

V2p = p/c2, : (2)

where ¢ is the speed of sound in the fluid. At the fluid-structure interface,
momentum and continuity considerations require that the fluid pressure be
applied to the structure and that the normal derivative of pressure be
proportional to normal acceleration:

dp/dn = -piip, (3

where n is the outward normal (from the structure into the fluid) at the
interface, and p is the mass density of the fluid. We consider two numerical
approaches to treating the fluid domain: finite element and boundary element.

Finite Element Approach
Since the scalar wave equation (2) is a special case of the vector wave
equation satisfied by the structural displacements, the fluid domain can be

modeled using the same types of elastic finite elements used to model the
structure if an analogy is drawn between structural displacement and fluid
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pressure.4 Thus, if finite elements are used to model both structure and
fluid, the system of coupled equations which results is of the form

B L Ll

where p is the vector of fluid pressures at the fluid grid points, Q and H
are the fluid counterparts to the structural mass and stiffness matrices,
respectively, -L is the rectangular area matrix which converts a vector of
fluid pressures (positive in compression) at the wet structural points to a
vector of forces at all points in the output coordinate systems selected by
the user, aud C is a radiation boundary condition matrix with nonzero entries
only for fluid DOF on the outer boundary. (Radiation boundary conditions are
intended to transmit, rather than reflect, outgoing waves.) A useful
alternative to the nonsymmetric system, Eq. 4, is the symmetric potential
formulation,3 which is obtained by transforming from fluid pressure p to
fluid velocity potential q (the time integral of pressure) as the fundamental
fluid unknown:

T T L o

To model the fluid with standard elastic finite elements, we let the
z-component of displacement represent the velocity potential q, fix all other
DOF at fluid grid points, and specify the fluid element elastic properties as2

Gy = -1/p, E, = —1020/p, Ve = unspecified, (6)

where the subscript "e” is added to emphasize that these are the values
entered on input data cards (e.g., MAT1 in NASTRAN) for the elements. Under
the analogy, the element "mass density” p, specified for the fluid is

0, incompressible fluid (¢ + =)
Pe = (7)
-1/(pc2), compressible fluid (c finite).

This specification of material properties is required for symmetry of the
coefficient matrices in Eq. 5.

For large expanses of exterior fluid, only a small portion of fluid need
be modeled.3s6 For an incompressible fluid, the outer houndary may be located
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at one or two structural diameters away from the structure and a pressure-
release (p=0) boundary condition imposed (with SPCs). For a compressible
fluid, the outer boundary is located at one or two acoustic wavelengths away
from the structure, and dashpots of constant -A/(pc) are attached between

the fluid DOF and ground to absorb (approximately) the outgoing waves. (This
is the plane-wave absorbing boundary condition.)

The above theoretical description allows for the possibility of fluid
compressibility effects, which impose requirements on the fluid mesh size and
exteant and require complex eigenanalysis for the solution of Eq. 4. Since
often the interest is in low frequency vibrations, which is equivalent to
assuming fluid incompressibility, we specialize the above equations to the
case ¢ * ©, For an incompressible fluid, the matrices Q and C above vanish,
and the coupled system (4) simplifies to

I I  RE N

An alternative form of Eq. 8 results if the pressure vector p is eliminated
from this system to yield

(M +My) u+Ku-=0, (9)

where the symmetric, non—-banded matrix M, = pLH”lLT is referred to as the
added mass matrix.

The low frequency (added mass) vibration problem can be solved using the
symmetric potential formulation (Eq. 5 with Q and C both zero), the pressure
formulation (Eq. 8), or the added mass matrix formulation (Eq. 9). The last
form, Eq. 9, has the advantage of being in standard form for a real eigenvalue
problem and, moreover, allows the added mass matrix to be calculated using
any suitable approach, including boundary elements and finite elements.
However, Eq. 9 has the (considerable) disadvantage that matrix bandedness is
destroyed, since M, couples all the wet DOF to each other. 1If the surrounding
fluid domain is modeled with finite elements, the eigenvalue problem can
alternatively be solved using Eqs. 5 or 8, which have more DOF than Eq. 9 but
remain banded (if the structural and fluid unknowns are properly sequenced).
The main distinction between Eqs. 5 and 8 is that the latter involves
nonsymmetric coefficient matrices. Although Eq. 8 is a real eigenvalue
problem, it can not be solved as such by NASTRAN (because of the nonsymmetry)
and must be solved using complex eigenvalue analysis.
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Boundary Element Approach

