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ABSTRACT

The long-term performance of structural materials in the space environment is a
key research activity within NASA. The primary concerns for materials in low Earth
orbit (LEO) are atomic oxygen erosion and space debris impact. Atomic oxygen studies
have included both laboratory exposures in atomic oxygen facilities and flight
exposures using the Shuttle. Characterization of atomic oxygen interaction with
materials has included surface recession rates, residual mechanical properties,
optical property measurements, and surface analyses to establish chemical changes.
The Long Duration Exposure Facility (LDEF) is scheduled to be retrieved in 1989 and
is expected to provide a wealth of data on atomic oxygen erosion in space.
Hypervelocity impact studies have been conducted to establish damage mechanisms and
changes in mechanical properties. Samples from LDEF will be analyzed to determine
the severity of space debris impact on coatings, films, and composites.

Spacecraft placed in geosynchronous Earth orbit (GEO) will be subjected to high
doses of ionizing radiatign which for long term exposures (20-30 years) will exceed
the damage threshold (~109 Rads) of many polymeric materials. Radiation interaction
with polymers can result in chain scission and/or cross-linking. For highly cross-
Tinked 177°C cure epoxies, the primary mechanism of radiation degradation appears to
be chain scission. The formation of Tow molecular weight products in the epoxy
plasticize the matrix at elevated temperatures and embrittle the matrix at Tow
temperatures. This affects both the matrix-dominated mechanical properties and the
dimensional stability of the composite.

Plasticization of the matrix at elevated temperatures can result in permanent
residual strains in composites exposed to such temperatures. Embrittlement of the
matrix at low temperatures results in enhanced matrix microcracking during thermal
cycling. Matrix microcracking changes the coefficient of thermal expansion (CTE) of
composite laminates and produces permanent length changes. Residual stress
calculations have been performed to estimate the conditions necessary for microcrack
development in unirradiated and irradiated composites. These calculations show that
microcracking in the transverse plies of an irradiated [0/90] Gr/epoxy laminate is
predicted to occur at temperatures substantially higher than those predicted for an
unirradiated laminate. Microcracking measurements were made for standard 177°C cure
Gr/Epoxy, rubber toughened Gr/Epoxy, Gr/Polyimide, and Gr/Thermoplastic composites.
The effects of thermal cycling and irradiation followed by thermal cycling on the
mechanical and physical properties of the epoxy composites were consistent with the
predicted responses. The effects of UV and electron exposure on the optical
properties of transparent polymer films has also been examined to establish the
optimum chemical structure for good radiation resistance. Results are presented
which show that these polymers have excellent resistance to both electron and UV
radiation compared to more conventional polymer films, such as FEP Teflon.

Accelerated testing of space materials is a topic of great interest for the
spacecraft community and is a central issue for long-life certification. Thoughts on
approaches to establishing accelerated testing procedures are discussed in this
paper.
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TYPICAL SPACECRAFT MATERIALS

Research on advanced materials development for spacecraft applications has generally been
focused on three classes of materials: polymer films, coatings, and composites. High-perfor-
mance polymer films such as Kapton and Mylar are widely used on current spacecraft (fig. 1).
The recent concern about atomic oxygen degradation of polymer materials on spacecraft placed in
low-Earth orbit (LEO) has focused attention on the development of new polymer films or coatings
which are resistant to atomic oxygen erosion. Another area of research at Langley has been the
development of transparent polyimide films which have very good UV and electron radiation
resistance. Highlights of this research will be covered in a later section of this paper.

Coatings consist of a variety of organic-base paints, metallic materials, and ceramic
materials. An extensive data base exists on the development and testing of paints that range in
color from black to white. The degradation in optical properties of white paints by UV, electron
and proton radiation was extensively studied in the 1960's and early 1970's. The white paint
designated S13GLO is generally considered to be the best white paint available today for spacecraft
applications where a low solar absorptance and high emittance are required. Atomic oxygen
degradation of coatings is an area of considerable interest within NASA because space durable
materials are required for Space Station (30 year design life time). Aluminum foil bonded to
composite tubes has been shown to have resistance to atomic oxygen erosion. However, other
metals such as silver which has been used for silver interconnects on lightweight flexible solar
arrays must be protected from atomic oxygen.

Composite materials have been extensively used for spacecraft structural applications
because of their combination of lightweight, high stiffness, and low thermal expansion. Compos-
ites of interest for spacecraft applications include Gr/Polymer, Gr/Al, Gr/Mg, and Gr/glass. Some
of the issues and concerns with these materials will be discussed in subsequent charts.

Types of Matenals Spacecraft Application
i i b .

Graphite! Aluminum

i g( REva gty
raphite/Glass’ '

Magnifien Crons Saction

[Composite Materat Truss SRAN
Strucrral Elgments

Figure 1

ORIGINAL PAGE
BLACK AND WHITE PUOTOGRAPH

27



STRUCTURAL MATERIALS FOR SPACE APPLICATIONS

The two major topics to be covered in this paper are space environmental effects on
structural materials, and new materials development (fig. 2). Highlights of on-going NASA
research will be presented to illustrate the type of issues currently being addressed for NASA
missions. Examples of new materials development will also be presented to illustrate some of the
approaches being pursued to develop improved materials for space applications.

