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I. S. Raju 
Analytical Services and Materials, Inc. 
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Abstract 
Analytical expressions for the crack-face displacements of an embedded elliptic crack 

in infinite solid subjected to arbitrary tractions are obtained. The tractions on the crack- 
faces are assumed to be expressed in a polynomial form. These displacements expressions 
complete the exact solution of Vijayakumar and Atluri, and Nishioka and Atluri. For the 
special case of an embedded crack in an infinite solid subjected to uniform pressure loading, 
the present displacements agree with those by Green and Sneddon. The displacement 
equations derived in this paper were used with the finite-element alternating method 
(FEAM) for the analysis of a semi-elliptic surface crack in a finite solid subjected to  remote 
tensile loading. The maximum opening displacements obtained with FEAM are compared 
to those with the finite-element method with singularity elements. The maximum crack 
opening displacements by the two methods showed good agreement. 

Introduction 

Damage tolerant analyses require accurate calculations of stress-intensity factors at 
crack tips in two-dimensional and around crack fronts in three-dimensional bodies. Ex- 
perience with several crack configurations have shown that these cracks tend to  grow 
in nearly elliptic, semi-elliptic and quarter-elliptic shape. Therefore, considerabIe atten- 
tion has been devoted to analytical and experimental studies of these crack configurations. 
While considerable data exists on the stress-intensity factors for these crack configurations 
[ 1-41, very little information exists on crack-face displacements. Crack-face displacements 
are directly measured in an experiment, while the stress-intensity factors are deduced from 
the experimental observations (such as stress freezing). Therefore, a need exists for ac- 
curate analytical crack-face displacements for comparison with experimental observations 
for three-dimensional crack configurations. Also, crack-face displacements are needed to 
develop three-dimensional weight function methods [5,6]. 

Recent literature has shown that the three-dimensional finite-element alternating 
method (FEAM) is a very economical and an accurate method for obtaining stress- 
intensity factors for elliptical and part-elliptical crack configurations [7-lo]. The FEAM 
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uses the exact solution of an embeddec elliptical crack in an infinite solid subjected to 
arbitrary crack-face tractions obtained by Vijakumar and Atluri [ll], and Nishioka and 
Atluri [7,8]. While these solutions are comprehensive, the crack-face displacements are 
not available in references 7,8 and 11. In order to use the FEAM to calculate crack-face 
displacements, the exact solution of references 7,8 and 11 needs to be extended to derive 
the crack-face displacements for each of the polynomial pressure loadings on the crack 
faces. 

The purpose this paper is obtain the analytical crack-face displacements for an 
embedded elliptic crack in an infinite elastic solid subjected to arbitrary polynomial 
normal and shear tractions. First embedded crack solutions in the literature are reviewed. 
Next the fundamental equations relevant to the embedded elliptic crack problem are 
summarized. Then the crack-face displacements for mode I loading are obtained. Next 
the crack-face displacements for the mixed-mode loadings are derived. The displacements 
for the special cases of uniform pressure on the crack faces are compared with those from 
Green and Sneddon [12] and Kassir and Sih [13]. The crack-face displacements equations 
presented in this paper are used in conjunction with the FEAM to calculate the maximum 
crack opening displacements (COD) of a semi-elliptical surface cracks in a finite thickness 
solid. These COD values are compared to those obtained with finite-element method using 
singularity elements. 

Symbols 

ai, a2 semi-major and semi-minor axes of the embedded elliptic crack 
AGi ,,m--n,n magnitudes of the polynomial pressure loading on the crack faces defined by 

Eq. (1) and Eq. (47) 
E ( K )  elliptic integral of the second kind 

fa potential functions 
Fkl potential function defined by Eq. (7) 

K ( K )  elliptic integral of the first kind 
M degree of truncation of the polynomials 
u, displacement along x, direction 
x, Cartesian coordinates with the origin at center of the elliptic crack with xi along 

the major axis and 2 2  along the minor axis of the ellipse 
p shear modulus of the isotropic material of the solid 

Y Poisson's ratio of the material 
6, ellipsoidal coordinates defined by Eq. (3) 
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a,p stresses in the solid 

Embedded Crack Solutions 

The exact solutions for an embedded crack in an infinite solid are the fundamental 
solutions used in alternating methods. Therefore, this section briefly reviews the classical 
works in the literature on embedded crack solutions. Some of the results from these 
references are used to build the present solution for the crack-face displacements. 