The added mass matrix in Eq. 9 can also be obtained by boundary element
t:ec:hniques.7‘11 In the frequency domain, where the time depeundence exp(iwt)
is suppressed, the basis for such an approach is the Helmholtz surface
integral equation satisfied by the fluid pressure p on the surface S of a
submerged structure:

fs p(x)(3D(r)/3n)ds - fs q(x)D(r)ds = p(x')/2, x' on$ (10)
where D is the Green's function

D(r) = e~ikr/4qnr, (11)

q = 93p/3n = —-iwpv,, (12)

k = w/c 1s the acoustic wave number, ¢ is the speed of sound in the fluid,

r is the distance from x to x' (Fig. 1), p is the mass density of the fluid,
and v, is the outward normal component of velocity on S. As shown in Fig. 1,
x and x' in Eq. 4 are the position vectors for points Pj and Py on the surface
S, the vector r = x' - x, and n is the unit outward normal at P;. We denote
the lengths of the vectors x, x', and r by x, x', and r, respectively. The

normal derivative of the Green's function D appearing in Eq. 10 can be
evaluated as

aD(r)/9n = (e~ikr/4nr) (ik + 1/r) cos 8, (13)

FLUID

SHELL
VACUUM

Fig. 1. Notation for Helmholtz integral equation.
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where B is defined as the angle between the normal n and the vector r, as
shown in Fig. 1.

The substitution of Eqs. 11-13 into the surface equation (10) yields
p(x')/2 = [ p(x) (e”iKr/4mr) (ik + 1/r) cos B dS
S
=iwp [ v (x) (e7iKT/4rr)ds. (14)
S X

This integral equation relates the fluid pressure p and normal velocity v, on
S. 1If Eq. 14 is discretized for numerical computation (the details of which
were presented prev1ously9), we obtain the matrix equation

Ep = Cvp (15)

on S. The dimensionality of this system (i.e., the dimension of vectors p

and vp) is €, the number of fluid DOF (the number of wet points on the surface
S). Hence, the added mass matrix (the matrix which converts fluid
acceleration to fluid force) is, in terms of the fluid DOF,

M, = AE"Ic/iw, (16)

where A is the diagonal fxf area matrix for the wet surface. As given above,
M, is full, symmetric, frequency-dependent, and complex. The low frequency
(incompressible fluid) added mass matrix is obtained by evaluating M, in the
limit w + O. An inspection of the formulas? for the entries in the fluld
matrices E and C reveals that, for small frequency, E is real aand constant,
and C is purely imaginary and proportional to w. Thus, to compute M, in Eq.
16, we consider only the real parts of E and C/iw for small . W1th this
interpretation, the added mass matrix M, is now full, symmetric, real, and
independent of frequency.

To relate the f normal DOF on the wet surface to the complete set of s
independent structural DOF, we introduce a transformation matrix G, which is
defined as the rectangular sxf matrix of direction cosines to transform a
vector F,; of outward normal forces at the wet points to a vector F of forces
at all points in the output coordinate systems selected by the user. Thus,l0

s V_ = GTV, and a_ = GTa, (17)
n n n

where v and a are the velocity and acceleration vectors for the independent
structural DOF, respectively, and the subscript n is used to denote the
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outward normal components of these vectors. For time-harmonic analysis,
v = iwu and a = iwv. The transformation matrix G can then be used to
transform the added mass matrix displayed in Eq. 17 from normal DOF to
the independent structural DOF:

M, = GAE"L(c/iw)GT. (18)

Here again, we coansider only the real parts of E and C/iw for small w. The
matrix M, given above is the boundary element equivalent of the finite element
matrix of the same name defined following Eq. 9. M, is real, symmetric,
non-banded, and independent of frequency. (The symmetry of M,, while not
obvious from the above definition, follows by reciprocity arguments.)

We note that the coupling matrix L defined in Eq. 4 is the product of
the transformation and area matrices G and A.

We clearly could have started with the Laplace, rather than the
Helmholtz, integral equation and avoided the complex, frequency—dependent
matrices.il We chose this approach since the four matrices G, A, E, and C
needed to compute the added mass matrix M, are readily available in NASTRAN
form from the computer program called SURF, which is part of the NASHUA
structural-acoustics package.