Topics

® Examples of space environmental effects on structural
materials

- Composites
- Films
- Coatings

® New materials development
- Research focus
- Testing issues
- Long-life certification

Figure 2
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SPACE ENVIRONMENT

The space environment is a hostile environment. It consists of atomic oxygen, ultraviolet

radiation, high-energy electron, and proton radiation as well as solar

flare protons, and micro-

meteoroids and space debris (fig. 3). For spacecraft located in low Earth orbit, atomic oxygen
erosion of polymeric materials is a primary concern. This, of course, is a function of the ambient

density of the atmosphere which v
significant issue for Space
This topic will be covered
further discussed in this paper.

Station,
in detail by other speakers at this symposium and therefore will not be

aries with sunspot activity. Atomic oxygen degradation is a
* which is expected to operate for 20-25 years in low Earth orbit.

Another concern for structures placed in low Earth orbit is micrometeoroids or space debris
impact. Predictions based on models of the space debris environment indicate that the population
density of small particles is expected to get progressively worse over the next several years. In the

smaller diameter sizes the populati
micrometeoroids.

on density of space debris is expected to exceed that of

Spacecraft placed in geosynchronous earth orbit or in a high polar orbit will be subjected to
high doses of electron and proton radiation. For long life missions (25-30 years) the total
absorbed dose to typical composite structural elements may exceed the threshold level for damage
(109 rads) for most polymeric materials. Of particular concern are changes in mechanical and
physical properties of structural composites and optical properties of thermal controlled coatings or

polymeric films.
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MATERIALS TECHNOLOGY NEEDS FOR SPACE SYSTEMS

The development of long-life space materials must strongly consider the dominant
environmental conditions expected for the orbit where the spacecraft will be displayed. Some of
the key differences for materials to be used on spacecraft placed in low Earth orbit (LEO) and
Geosynchronous Orbit (GEO) are listed in figure 4. To successfully design for long-life space
missions, space materials durability must be treated as a critical design requirement in the same
way as requirements for mechanical, physical, or optical properties. One of the most difficult

challenges in trying to engineer long life is the uncertainty associated with accelerated testing. This
issue will be further discussed in a later section of this paper.

Space Station - LEO Antenna - GEO
® Atomic oxygen stability ® Radiation stability (UV, e"and p*)
® Damage tolerance and toughness ® Low expansion-high precision
® Stable optical properties ® High stiffness and damping capacity
® Low outgassing ® Low outgassing
Figure 4



COMPOSITE TUBE AS A SYSTEM

The successful development of long-life structures in space must be based on a thorough
understanding of the loads and environments that the structure will be subjected to during design
lifetime. For a composite truss structure this means that the performance of composite tubes used
to build the structure must be understood. The basic composite tube may be considered as a
system (fig. 5) composed of: (1) the fiber-matrix composite laminate, (2) coatings for UV and
atomic oxygen protection and for thermal control, (3) end fittings to attach to joints in the structure,
(4) adhesives used to bond end fittings to composite laminate, and in some cases to bond coating to
composites (i.e., Al foil to composite tube).

The long-term thermal and mechanical response of the tube is dependent on the
performance of each of these elements. Factors which can lead to changes in the thermal response
of the tube include: (1) changes in solar absorptance or emittance of coating either due to contami-
nation or radiation degradation will alter the maximum and minimum thermal cycle that the tube
will experience, loss of coating could result in UV and/or atomic oxygen erosion of composite
laminate; (2) matrix microcracking resulting from thermal fatigue will change the coefficient of
thermal expansion (CTE) of the composite laminate; (3) thermal fatigue failure of adhesive joints
would affect both thermal and mechanical properties of the tube; (4) contaminating of coating
surfaces, matrix microcracks, and coating separation from the composite laminate would change
the thermal conductivity properties which could alter the temperature distribution of the composite
tube as the structure goes into and out of the Earth's shadow. The long-term mechanical perfor-
mance of the composite tube is obviously dependent on the properties of the composite laminate
coatings, adhesives, and end fittings.

® Major Components
- Composite Laminate
- Coating
- End Fittings
- Adhesives
- End Fittings
- Coatings
® Response
- Thermal
- Coating optical properties
- CTE of composite laminate and end fittings
- Thermal conductivity of coatings and composite
- Mechanical
- Composite properties
- Adhesive strength
- End fittings properties

Figure 5
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CTE MISMATCH IN ADHESIVE JOINTS

Coefficient of thermal expansion (CTE) mismatch in adhesive Joints can result in high
residual stresses and thermal fatigue failure The truss structure of Space Station  will be thermally
cycled between approximately 150° and -100°F 175,000 times during 30 years in low Earth orbit.
The current baseline for this structure is high-stiffness graphite/epoxy composite tubes with Al end
fittings and joints. Thermal cycling tests are currently being conducted on representative compos-
ite/metal joints to evaluate their thermal fatigue resistance. CTE and elastic modulus data for three
composites, high- and low-temperature adhesives, and Al and Ti are tabulated in figure 6.