Exact analytical solution for a penny-shaped crack subjected to uniform pressure 
loading on the crack surfaces was obtained by Sneddon [14]. Later, Green and Sneddon 
[12] obtained the exact solution for an embedded elliptic crack in a infinite solid subjected 
to  uniform pressure loading. Kassir and Sih [13] obtained an exact solution for an elliptic 
crack subjected to shear loading on the crack faces that can be expressed by a simple 
trignometric functions. Shah and Kobayashi (151 derived close form solutions for an 
embedded elliptic crack subjected normal loading that can be described by polynomial 
functions up to the third degree in terms of the two Cartesian coordinates that describe 
the ellipse. Smith et a1 [16] obtained the solution for a penny-shaped crack subjected to a 
polynomial pressure distribution on the crack faces. Smith and Sorensen (171 obtained the 
solution to an embedded elliptical crack in an infinite solid subjected to shear tractions 
that can be described by polynomial functions up to the third degree in terms of the 
two Cartesian coordinates that describe the ellipse. Later, Vijayakumar and Atluri 
[ll] and Nishioka and Atluri [7,8] obtained the exact solution for an embedded elliptic 
crack subjected to arbitrary normal and shear loadings on the crack surfaces. Note that 
the solutions in references 12 through 17 are special cases of this general solution. As 
mentioned previously, the purpose of this paper is to extend the solution in references 7,8 
and 11 and derive the crack face displacements. 

Fundamental Equations For Mode I Loadings 

For completeness this section presents the equations that are relevant to an embedded 
elliptical crack in an infinite solid subjected to arbitrary tractions on the crack faces. The 
notation of reference 7 is followed. Some of these equations can also be found in references 
11-17. 

Consider an embedded elliptic crack in an infinite solid as shown in Figure 1. The 
crack faces are subjected to prescribed normal tractions a33 which can be expressed in a 
polynomial form as 
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1 1 M m  

i=o j=o m=O n=O 

where i and j specify the symmetries of the load with respect to the axes of the ellipse, 
4 , m -  i , i  n ,n are constants that give the magnitude of the load, and M is the degree of 
truncation of the polynomial. 

The stress distribution everywhere in the solid and the stress-intensity factors all along 
the crack border due to the prescribed pressure distribution of Eq. 1 has been obtained 
in references 7, 8, and 11. Here the crack opening displacements corresponding to the 
arbitrary pressure distribution of Eq. 1 will be obtained. 

Ellipsoidal Coordinates 

The elliptic crack perimeter can be described by 

( d a d 2  + (x2/.2)2 = 1 , a1 > a2 (2) 

The coordinates xi (i  = 1,2,3)  of any point in the solid may be expressed in terms of 
the ellipsoidal coordinates, ea, (a = 1,2,3) in the form 

a; (a; - a2")x; = (a4 + €1) (a; + €2) (4 + €3) 

2 2  
a2 (a2 - "3.2" = (4 + €1) (4 + €2) (a; + €3) (3) 

where 

00 > €3 1 0 1  €2 2 -2" 2 €1 2 -a: 

Note that the ellipsoidal coordinates (a are defined by the roots of the cubic equation 

w ( s )  = 1 - - - - - -  4 4 4 
a ; + s  a ; + s  s 

(4) 

where 
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and 

Q ( S )  = s (S + u:) (S + ai) ( 5 )  

In the x 3  = 0 plane (the plane of the crack), the inside of the ellipse is given by 
( 3  = 0, outside of the ellipse is given by (2 = 0, and the elliptic crack front is described 
by = €3 = 0. 