NASTRAN IMPLEMENTATIONS
Finite Element Approach

The finite element procedure used here to compute resonances of submerged
shells is the symmetric potential formulation as shown in Eq. 5 except that,
for incompressible fluids, the matrices Q and C are both zero. To solve this
system with NASTRAN,12 a finite element model is required for both the
structure and a portion of the surrounding fluid. The model for the structure
is constructed in the usual way. The model for the fluid domain is
constructed using any of the general elastic elements which are geometrically
compatible with the elements chosen for the structure. Thus, if the structure
is modeled with QUAD4s, the fluid should be modeled with IHEX1ls; if the
structure is modeled with CONEAX elements, the fluid should be modeled with
TRIAAX or TRAPAX elements.

Since the z component of displacement represents, by analogy (in both
Cartesian and cylindrical coordinate systems), the scalar velocity potential
q in Eq. 5, all other DOF at fluid mesh points are eliminated by single point
constraints. The material properties are assigned to the fluid elements
according to Eqs. 6 and 7a. If the fluid is considered to be of infinite
extent, the finite element model of the fluid should be truncated not closer
than one shell diameter away from the shell, where a pressure-release (q=0)
boundary condition is imposed.
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The coupling matrix L is entered as a symmetric "damping” matrix using
NASTRAN's direct matrix input (DMIG) data cards. L has nonzero entries only
at the intersections of matrix columns associated with interface fluid DOF
with rows associated with the translational DOF of coincident structural
points. Each nonzero eatry of L is a component of the outwardly-directed
area vector, which is a normal vector whose magnitude is equal to the area
assigned to a wet point. The resulting system is solved using NASTRAN's
direct complex eigenvalue analysis (Rigid Format 7) because of the presence
of the coupling matrix in the "damping” matrix. (However, since there is no
actual damping, all the natural frequencies are real.)

Since both structural and fluid DOF are included in the finite element
model, the interpretation of tabular output is aided if only the structural
DOF are printed and the printing of the fluid unknowns is suppressed.

Boundary Element Approach

The boundary element generation of the added mass matrix is implemented
using the fluid matrix generation capability available in the NASHUA processor
called SURF.? For each unique set of symmetry constraints, the procedure
involves two steps, the first of which is identical to the first step of a
NASHUA structural-acoustic analysis. 1In general, this step is a NASTRAN
analysis whose primary purpose is to generate an OUTPUTZ2 file containing
geometric information and the definition of the wet surface of the structure.
The second step (described here for the first time for added mass matrix
generation) involves the sequential execution of SURF (which generates the
matrices G, A, E, and C appearing in Eq. 18) followed by NASTRAN for the real
eigenvalue analysis. For completeness, we describe both steps in the boundary
element approach to compute submerged resonances.

The first step is a modified NASTRAN direct frequency response analysis
in which the structure is defined and an outwardly-directed static unit
pressure load applied to the wet faces of all elements in contact with the
exterior fluid. This load, which is iavoked using the case control card
LOAD, is used to generate areas and normals. In addition, the following DMAP
Alter is inserted into the Executive Control Deck:

ALTER 1 $ NASHUA STEP 1, COSMIC 1988 RF8 (REVISED 12/14/87)
ALTER 21,21 $ REPLACE GP3

GP3 GEOM3, EQEXIN,GEOM2/SLT,GPTT/S,N,NOGRAV/NEVER=1 $ SLT

ALTER 117,117 $ REPLACE FRRD

SSG1 SLT,BGPDT,CSTM,SIL,EST,MPT,GPTT, EDT ,MGG , CASECC,DIT/
PG/LUSET/NSKIP $ PG

$SG2 USET,GM,YS,KFS,GO,DM,PG/QR,PO,PS,PL $ PL

OUTPUT2 BGPDT,EQEXIN,USET,PG,PL $
OUTPUT2 CSTM,ECT,,, $

OUTPUT2 ,,,, //=-9 §

EXIT $

ENDALTER $
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The UT1 file created by OUTPUT2 must be saved after the NASTRAN execution.