ADHESIVE

ALUMINUM
L COMPOSITE
MMC | CerMC PMC | LT.ADHESIVE | H.T.ADHESIVE | AL | T1
MATERIAL (GR/AL) [ (GR/GL) |(GR/EP) | (350F EPOXY) (P
CTE,
IN/INFF 0.8* 03 06 30 2 13 5
6 (15)** (3.6) (18)
X10
ELASTIC
MODULLUS, 47 31 39 0.6 05 10 17
£
PSIX 10

*LONGITUDINAL **TRANSVERSE

Figure 6




LOW EXPANSION POLYMER RESINS

Residual stresses in composites are a function of the differences in coefficients of thermal
expansion of the matrix resin and fibers, the elastic modulus of the matrix and fibers, and the AT,
temperature change between the cure temperature of the composite and the use temperature of the
composite. The coefficient of expansion (CTE) of some typical state-of-the-art polymers, high
performance polymers, and an experimental polyimide are shown in figure 7. This chart shows
that the potential exists to synthesize very low CTE (0.5 x 10-6/°C) polymers. However, the
aromatic thermoplastics and the dense rod-like aromatic thermoplastics must be processed at much
higher temperatures than the typical 177°C cure epoxies typically used for space structures. Also
the modulus of the rod-like polymers can be much higher (1-2msi) than that of the typical epoxy
(0.5msi).

The combination of higher processing temperatures and higher modulus may more than
offset the benefit of lowering the CTE of the polymers. Research is needed to establish the degree
to which each of these properties can be varied and experimental lots of material synthesized for
composite fabrication and testing. Research of this nature is currently underway at NASA
Langley. The near term focus of this research is directed at understanding the structure-property
relationships that determine the coefficient of thermal expansion of polymers. Promising concepts
will be further explored to synthesize enough resin to fabricate composites for testing.

CTE
State-of-the-art polymers PPM/°C Structure/property relationships
Teflon® (TFE) 120 Aliphatic
350°F cure epoxy 50 RN /\/\/ thermoplastics
Kapton® polymide 20 \ High CTE
© High performance polymers ﬁ,';?',},ag's"ets
Hitachi polymide 10 Low CTE
LaRC-TPI oriented 10 X A ti
romatic
MITHI Y thermoplastics
© Experimental polymers Low CTE
New polymide 05  —{TT3—{3—— Dense, rod-like
Very low CTE aromatic

thermoplasitics

Conclusion: Potential exists for synthesizing very low CTE resins

Figure 7
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PRECISION SEGMENTED REFLECTOR

During FY 88 NASA initiated a Precision Segmented Reflector Technology program at Jet
Propulsion Laboratory (JPL) and Langley Research Center (LaRC) as part of NASA's new Civil
Space Technology Initiative. The primary reflector shown in figure 8 is made up of hexagonal
panels, each two meters in size. The panels are supported by a deployable or erectable truss
backup structure and surrounded by a sunshield to keep direct solar radiation from the primary
surface. Significant technical challenges exist in the areas of lightweight deployable structures,
lightweight structural composite mirrors, and the control of pointing, vibration, and figure (ref. 1).

The development of lightweight, low-cost reflector panels that demonstrate high surface
precision and thermal stability is considered a critical enabling technology for precision reflectors.
Some of the key requirements for the reflectors panels are: aerial density <10 Kg/m?; surface
roughness <3 pm; out-of-plane CTE <2 ppm/K; long-term stability in orbit <1 um; low
outgassing; good radiation stability. Much of the work to date has focused on the fabrication of
lightweight honeycomb panels with Gr/Epoxy face sheets. Both E-glass and standard aluminum
honeycomb core have been utilized. Coatings and polishing techniques have also been developed
to improve a fabricated surface precision from 3 pm to approximately 1 pm.

Figure 8
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EFFECT OF MATRIX CTE ON LAMINA PROPERTIES

A significant part of the Precision Segmented Reflector (PSR) program is the development
of lightweight (<10 Kg/m2) low-cost composite panels with a surface roughness less than 0.03
um RMS. These panels must be thermally stable during long-term (10-year) service at cryogenic
temperatures in space. To accomplish these objectives research is underway to develop low
expansion resins for resin matrix composites and establish fabrication procedures which minimize
residual stresses in composites. Reducing through-the-thickness CTE of polymer matrix compos-
ites would help to minimize distortions in composite panel face sheets. Figure 9 shows that a
reduction of CTE by an order of magnitude (CTE EP/10) would reduce the through thickness
expansion of a typical graphite/epoxy laminate to approximately 1/3 the value of a Gr/Ep laminate
fabricated with a typical 350°F cure epoxy. The results of figure 9 also show that the modulus of
the graphite reinforcement fiber does not affect the through-the-thickness (T-T-T) CTE.
Graphite/glass also has a very low T-T-T CTE which makes it a candidate material for PSR
applications.
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Figure 9
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MICROSTRUCTURES OF HMS Gr/BOROSILICATE GLASS

Graphite-reinforced glass is a leading candidate composite material for space applications
where good dimensional stability and radiation resistance are important design considerations. The
microstructure of a typical Gr/glass laminate (ref. 2) fabricated by United Technologies Research
Center is shown in figure 10. Each ply of continuous fiber material is separated by a 2 mil layer of
graphite scrim which was used to improve handleability of the plies prior to composite consolida-
tion. The glass matrix is a Comning borosilicate glass (type 7740) and the reinforcing fiber was
Hercules HMS, a 55 msi modulus PAN base graphite fiber. The fiber volume fraction of this
laminate was approximately 0.45 * 0.03.