Potential Functions, Stresses, and Displacements 

Using Trefftz’s formulation [7,8,11] for mode I problems, a potential function f 3  is 
defined such that 

where 

In equation (6), C3,k , l  are undetermined constants and w ( s )  and Q ( s )  in Eq. (7) are 
defined in Eqs. (4) and ( 5 ) ,  respectively. The partial derivatives of the potential function 
f 3  are needed to obtain the stresses and displacements. They are denoted as follows. 

f 3 , p  C3,k,l Fkl,P 
k l  

k 1  

where f 3 , p  is the partial derivative of f 3  with respect to x p ,  (p  = 1,2,3) and so on. 
The stresses and displacements in the solid are given by 
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and 

where p is the shear modulus and v is the Poisson’s ratio of the material. 

Crack Boundary Conditions 

The boundary conditions on the crack plane (23 = 0) are in two regions: inside and 
outside the elliptic crack. Inside the elliptic crack (€3 = 0), the boundary conditions are 

for 

(x1/a1)2 + (22 /a2 )2  < 1) x3 = 0. 

Note that the right hand side of Eq. (13) are the prescribed tractions on the crack faces. 
Outside the elliptic crack (& = 0)) because of symmetry in this mode I problem 
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for 

From the stresses in Eq. (ll), the shear stress boundary conditions 
satisfied and the normal stress boundary conditions require that 

1 1 M m  

are identicaIIy 

(15) 
i=O j = O  m=O n=O 

Because the potential function f3 is expressed in terms of the unknown constants C3,k,1 

and an unknown function Fkl (see Eq. (6)), Eq. (15) provides the relationship between 
c3, k ,1 and ';,k- n,n Such a relationship was obtained from Eq. (42a) of reference 7. 

Equation (12) define the displacements everywhere in the solid. As the displacements 
at  any point on the crack faces are sought, the displacements inside the ellipse (€3 = 0) on 
the x3 = 0 plane need to be evaluated. Because the derivatives F k 1 , 3 ~  (and hence f3,37) 

are finite when 23, Q = 0 (see Appendix I for details), the crack-face displacements can 
be written as 

. .  

u3 = 4 1  - 4 f3,3 (16) 

Therefore, to obtain the crack-face displacements one needs the derivatives of the potential 
function f3 with respect to xp. 

Mode I Crack Face Displacements 

Fkl,p must be evaluated to determine the partial derivatives of f3 with respect to xp. 
The derivatives of Fkl are obtained by differentiating Eq. (7) as 

where 
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IC1 = k + 61, , I1 = 1 + 62, , mi = 63, 

and 61p, 62p, and 63, are the well known Kronecker deltas. 
Because ~ ( ( 3 )  = 0, Eq. (17) can be written as 

Equation (19) needs to be evaluated in the interior of the ellipse (€3 = 0). Substituting 
W ( S )  from Eq. (4) into Eq. (19) and performing the integrations one obtains 

where 

(2r)! 
t3 = - 

r! 

2p- 2q- k 1 
"1 t4 = 

(2p - 2q - kl) !  

t 5  = 4q-2r--11 
(2q - 2r - [I)! 

and 
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Equation (21) is an elliptical integral and can be written in terms of the Jacobian 
elliptic functions [7,18] as 

where 

2 a; , d n u  2 = -  €3 sn u = 
a; + €3 a; + €3 a; + €3 

(23) 

The integral LP,q--r,r was integrated by parts and a recurrence relation is available 
in reference 18 (Eq. 357.01) and reference 7 (Eq. 30). A slightly different recurrence 
relationship that is useful for the crack-face displacement evaluation was obtained using 
integration by parts as shown in Appendix 11. The recurrence relation is 

(24) 2 - ( 2 ~  - 1) Lp-l,q-r-l,r-l - K (2q - 2) Lp,q-r,r-~] 

Equations (19)-(24), provide all the information necessary to evaluate the partial derivative 

f3,P- 

Partial Derivatives With Respect To x3 

Because the crack opening displacements are sought the discussion is first focused on 
the derivative Fk1,3. To evaluate Fk1,3, kl = k, 11 = I ,  and mi = 1 need to be substituted 

in Eq. (20). 
On the 23 = 0 plane and outside the ellipse (€2 = 0), all terms in equations (23) and 

(24) are non-zero and the term z;'-' in Eq. (20) is identically zero because r 2 1 and 
23 = 0. Hence, Fk1,3, and therefore u3 are identically equal to zero outside the ellipse, as 
required by the boundary condition of the problem. 