The second step in this procedure consists of the sequential execution
of the NASHUA processor SURF followed by NASTRAN. SUKRF reads the UTI file
generated in Step 1 and generates the matrices G, A, E, and C appearing in
Eq. 18. These matrices are written in NASTRAN's INPUTT2 format. Since SURF
generate's the frequency-dependent fluid matrices E and C for compressible
fluids, a small (but nonzero) frequency must be specified as input for the
generation of these matrices. The nondimensional frequency ka = 0.0l is a
reasonable choice, where a is a typical length (e.g., radius) of the
structure. Following SURF, a modified NASTRAN real eigenvalue (Rigid Format
3) analysis is performed. The following DMAP Alter is included in this run:

ALTER 1 $ ADDED MASS MATRIX, COSMIC 1988 RF3 (REVISED 12/22/88)
ALTER 38

INPUTT2 /G,A,CT,E,DAT $ READ FLUID MATRICES FROM SURF

ALTER 69 $ BEFORE READ

PARAML  DAT//*DMI*/1/2/FREQ $ GET FREQ FROM DAT

PARAMR  //*COMPLEX*//FREQ/O./FREQC $ FREQ+I*0

PARAMR  //*MPYC*////W/FREQC/(6.283185,0.) $ OMEGA

PARAMR  //*MPC*////IW/W/(0.,1.) $ I*OMEGA

PARAMR  //*DIVC*////IW1/(1.0,0.0)/iw $ 1/IW

DIAGONAL A/PVECF/*COLUMN*/0. $ FLUID SET VECTOR OF 1'S

DIAGONAL KAA/PVECA/*COLUMN*/0. $ A-SET VECTOR OF 1'S

ADD CT,/CTIW/IWLI $ CT/IW

PARTN CTIW,PVECF,/,,CTIWR,/1/1 $ EXTRACT REAL PART OF CT/IW
PARTN E,PVECF,/,,ER,/1/1 $ EXTRACT REAL PART OF E

TRNSP G/GT $

TRNSP CTIWR/CIW §

SOLVE ER,CIW/EICIW $

MPYAD A,EICIW,/AEICIW/1 $ REAL NONSYM ADDED MASS (FLUID DOF)
PARTN AEICIW,PVECF,/, ,MADDF,/1/1///6 $ REAL SYM ADDED MASS (F-DOF)
MPY3 GT ,MADDF, /MADDS $ REAL SYM ADDED MASS (STRUCTURAL DOF)
ADD MAA,MADDS/MSUM $ STRUCTURAL + ADDED MASS

EQUIV MSUM,MAA $ REPLACE MAA WITH SUM

ENDALTER $

This Alter combines the input matrices G, A, E, and C to form the added mass
matrix M, according to Eq. 18 and replaces the structural mass matrix M with
the sum M + Mye To assure compatibility with the frequency used in SURF, the
frequency is passed from SURF to NASTRAN for use in this Alter. The real
parts of the complex matrices E and CT/iw are extracted as soon as possible
in the Alter so that less expensive real arithmetic can be performed as much
as possible. (Real parts of matrices can be extracted by executing a dummy
PARTN module to redefine a complex matrix as real. The same trick can also
be used to declare as symmetric a symmetric matrix which NASTRAN thinks is
nonsymmetric.)

The use of checkpoint may optionally link the two steps in this

procedure. However, in any case, the user must ensure that NASTRAN's internal
grid point sequence (as generated by the BANDIT module) is the same in both
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steps. Otherwise, the sequence used for the generation of the SURF matrices
would not agree with that used when the matrices are combined in the second

step.

NUMERICAL EXAMPLE

We illustrate these procedures by computing, using both finite element
and boundary element techniques, the fluid-loaded resonances of a submerged

cylindrical shell with flat end closures. The particular problem solved has
the following characteristics:

a=5m mean shell radius

L =60 m shell length

h = 0,05 m shell thickness (shell and end plate)
E = 1.96 x 1011 N/m2 Young's modulus

v = 0.3 Poisson's ratio
pg = 7900 kg/m3 shell density

o = 1000 kg/m3 fluid density

¢ = 1500 m/sec fluid speed of sound

For the finite elemeat model of both structure and fluid, a half-length
model was prepared using axisymmetric elements (the coanical shell CONEAX for
the shell and the triangular ring TRIAAX for the fluid), as shown in Fig. 2.
The structural model consisted of 25 elements over the half-length and four
elements on the end plate. The outer boundary of the fluid model was located
about 16 meters from the axis of the shell. Symmetry conditions were imposed
at the mid-length, thus restricting the available modes to those symmetric
with respect to the mid-length. The NASTRAN bulk data for this model were
generated automatically by a special purpose fluid-structure data generator
called SFG written by Richard J. Kazden of the David Taylor Research Center.