Graphite
scrim

HMS Gr/Glass
ply

0.01 inch

Figure 10
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THERMAL EXPANSION OF (0/+60); HMS/BOROSILEATE GLASS LAMINATE

The thermal expansion behavior in the x-direction of a quasi-isotropic Gr/glass laminate
measured in the dimensional stability laboratory at NASA Langley (ref. 2) is shown in figure 11.
The near zero CTE is evident from the slope of the stress-strain curve. Thermal cycling did not
have a significant effect on the thermal expansion behavior. However, the strain hysteresis loop of

25-30x10-6 was unexpected. This behavior is generally believed to be associated with either
damage development in the graphite paper interply layers or changes in residual curing stresses in
the laminates. Similar hysteresis phenomena was also observed for chopped fiber mat Gr/glass
composites (fiber vol. fraction of 33 £3%). The magnitude of the hysteresis was on the order of
15-25x10-6. Thermal cycling of unidirectional Gr/glass samples showed that in the longitudinal
direction the expansion behavior was linear and did not change with thermal cycling (100 cycles).
Values of residual strain were quite low and did not change with thermal cycling. The residual
strain was much more pronounced in the transversely oriented specimens. Large values were
noted on the first cycles but tended to decrease in magnitude in later cycles. However, the
specimen increased in length (transverse direction) during each cycle and net cumulative strains of

up to 200x10-6 were observed after 100 cycles. The reason for this behavior has not been estab-
lished but could be associated with the development of micro damage in the composite laminate.
However, microscopic and x-ray examination of the specimens after testing did not reveal any
cracks.

X-Direction
-8
100 x10
Cycle 1
so = - Cycle 100
-50 Start
-100 ] 1 ] ] 1 ]

-200-150 -100 -50 0 50 100
Temperature, °F

Figure 11
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THERMAL EXPANSION OF (+8)s P100-AZ91C/AZ61A LAMINATES

Graphite reinforced magnesium composites are of interest for space structures because of
their high specific stiffness, low thermal expansion, no outgassing, and excellent radiation resis-
tance. The thermal expansion behavior of a typical Gr/Mg composite (ref. 2) is shown in figure
12. The composite laminate was fabricated with layers of precursor wires (Union Carbide P100
graphite fibers infiltrated with magnesium alloy AZ91C) separated by interply foils of 1.7 mil thick
AZ61A Mg alloy and AZ61A Mg surface foils 2.5 mil thick. The finished panel was 80 mils thick
with a fiber volume fraction of 0.47. The fiber orientation was £8°.

The thermal expansion measurements shown in figure 12 were made in a high precision

Fritzeau type laser interferometric dilatometer which had a strain resolution of 1x10-6. The results
for the first thermal cycle were made by thermally cycling the specimen in the dilatometer by
heating from room temperature to 100°F, then cooling to -200°F then reheating to room tempera-
ture. After the first cycle, the specimen was removed from the dilatometer, thermally cycled in a
separate chamber and then reinserted into the dilatometer for thermal expansion measurements.

The nonlinear thermal strain behavior is attributed to plastic deformation of the matrix alloy
due to thermal stress created by differential thermal expansion between the fibers and matrix alloys.

The first thermal cycle produced a permanent residual strain in the specimen of 103x106. The
residual strain produced on the 5th thermal cycle was 5x106 and on the 100th thermal cycle
8x10-6. The cumulative strain after 100 cycles was 167x106. The coefficient of thermal
expansion was small (-.04x10°6 to 0.16x10-6/°F) at room temperature.

The large hysteresis loop and permanent residual strains produced in the composite clearly
show that this composite could not be used for applications where it would be cooled to -200°F.
Tests of this composite over a reduced temperature range of 70°F to -100°F showed that a small
hysteresis loop was still present but there was no evidence of residual strain following cycling.
The linear thermal expansion range of this composite can be increased by heat treating the compos-
ite to increase the yield strength of the matrix alloy or by using a higher yield strength alloy for the
matrix.
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ELECTRON DOSE RATE IN GRAPHITE EPOXY COMPQOSITE

The high energy electrons and protons present in the trapped radiation belts of the Earth can
cause significant property changes in many polymer materials if the total cumulative dose exceeds
approximately 1x10 rads. The calculated electron dose rate for a typical graphite/epoxy composite
in rads/day is plotted as a function of attitude (circular orbit at zero inclination) in figure 13. The
dose rate at the surface, and at 3, 6, and 15 mils below the surface are plotted. For low Earth orbit
applications, such as Space Station  (~550 KM), the cumulative dose over even a 30 year lifetime
would not be expected to effect composite properties. However, for spacecraft placed in high Earth
orbit (above 1000 KM) the absorbed dose at the surface would be approximately 7x10° rads in 20

years and approximately 1010 rads in 30 years. Because these levels are above the known damage
threshold levels of many polymeric materials radiation damage is a significant environment factor
which must be considered in material selection for long-life structures to be placed in high Earth
orbits.