On the 23 = 0 plane and inside the ellipse (€3 = 0), because cn2u = 0 (see Eq. (23)), 
the integral Lp,q-r,r diverges. However, on this plane, xF-' vanishes. The term 

.2r-1 
3 LP,Q-',' 

takes an indefinite form and therefore needs to be examined when x3 = €3 = 0. 
The term is written as 
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As will be obvious later, the last two terms in the square brackets of Eq. (25) are zero 
when x3 = c3  = 0. Now consider the term in braces in Eq. (25). With the help of Eq. (23) 
one obtains 

Noting that ~ ( ( 3 )  = 0 and utilizing equation (4), the term in the square brackets in 
Eq. (26) can be written as 

Substituting Eq. (27) in Eq. (25) and using Eq. (23) gives 

Now consider the term xF-' Lp-llq-.r-l,r-l in Eq. (25). As before, considering the 
product of x3 and nc u terms, one has 

The term in Eq. (29) is identically zero when x3 = c3 = 0. A similar argument holds for 
the term x:~-' Lp,q-r,r-l. 
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The partial derivative Fk1,3 when 53 = e3 = 0 can now be written as 

1 1 .-. [a2 { 1 - 
2 .-. 1 

(2r - I)! a fP+1  (2r - 1) K12q 

Non-dimensionalizing Eq. (30) one obtains 

(2r - 1) 

Note that in the above equation the valid terms in the triple summation are those whose 
factorial arguments are either zero or positive integers. The opening displacements u3 are 
obtained as 

u3(zl, 5290)  = -2 (1 - C3,k,1 Fk1,31z3=(~=0 (32) 
k l  

The unknown constants C3,k,l are obtained in terms of the prescribed tractions on the 

The non-dimensionalized opening displacements a t  the center of the crack (21 = 2 2  = 
crack faces by Eq.(42a) of reference 7. 

0) can be obtained from Eq.(32), where 

(2k2)! (212)! 
(k + 1 + I)! - - 2 

k + l  1+1 k2! 12! Fk1,3 121=22=23=0 = 
a1 a2 

for even values of k and 1 , with 2k2 = k,212 = I, and 

11 

(33) 

(34) 



for odd values of k and 1. Note that for odd values of k and 1 the antisymmetry of 
deformation requires that u 3  be equal to zero along xi and x 2  axes, respectively. Equations 
(33) and (34) were evaluated for various values of IC and 1 and Fk1,3 is presented in Table 
1. 

Note that Eq. (30) through (34) are equally valid for the penny-shaped crack (ai = 
a2 = a) because these equations do not contain any indefinite forms. 

Parial Derivatives With Respect To x 1  and 2 2  

The displacements ul and u2  (see Eq. (12)) require the evaluation of f3,1 and f3,2, 

The partial derivative Fkl,l and pk1,2 are obtained by substituting 
and, hence, Fkl,l and Fkp2 with 2 3  = €3 = 0. 

IC1 = k + 1 ,  I1 = I ,  ml = O  

k1 = k ,  11 = 1 + 1 ,  mi = O  

in Eq. (20). This substitution yields terms like 

(35) 

Evaluation of these terms can be performed in two parts, when r = 0 and when r 2 1. 
First consider the later case. When r 2 1, the term in Eq. (36) yields 

Because ( 2 3 l c n u )  at 5 3 ,  €3 = 0 is finite (see Eq. (27)), the term in Eq. (37) vanishes 
when 2 3  = 0. 

Therefore contributions to the displacements do not occur when r 2 1. Now consider 
the term in Eq. (36) when r = 0. 