Fig. 2. Axisymmetric finite element model of structure and fluid.
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For the analysis with added mass effects generated by boundary elements,
a general shell model of the structure was prepared using NASTRAN's four-node
isoparametric membrane/bending quadrilateral plate element QUAD4. A quarter
model was prepared (half the length and half the circumference) using 25
elements longitudinally, 12 elements circumferentially, and four elements
radially on the end plate, as shown in Fig. 3. Symmetry was imposed at both
planes of geometric symmetry. Since all fluid effects were computed by the
NASHUA processor SURF, no fluid mesh was required.

Four analyses were performed for this problem:

1 ~ conical shell model, in-vacuo, circumferential harmonic n < 5, 715 DOF,

[\
1

QUAD4 model, in-vacuo, 2093 DOF,

3 ~ conical shell model, fluid-loaded, finite element added mass effects,
n < 5, 1465 DOF, and

=~
i

QUAD4 model, fluid-loaded, boundary element added mass effects, 2093 DOF
(matrices not banded).

The first 21 natural frequencies and mode shapes were found among those
which have circumferential index n € 5 and are symmetric with respect to the
mid-length plane. The results of these calculations are shown in the table
on the next page. The second column in the table (Harm. n) denotes the
circumferential harmonic index, the number of full waves around the
circumference. (For the end plate, n thus denotes the number of nodal
diameters.) The third column (Shell m) denotes the number of longitudinal
half waves. The fourth column (Plate m) denotes the number of nodal circles
(plus one) in the end plate. The next two columns of the table list the
in-vacuo natural frequencies (in Hz.) of the cylindrical shell for both the
conical shell and QUAD4 models. The next two columns of the table list the

R T A A VAR
\\\\\\\\\\\\\\\\\\\\\\\\3
\ \\\\\\\\\\\\\\\\ VALV

-

Fig. 3. QUAD4 finite element model of cylindrical shell.
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Table. In-Vacuo and Fluid-Loaded Natural Frequencies of Cylindrical
Shell with Flat End Plates

Mode Frequency (Hz)
Harm. |Shell|Plate| CONEAX QUAD4 CONEAX subm. |[QUAD4 subm. |Approx.
No. n m m in-vacuo | in-vacuo [(F.E. mass) [(B.E. mass)|Theory
1 1 0 0 0 0 0 0
2 2 1 2.72 2.72 1.13 1.13 1.11
3 3 1 3.84 3.90 1.79 1.81 1.77
4 0 1 4.27 4.22 1.63 1.44 1.38
5 4 1 7.04 7.19 3.61 3.67 3.57
6 4 3 9.29 9.34 4.81 4.82 4,70
7 1 1 9.53 9.20 bob4 4.26 4.22
8 3 3 10.4 10.4 4.94 4.93 4.82
9 5 1 11.3 11.6 6.31 6.38 6.18
10 5 3 12.2 12.4 6.83 6.86 6.67
11 1 3 13.4 13.3 7.04 6.88
12 2 1 15.6 15.1 8.31 8.02
13 5 5 15.8 15.9 8.99 8.88 8.65
14 0 2 15.9 16.4 8.66 8.40
15 4 5 17.0 16.9 8.94 8.85 8.66
16 2 3 3 18.6 18.5 8.05 8.07 7.75
17 3 1 22.7 22.4 13.2 13.0
18 5 7 22.9 22.8 13.2 12.9 12.6
19 3 5 24,5 24.1 11.9 11.9 11.5
20 1 2 26.6 27.2 15.4 15.5
21 4 7 28.4 28.2 15.3 15.1 14.7

fluid-loaded (fully submerged) resonances of the shell using both models.
The added mass effects were computed for the conical shell and QUAD4 models
using, respectively, the finite element and boundary element techniques
described above.