Selected highlights of an ongoing research program on radiation degradation of polymer

matrix composites conducted at NASA Langley Research Center will be presented in subsequent
figures.

Circular orbits at zero inclination
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Figure 13
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EFFECT OF ELECTRON RADIATION ON AXIAL RESPONSE
OF [45°] OFF-AXI1S Gr/Ep COMPOSITES

The effect of high energy (1 MeV) electron radiation on the shear properties of a typical
177°C cure graphite epoxy composite (T300/934) is shown in figure 14. Composite specimens
0.5 inch wide by 6 inches long were cut from a 4-ply unidirectional composite laminate such that
the fibers were at a 45° angle to the axis of the specimen. The specimens were dried and irradiated
in vacuum (2x10-7 Torr) to 1 MeV electrons at a dose rate of 5x107 rad/h and a total dose of 1010
rads. Unirradiated and irradiated specimens were tested at room temperature, +121°C and -157°C.

The results (ref. 3) in figure 14 show that radiation changes the stress strain behavior of the
composite laminate at all three temperatures examined. At low temperature (-157°C) the strength
and strain-to-failure of the composite are significantly reduced. At room temperature the strength
and modulus are increased by irradiation and the strain-to-failure was only slightly reduced. At
elevated temperature (+121°C) radiation damage of the epoxy matrix caused large reductions in
strength and stiffness and a significant increase in strain-to-failure.

These changes in mechanical properties are consistent with changes expected if the primary
radiation damage mechanism were chain scission. Chemical characterization tests revealed the
presence of low molecular weight species in irradiated composites not found in unirradiated
composites. These low molecular weight species, resulting from chain scissions, plasticize the
matrix at elevated temperatures and embrittle the matrix at low temperatures. They can also have a
significant effect on thermal expansion behavior which will be illustrated in subsequent figures.
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EFFECT OF ELECTRON RADIATION ON COMPRESSIVE RESPONSE
OF Gr/Ep COMPOSITES AT ROOM TEMPERATURE

The effect of irradiation on the compressive response of [0]g and [90]g laminates of

T300/93412 was measured (ref. 3) at -157°C, RT, and 121°C. Trradiation had very little effect on
the compressive properties at -157°C and caused only a small reduction in the strength properties at
room temperature, -3% axial and -13% transverse. However, irradiation caused a severe reduction
in the strength of both the [0]g and [90]g laminates (-62% and -54%, respectively) at elevated
temperatures. The elevated temperature stress-strain curve for the [90]g laminate in figure 15
clearly shows that the matrix has been degraded by irradiation. For the [0]g laminate the matrix
stiffness is sufficient at room and cold temperature to prevent microbuckling of the fibers such that
the strength of the [0]§ composite reflects the strength of the fibers. However, at elevated temper-
atures the matrix stiffness is reduced to the point where lateral support for the fibers is not
sufficient to achieve full fiber properties. These results are consistent with results for neat resin
specimens tested at elevated temperatures with and without irradiation exposure. The DMA results
for baseline and irradiated T300/934 showed that the average molecular weight and cross-link
density of this material were reduced by irradiation. Both of these effects would be expected to
reduce the elevated temperature stiffness of the resin and thus degrade the compressive properties
of the composite.
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THE EFFECT OF ELECTRON RADIATION AND THERMAL CYCLING ON
MICROCRACK FORMATION IN T300/934 Gr/Ep

The effects of sequential radiation and thermal cycling on induced microdamage in the
T300/934 Gr/Ep (ref. 4) are presented in figure 16. This figure shows typical X-ray radiographs
of 4-ply [0/90/90/0] laminates after (1) 500 thermal cycles, after (2) 500 cycles followed by irradi-
ation (104 Mrads), and after (3) irradiation followed by 500 thermal cycles. In each case the
thermal cycles consisted of cycling the specimen between -156°C and 121°C using a 20-minute
cycle period. The specimens that were thermally cycled only and thermally cycled and then
irradiated had approximately 7 cracks/cm in the 0° and 90° directions. However, the specimen that
was irradiated and then thermally cycled developed approximately 30 cracks/cm.

The effect of radiation on matrix microcracking was found to be even a worse problem in
an elastomer-toughened 121°C epoxy system (CE 339). Exposure to 1 MeV electrons caused
severe degradation of the matrix at moderate doses of radiation (ref. 5). At a total dose of 1010
rads the residual ultimate tensile strengths of irradiated fiber-dominated specimens were about 50
percent of those of unexposed specimens. Microcracking in irradiated and thermal cycled
specimens was extensive. The elastomer used to toughen the matrix in this composite system was

found to be extremely sensitive to radiation and underwent crosslinking at low (107 - 108 rads)
total doses.