Instead of using the recurrence relation of Eq. (24), it is convenient to use ( see 1181 and 
Appendix 11) 

where 
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U 

I2m = J ,  nd2mt dt (394 

for 2m 2 0 and 

for 2m < 0. The integrals in Eq. (39a) and (39b) can be evaluated recursively by using 

for 2m 2 0 and 

2 

(40b) 
2m(2 - n2) G2m + (1 - 2 m ) ~ "  G2m-2 + n sn u cn u dn2m-1 u 

(2m + 1) G2m+2 = 

for 2m < 0. To evaluate the integrals in Eq. (39) and (40) one needs the starting values 
Io,Go, I -2 ,  and G2. These are obtained by setting m = 0 and m = 1 in Eqs. (3ga) and 
(39b). This yields 

10 = Go = U, I-2 = Gz = E(u) 

As the displacements on the crack faces are sought, Eqs. (39) and (40) need be 
evaluated when 23 = = 0. Thus, instead of incomplete elliptic integrals, one has 
complete elliptic integrals (with u = K(n)) and therefore Eqs. (40a) and (40b) reduce to 

2 

2m(2 - n2) G2m + (1 - 2m)d Gzm-2 (42b) (2m + 1) G2m+2 = 

for 2m < 0, and with 

10 = Go = K ( K ) ,  1-2 =G2 = E(u) (424 

where K ( K )  and E ( K )  are complete elliptic integrals of the first and second kind, 
respectively. 
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Therefore, the displacements ul and u2 at an arbitrary point on the crack faces are 
given by 

where 

where 7 = 1,2. Thus Eqs. (43) and (44) completely define the crack-face displacements 
ul and u2. 

t ions. 
This completes the analysis of crack-face displacements for mode I type of deforma- 

Mixed-Mode Crack Face Displacements 

For mixed-mode deformations, instead of a single potential function f3 of Eq. (6) for 
the mode I case, there are three potential functions f a ,  (a = 1,2,3) 

k 1  

where F k l  is the function defined in Eq. (7). 

The displacements ua on the x3 = 0 plane are given by [7,8,11-171 

u3(x1,z2,0) = - ( 1 - 2 u ) ( f l , l  + f 2 , 2 )  - 2(1-V)f3,3 

The first terms on the right hand side of Eq. (46) represent the displacements due to 
the mode I I  and mode III loading while the second terms represent the displacements 
due to mode I loading. 
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As in the mode I case, to evaluate the displacements one needs the partial derivatives 
fa,p (and hence Fkl,p) on the x3 = 0 plane and inside the ellipse ((3 = 0). However, all 
the partial derivatives Fkl,p are already obtained and are given by Eqs. (30) and (44). 
Thus for a general mixed-mode problem of an embedded elliptic crack in a infinite solid 
subjected to arbitrary tractions of the form 

where a = 1,2 ,3 ,  the displacements on the crack surfaces are given by Eq. (46). The 
relationships between the magnitudes of AFm-n,n and the constants Ca,k,f are already 
available from Eq.(42b) of reference 7 for mode 11 and mode 111, and Eq.(42a) of reference 
7 for mode I deformations. 

Special Cases 

Elliptic Crack 

Consider an elliptic crack subjected to a uniform pressure of magnitude S on the crack 
= S. Therefore, the opening displacements are 0 0  faces. For this case k = 1 = 0 and A3'0 

computed using Eq. (32) as 
9 9  

The relationship between and C3,0,0 is (12,151 

or 

(50) 
ala; 

8 Cr E(4  c3,0,0 = 

Therefore, the opening displacements for an elliptic crack subjected to a uniform pressure 
S are obtained by substituting Eq. (50) into Eq. (48) and are 
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which agrees identically with those due to Green and Sneddon [12]. The maximum opening 
displacement is 

(1 - v) Sa2 
Ir E ( 4  

u~(o,o,o) = -- 

Note that the total opening displacements between the crack faces is the COD and is 
equal to twice the value of the opening displacement u3(xl,x2,0). 