The last column of the table lists approximate theoretical predictions
for the fluid-loaded resonances. These values are computed in the following
way. In general, since frequency is inversely proportional to the square
root of mass, the ratio of submerged to in-vacuo resonant frequencies for a
structure is

f /£

wet/tdry 1+ Ma/M)—l/z’ (19)

where My, and M are the added mass and structural mass, respectively. For
both plates and cylindrical shells, this ratio of added to structural mass
can be written in the forml3,14
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Ma/M = a(p/pg)(a/h), (20)

where o is a dimensionless parameter which depends on the boundary conditions,
modal wavenumbers, and, for the case of a cylinder, the length-to~radius
ratio. For a finite length, simply supported cylindrical shell, o can be
approximated for the lobar (n > 1) modes asl3

o = n2/((n2 + 1)(n2 + (mra/L)2)1/2), (21)

For a clamped circular plate,l4 o = 0.6689 for the (0,1) mode and 0.3087 for
the (1,1) mode, where the two mode numbers denote, respectively, the number
of nodal diameters and the number of nodal circles plus one. Since the
conditions under which these relations apply are approximately satisfied with
our example, we include their predictions in the table for reference. The
ratio, Eq. 19, is applied in the table to the average of the two in-vacuo
predictions.

As indicated in the table, most of these 21 modes are either
predominantly shell modes or predominantly end plate modes. For one mode
(16), the shell and end plate are both active participants in the modal
behavior (although with varying levels of relative participation, depending
on the model and whether there was fluid loading).

The results in the table show generally very good agreement between the
predictions of the two approaches, both in-vacuo and fluid-loaded, even for
circumferential harmonics 4 and 5. For these two harmonics, the QUAD4 mesh
has only six and 4.8 elements per wavelength in the circumferential direction,
respectively, but still does surprisingly well. The two numerical approaches
show agreement to within about 2% for all the fluid-loaded modes which exhibit
predominantly shell behavior. The two fluid~loaded predictions for the end
plate modes all agree to within about 47, with the exception of Mode 4, the
fundamental drum head mode of the plate, where the difference is about 127.

In view of the similarity of the boundary element prediction to the
approximate theoretical prediction, the boundary element result is probably
the better of the two numerical predictions, perhaps indicating that the
finite element mesh used (Fig. 2) needs to be extended a little farther out
at the end of the structure.

BISCUSSION

From the results presented in the preceding section, we conclude that
both the finite element and boundary element procedures are capable of
computing accurate added mass effects due to fluid loading on fully submerged
structures. Of the two approaches, the boundary element procedure is the
easier to use, since it is highly automated and does not require the
generation of a fluid mesh. Even general purpose automatic mesh generators
cannot completely solve the fluid meshing issue, since they cannot generate
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the fluid-structure interface condition, which requires direct matrix input
of surface areas. On the other hand, the finite element procedure is somewhat
more general, since it can also treat structures which are near a free surface
(or other boundary) or are partially submerged.5 The boundary element
procedure used is applicable only to deeply submerged structures (i.e.,
structures far enough from a fluid boundary so that the boundary can be

ignored).

For structures similar to the cylindrical shell considered here, the
finite element procedure is also computationally less expensive than the
boundary element procedure. This difference is due primarily to the
exploitation by the finite element method of the banded matrices which occur
with long, slender structures. Consider, for example, the QUAD4 model of the
cylindrical shell shown in Fige. 3. The in-vacuo model had 2093 independent
DOF with an average matrix wavefront of 79. When the (boundary element)
added mass matrix was combined with the structural mass matrix, the average
wavefront increased about five—~fold to 394. With the eigensolution time
proportional to the product of the order of the matrix and the square of the
wavefront, the solution time for the submerged case increases by a factor of
about 25. On the other hand, a finite element model of a portion of the
surrounding fluid would typically double both the matrix order and the matrix
wavefront (compared to the in-vacuo case) since each structural grid point
(with six DOF) would require about six fluid grid points (each with one DOF)
to be added to the model. Such a model would therefore cost only about eight
times as much to run as the "dry” model. The trade—~off between the finite
element and boundary element procedures for solving the underwater vibration
problem thus reduces to a trade—off of engineering time with computer time.

It is concluded therefore that both the finite element and boundary
element procedures are capable of computing the fluid loading effects needed

for underwater resonance calculations and that the more elegant boundary
element approach is easier to use but may be more expensive computationally.
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