T300/934 10/901 s
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EFFECT OF THERMAL CYCLING ON CTE IN THE 0° DIRECTION

During thermal cycling of graphite epoxy composites microcracking can result as illustrated
in figure 16 from the combination of residual fabrication stresses and the thermal stresses induced
by the mismatch in thermal expansion between the fibers and matrix and between adjacent plies of
different orientations. Radiation damage to the resin matrix can further contribute to microcracking
by creating low molecular weight polymer products which embrittle the matrix at low temperatures.
The combined effect of thermal cycling and radiation damage on the CTE of a [0, 90, 90, 0]
T300/934 composite laminate is shown in figure 17. The composite was cycled up to 500 times
between -156°C and 121°C in a baseline (or unirradiated) condition and after exposure to 1 MeV

electrons for a cumulative exposure of 1010 rads. The CTE of the baseline material was essentially
unchanged after 500 thermal cycles indicating that no significant damage was developed in the
composite as a result of thermal cycling. However, the CTE of the irradiated composite laminate
was substantially reduced by thermal cycling indicating development of damage in the composite.

X-ray microgradiography of the composites showed that the crack density in the 90° plies
was approximately 30 cracks/cm after 500 cycles. Microcracks in the 90° plies reduce the CTE of
the laminate in the 0° direction because the 0° plies have a more dominant role than when there are
no cracks in the 90° plies.
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Figure 17
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EFFECTS OF RADIATION ON THERMAL EXPANSION

Radiation degradation of matrix resins combined with a cyclic thermal environment can
affect the dimensional stability of polymer matrix composites in two ways. Radiation-induced
chain scission can produce degradation products that plasticize the matrix at elevated temperatures
which can change the way in which residual curing stresses are relieved in the composite, and
degradation products can embrittle the matrix at low temperatures, resulting in matrix micro-
cracking. Irradiation can also result in additional cross-linking which can embrittle the matrix
resin.

Figure 18 shows the effects of radiation degradation products on the thermal expansion
behavior (ref. 6) of a typical 177°C cure Gr/Ep composite ([02/902]5 T300/5208). The irradiated
specimen shows a pronounced nonlinearity at elevated temperature and a permanent negative
residual strain of approximately -67x10-6 at room temperature after one thermal cycle to -157°C.
Repeated cycles over the same temperature range give a strain response parallel to the unirradiated
curve, but displaced by the permanent residual strain present after the first cycle. However, if the
specimen was cycled to a higher maximum temperature, an additional change in slope of the
thermal strain curve occurs which results in an additional permanent residual strain.
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Figure 18



DYNAMIC MECHANICAL ANALYSIS OF T300/5208 GRAPHITE EPOXY

The elevated temperature nonlinear strain response and subsequent permanent residual
strain at room temperature shown in figure 18 are related to radiation degradation products plasti-
cizing the matrix and can be explained by the DMA results (ref. 7) presented in figure 19. The
damping data for the irradiated composite show that the Tg is lowered by approximately 22°C and a

broad "rubbery region" is produced compared to the unirradiated composite sample. During the
thermal cycling tests the specimen was heated into the region where the matrix could flow, thus
relieving residual tensile curing stresses resulting in a more fiber-dominated response at high
temperature (nonlinear region) and permanent negative residual strains at room temperature. On
subsequent thermal cycles no additional changes were measured. The reason for this behavior may
be related to the procedure used to run the thermal expansion tests. The heating process in these
tests occurred slowly in 22°C increments, with 30-minute holds at each temperature. In the 107°-
138°C temperature range, chemical changes apparently took place resulting in a movement of the
"rubbery region" back to higher temperatures out of the thermal expansion test range. Thus on
subsequent thermal cycles to the same temperature no additional changes were measured.
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FLEXIBLE SECOND-SURFACE MIRROR (SSM) THERMAL CONTROL COATING

Polymeric second-surface mirror coatings are so named because the reflecting coating is on
the second surface (non-sun-facing side) of the polymeric film as illustrated in figure 20. To
obtain a high reflectance (low solar absorptance) the polymeric film must be highly transparent to
the solar spectrum from 250 to 3000 nanometers since sunlight passes through the film and is
reflected back through the film into space. The reflecting coating is typically an opaque thickness
of silver or aluminum with a thin over-coating of stainless steel 1o provide corrosion protection.
An adhesive is applied to the stainless steel side of the SSM for bonding the SSM to a spacecraft.

Although the polymeric film is transparent in the solar wavelength region, it possesses
infrared absorption bands characteristic to all polymers. These IR absorption bands give rise to the
thermal emittance characteristics needed for this SSM to perform as a thermal control coating. As
the thickness of the polymeric film increases, the emittance also increases to some limiting value
near 0.9. Solar absorptances as low as 0.08 with emittance values of 0.92 have been obtained
with polymeric second-surface mirror coatings.
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Figure 20
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TRANSPARENT POLYIMIDE FILMS

Space durable polymeric films which have high optical transparency in the 300-600 nm
range of the electromagnetic spectrum are needed for applications such as second-surface thermal
control coatings, solar cell covers, and multilayer insulation blankets. Although several classes of
polymers which are transparent/colorless are available, such as polyesters, aliphatic polyimides and
FEP Teflon, these materials have limited long-term stability in the space environment, especially in
orbits where high energy ionizing radiation is present. Aromatic polyimides have good toughness
and flexibility, good thermal stability, high mechanical strength, and good radiation resistance but
these polymers generally have poor transparency in the visible range. Commercial aromatic
polyimide film is approximately 70% transparent (depending on thickness) in the 500 nm wave-
length range which is the wavelength of interest for space applications. The transparency will also
decrease with exposure time in space.