Now consider the displacements ul and u2. The displacements are 

UT = (1 - 2v) c3,0,0 F00,~ 

with 7 = 1,2. Using Eq. (44) to evaluate F W , ~  one obtains 

and 

(53) 

Equations (54) and (55 )  agree with those obtained by Kassir and Sih [13]. Thus the 
displacements ul and u2 at any point on the crack face are 

Because of symmetry about the q and x2 axes, u2(21,0,0) u1(0,~2,0) G 0. 
Eqs. (56) identically satisfy this requirement. The maximum ul and u2 displacements 
occur at the end of major and minor axes, respectively, and are given by Eq. (56) with 
XI = a1 and x2 = a2. 

Penny-shaped Crack 

For a penny-shaped crack, a1 = a2 = a ,  E ( K )  = ~ / 2 ,  and Eq. (51) reduces to 

and the maximum opening displacement is 
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(1 - v) 2Sa u ~ ( o , o , o )  = -- 
P A  

(58) 

Similarly, the displacements ul(q, 22,O) and u2( 21 , 22, 0) can be obtained from 
Eq. (56), using the limit as IC 4 0 (see Appendix 11) as 

U ~ ( X l , X 2 , 0 )  = -(1 - 2+- S Z l  

4P 

Sz2 
U 2 ( Z ~ , Z ~ , O )  = -(1- 2 4  - 

4P 

Use of the Crack-face Displacement Equations 

(59) 

As previously mentioned, the crack-face displacement equations, Eqs. (30) and (44), 

can be directly used in the FEAM to calculate crack-face displacements for various three- 
dimensional crack configurations. To illustrate the use of these equations consider plate 
containing a semi-elliptical surface crack with (a l /a2)  = 0.6. The plate is subjected to 
remote tensile loading as shown in Fig. 2. The crack configuration was analyzed by the 
FEAM and the three-dimensional finite element method with singularity elements using 
the models and methods described in referece 19. In the FEAM, the maximum degree 
of the polynomial (M) was equal to 5. The maximum crack opening displacement at 
("1 = x2 = 2 3  = 0 )  obtained by both methods is compared in Table 2 for three crack sizes 
(defined by crack depth-to-plate thickness ratio) of 0.2, 0.5, and 0.8. The results from the 
two methods agreed well. For a deep crack, the differences between the two displacements 
is only about 3 percent. 

Concluding Remarks 

The evaluation of the crack-face displacements of an embedded elliptic crack in an 
infinite solid subjected to  arbitrary tractions is addressed. The arbitrary tractions are 
assumed to be applied to the crack faces and are assumed to be expressed in a polynomial 
form in terms of the Cartesian coordinates that describe the ellipse. 

The exact solution obtained by Vijayakumar and Atluri, and Nishioka and Atluri was 
extended to obtain closed form expressions for the crack-face displacements. The crack- 
face displacements for special cases of uniform normal tractions agree identically with 
those obtained by Green and Sneddon, and Kassir and Sih. 

The evaluation of the crack-face displacements for embedded, surface, and corner 
cracked solids in finite bodies require the use of numerical methods such as finite element, 
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finite-element alternating and boundary-element alternating methods. The displacement 
expressions obtained in this paper were used with the finite-element alternating method 
(FEAM). An example of a semi-elliptic surface crack in a finite solid subjected to remote 
tensile loading was analyzed with the finite-element alternating method and finite-element 
method with singularity elements. The maximum crack opening dispalcements were 
calculated with both methods. In the FEAM, the crack-face displacements equations 
derived in this paper were used. The maximum opening displacements from both methods 
agreed well for both shallow and deep cracks. 
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Appendix I 

This appendix shows that the second partial derivatives, Fkl ,Jy ,  do not have singular- 
ities on the 2 3  = 0 plane, inside the elliptic crack (€3  = 0). 

The second partial derivatives Fkl,j7 are [7,8,11,15] 

where 

with 

kl = k + 617; I 1  = I + 6273 rnl = 1 + 637 (1.3)  

and 7 = 1,2,3.  These derivatives are to be evaluated at x3 = €3 = 0. 
The first term on the right hand side of Eq. (1.1) is given by Eq. (20) with kl, 11, and 

m l  defined in Eq. (1.3). Using Eqs. (25) through (29), this term can be easily shown to 
be finite at x3 = €3 = 0.  