A new series of highly optically transparent linear aromatic polyimide films has been
synthesized (refs. 8-9) with variations in the polymer molecular structure aimed at reducing
electronic interactions between polymer chains to increase optical transparency. Polymerizations
were performed with highly purified monomers with the result that several polymers were
produced with good optical transparency compared to commercially available polyimide films such
as Kapton as illustrated in figure 21. The more transparent films were evaluated for use in the
space environment and typical results are shown in figure 22.
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Figure 21
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EFFECT OF ELECTRON RADIATION ON TRANSMISSION OF
TRANSPARENT POLYIMIDE FILMS

Several series of linear aromatic polyimide films have been synthesized and characterized

NEW MATERIALS DEVELOPMENT

One of the most fundamental needs in new materials development is a clear definition of the
material requirements (fig. 24) and the relative importance of each requirement. These require-
ments need to be as specific as possible. For example, simply to specify high strength and stiff-
ness for structural composites is not very useful to the materials engineer. He really needs to have
target mechanical, physical, optical, and electrical properties so that he can select the appropriate
fibers, resins, layups, and coatings to achieve high stiffness, low CTE, good compressive
strength, high resistance to thermal fatigue, low outgassing, and other critical properties as
required. It is also important to define the service environment to insure that service life simula-
tions are conducted in realistic exposure conditions. A fresh new look is needed to develop test
standards for space qualification of materials for long-term (20-25 yrs.) service in space.

Testing Issues

® Mechanical, physical, optical property requirements

® Material property data base - What is required and when is it
developed?

® Test standards - Are existing space qualification guidelines
adequate?

Figure 24
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TRANSPARENT POLYIMIDE FILMS

Space durable polymeric films which have high optical transparency in the 300-600 nm
range of the electromagnetic spectrum are needed for applications such as second-surface thermal
control coatings, solar cell covers, and multilayer insulation blankets. Although several classes of
polymers which are transparent/colorless are available, such as polyesters, aliphatic polyimides and
FEP Teflon, these materials have limited long-term stability in the space environment, especially in
orbits where high energy ionizing radiation is present. Aromatic polyimides have good toughness
and flexibility, good thermal stability, high mechanical strength, and good radiation resistance but
these polymers generally have poor transparency in the visible range. Commercial aromatic
polyimide film is approximately 70% transparent (depending on thickness) in the 500 nm wave-
length range which is the wavelength of interest for space applications. The transparency will also
decrease with exposure time in space.

A new series of highly optically transparent linear aromatic polyimide films has been
synthesized (refs. 8-9) with variations in the polymer molecular structure aimed at reducing
electronic interactions between polymer chains to increase optical transparency. Polymerizations
were performed with highly purified monomers with the result that several polymers were
produced with good optical transparency compared to commercially available polyimide films such
as Kapton as illustrated in figure 21. The more transparent films were evaluated for use in the
space environment and typical results are shown in figure 22.
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EFFECT OF ELECTRON RADIATION ON TRANSMISSION OF
TRANSPARENT POLYIMIDE FILMS

Several series of linear aromatic polyimide films have been synthesized and characterized
before and after simulated space exposure (ref. 10). To maximize optical transparency, highly
purified monomers were used and several changes were made in the molecular structure to reduce
the color intensity. The properties of the films were fully characterized including determination of
glass transition temperatures (Tg), polymer decomposition temperature, transmission UV-visible
spectra, infrared spectra, and sofubility in selected organic solvents. Typical UV-visible spectra of
the 6F-containing films before and after the films were exposed to 1 MeV electrons for a total dose
of 5x10 rads representative of 20-25 years in an orbit in the trapped radiation belts such as
Geosynchronous Earth Orbit (GEO) are shown in figure 22. Transmission spectra of 6F dianhy-
deride-containing films are compared to commercially available Kapton H film. The 0.5-mil-thick
films were approximately 95% transparent at 500 nm before electron exposure and were 85 to 91%
transparent after exposure to 5x10° rads. The 6F+3,3-ODA polyimide was especially radiation
stable and showed only a 2% reduction in transparency at 500 nm after electron exposure. All of
the films remained flexible after radiation exposure and no changes in molecular structure were
detectable by Fourier transform infrared spectroscopy. The combination of good radiation (UV
and electron) stability, good thermal stability, high optical transparency, and solubility make these
polymers very attractive for space applications either as polymer films or spray coatings.
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SPACE MATERIALS DEVELOPMENT

Space materials research and development is a continuing research thrust (fig. 23) within
NASA. The objectives of this work are to develop new and improved materials for future NASA
space science instruments and spacecraft for the civil space industry. The desire to increase design
lifetimes combined with stringent requirements on precision, structural weight and performance
have established guidelines for development of new long-life materials. However, materials
development is a long-lead activity and requires long-range research programs to not only develop
the materials but also conduct simulated space exposure testing to establish the long-term durability
of these materials in the space environment. Short-term (2-3 yrs) "Advanced Development
Programs” similar to that conducted for Space Station are not adequate to develop, test, and certify
long-term space durability on new materials.

® NASA's charter is to develop technology to advance the civil
space program

® NASA's customers are the civil space industry and space
science community

® Materials focus should be on development of new and improved
materials and long-life certification of selected existing materials

® Materials development needs to be a long-term continuing R&D
effort - 2 to 3 years "Advanced Development Programs" are
generally not adequate

Figure 23
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NEW MATERIALS DEVELOPMENT

One of the most fundamental needs in new materials development is a clear definition of the
material requirements (fig. 24) and the relative importance of each requirement. These require-
ments need to be as specific as possible. For example, simply to specify high strength and stiff-
ness for structural composites is not very useful to the materials engineer. He really needs to have
target mechanical, physical, optical, and electrical properties so that he can select the appropriate
fibers, resins, layups, and coatings to achieve high stiffness, low CTE, good compressive
strength, high resistance to thermal fatigue, low outgassing, and other critical properties as
required. It is also important to define the service environment to insure that service life simula-
tions are conducted in realistic exposure conditions. A fresh new look is needed to develop test
standards for space qualification of materials for long-term (20-25 yrs.) service in space.

Testing Issues

® Mechanical, physical, optical property requirements

® Material property data base - What is required and when is it
developed?

® Test standards - Are existing space qualification guidelines
adequate?

Figure 24



LONG-LIFE CERTIFICATION

Established test procedures for long-life certification of space structures do not exist.
Spacecraft have been designed and built for relatively short lifetimes, 3-8 years, based on limited
test data. Nearly all of the environmental effects data in the literature are for exposure to a single
environmental parameter such as ultraviolet radiation, electron radiation, micrometeoroid impact,
etc. Very little combined exposure data exist. Also the chemical formulation of many of the
polymers and composites of interest for space hardware have changed over the past decade.

For long-life (20-25 yrs.) certification acceleration methodologies (fig. 25) are required for
realistic combined exposure conditions. These methodologies must be based on a fundamental
understanding of damage mechanisms in the materials. Benchmark flight experiments are required
to verify ground-based simulations to insure that damage mechanisms observed under accelerated
exposure conditions are the same as produced in space. Space environmental effects testing is very
time consuming and expensive and new approaches are required to insure that data generated on
existing materials will be useful for certification of tomorrow's materials.

® Acceleration methodology - must be based on knowledge of
damage mechanisms

® Benchmark flight experiments are required to verify
ground-based simulations

® Long-life certification process must be cost effective -
How do we accomplish this?

Figure 25

51



52

10.

REFERENCES

Mahoney, M. J., editor: Report of the Asilomar III LDR Workshop, JPL Publication 88-
23, August 15, 1988.

Tompkins, Stephen S.; Ard, K. E. and Sharp, G. Richard: Thermal Expansion Behavior
of Graphite/Glass and Graphite/Magnesium. Presented at 18th International SAMPE
Technical Conference, October 7-9, 1986.

Reichmanis, Elsa, and O'Donnell, James H., editors: The Effects of Radiation on High-
Technology Polymers, Chapter 14: Radiation Durability of Polymeric Matrix Composites
by Darrel R. Tenney and Wayne S. Slemp. ACS Symposium Series 381, 1989.

Tenney, D. R., Sykes, G. F. and Bowles, D. E.: Composite Materials for Space
Structures. Proceedings of the Third European Symposium on Space Materials in Space
Environment European Space Agency SP-232, Nov. 1985, pp. 9-15.

Sykes, George F. and Bowles, David E.: Space Radiation Effects on the Dimensional
Stability of a Toughened Epoxy Graphite Composite, SAMPE Quarterly, vol. 17, no. 4,
July 1986, pp.39-45.

Bowles, D. E.; Tompkins, S. S. and Sykes, G. F.: Electron Radiation Effects on the
Thermal Expansion of Graphite Resin Composites. J. of Spacecraft and Rockets, vol. 23,
no. 6, Nov.-Dec. 1986, pp. 625-629.

Tenney, Darrel R.; Tompkins, Stephen S. and Sykes, George F.:NASA Space Materials
Research. Large Space Antenna Systems Technology Conference - 1984, Dec. 4-6, 1984.

St. Clair, A. K.; St. Clair, T. L. and Shevket, K. I.: Proceedings of the Division of
Polymeric Materials Science and Engineering, vol. 51, p. 62, 1984.

St. Clair, Anne. K. and Slemp, Wayne S.: Evaluation of Colorless Polyimide Film for
Thermal Control Coating Applications. SAMPE Journal, July/August 1985, pp. 28-33..

St. Clair, A. K; St. Clair, T. L. and Slemp, W. S.: Optically Transparent/Colorless

Polyimides in Recent Advances in Polyimide Science and Technology, W. D. Weber and
Mr. R. Gupta, eds., 1987, pp.16-36.