Now consider the second term in Eq. (1.1). At z 3  = €3 = 0 ,  this term can be written 
as 

Using Eq. (3) and rearranging, one obtains 

Using Eq. (4), Eq. (1.5) can be written as 
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For the terms Ffl,31 and Ff1,32, rnl = 1 and hence ( ~ 3 / & ) " 1 - ~  = 1. Thus, no 

For the term Ftl ,33,  m l  = 2 and therefore Eq. (1.5) can be written as 
singularity exists in the right side of Eq. (1.6) and the term is finite. 

This term has a singularity a t  €3 = 0. However, as shown in reference 15, when 
Eq. (1.7) is combined with the first term in Eq. (1.1), the terms involving l/a cancel 
each other. Alternatively, because Fk[ is harmonic, 

The derivatives FklJrl and Fk1,22 can be easily shown to be finite at x3 = €3 = 0. Thus 
the derivative Fk[,33 also remains finite at z 3 ,  <3 = 0.  
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Appendix I1 
The appendix derives the recurrence relationship of Eq. (23) and the integral in 

Eq. (39). This appendix also presents the identities of the Jacobian elliptic functions 
used elsewhere in the paper. 

Recurrence Relation Of Eq. (23) 

The integral Lp,q-r , r  is 

U 

L p , q - r , r  = J, ( s n 2 P t )  (nd2q-2r t )  ( n ~ ~ ~ t )  dt (11.1) 

Integration by parts was used to  obtain the recurrence relationship as 

U 

Lp,q--r,r = ( s n 2 P - l  t )  ( n d 2 q - 2  t )  (snt  nc2r t nd2-2r t ) dt 

(11.2) 

- (2q - 2) lu ( s n 2 P  t )  (nd2q-2r t )  ( n ~ ~ ~ - ' t )  dt]  

Therefore 

4 2r-1 (,d2q-2r-1 4 (nc 
- 

(2t - 1) ,I2 
Lp,q--r,r - 

(II.3) 

Derivation Of Eq. (39) 

Using one of the Jacobian identities the integral in Eq. (39) can be written as 
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lu sn2P t nd2q t dt 

( 4 ) j  p !  P 1 
K2P 

- 
- - C ( p  - j ) !  j !  12(q-j) 

j = O  

In the above derivations and elsewhere in the paper the following identities of the 
Jacobian elliptic functions [18] were used. 

2 2 2 
sn u + cn u = 1 ; ~ ~ s n ~ u + d n  u = 1 

2 
dn2u - ,2cn2u = &I2 ; d2 sn2u+cn2u = dn u 

cn u 
cdu =- 

dn u 

dn u 

sn u 
dsu= - 

sn u 

dn u 
sdu= - 

tnu  = scu 

cn u dn u 

sn u cn u 
; csu =- ; dcu =- 

1 
; ndu=- 

cn u dn u 
1 

; ncu=- 

1 
;nsu = - 

sn u 

sn u 

cn u 
- - - 
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d( s n  u) 

sn K 

E(K) - d2 K(n) 
lim 
K+O K2 

c n u d n u  ; d(ndu) = tc2sducdu 

1 ; cnK 0 ; dnK - - tc' 
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Table 1 Values of Fk1,3 at the center of the elliptic crack 5 1  = 5 2  = 5 3  = 0 

for various values of k and I ,  (0 5 k , l  5 5).  

0 0 -4 

3 
2 
1 '  
0 

0 
1 

0 
1 
2 

0 
1 
2 
3 

0 
0 

0 
0 
0 
0 

4 0 - 1536/a! 
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Table 2 Comparison of the maximum total crack opening displacement for 
a surface cracked plate by FEAM and finite element method with 
singularity elements. ( a l / a z  = 0.6) 

Crack Depth-to- 
Plate Thickness FEAM FEM [19] 

Ratio 

0.2 

0.5 

0.8 

2.677 

3.132 

3.954 

2.699 

3.076 

3.839 
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3 cv 
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