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Nomenclature

A; the cross section areas, i=1,2.

2 b; crack dimensions, i=1,2.

C constant functions of material properties , i=1,2,j=1,2,3.
D; coefficients of thermal diffusivity, i=1,2.

constant functions of material properties, i,j=1,2.

Young’s Modulus, i=1,2.

the asymptotic values of G;; , as o — e , and #;,x; go to the

l_[ b
end points , i=1,2.

h thickness of the clad in Model I .

h; thickness of the materials in Model II, i=1,2.

H(®) Heaviside step function .

k stress intensity factor at the irregular points .

K, coefficients of thermal conductivity , i=1,2.

kij the kernels of the singular integral equations .

kZ- bounded terms of the kernels , i,j=1,2.

kfj singular terms of the kernels, i=1,2,=1,2,3,4.

k., kxy the normal and shear components of the stress intensity
factor at the interface .

L total thickness , (h;+4,) .

! the total length of the crack, (/; +1,) .

I, length of the cracks , i=1,2.

L, Laguerre polynomial .

m =W/, .

P transform variable of Laplace Transform.




Greek letters
0, ,1)

©o

O,(x.p)

n

Jacobi polynomial .

=hy/h; .

radius of neutral surface of the cylinder.

the collocation points .

temperatures, i=1,2.

initial temperature .

temperature at the boundary at any time.

time.

the actual duration time of the ramp function.
displacement components in x and y directions, i=1,2.

fundamental functions of the singular integral equations ,
i=1,2.

horizontal coordinate measured from the boundary.
horizontal coordinate measured from the interface.
dimensionless distance, x/4 in Model I and x/h; in Model II .

the distance from the neutral axis.
the distance from the neutral axis to the center of the cross
section, i=1,2.

vertical coordinate.

=T,(0,0)-T,,,i=12.
=T0"T°° .

Laplace Transform of ©,;(x',7), i=1,2.
b P
k Dy



- ©

Fourier Number =D,/ h? for Model I, :D 1/ hf for Model II .
=tOD1/h2 for Model I, toDl/hf for Model II .
coefficients of thermal expansion, i=1,2.

uniform strain over the shell thickness .

strain components, i,j=x,y,z.

stress components , i,j=x,y,z.

Poisson’s ratio, i=1,2.

=-a E;0p/(1-vy).

thermal stresses, i=1,2.

density functions = dv;(x,0)/dx, i=1,2.

shear modulus, i=12.

=(3-4v)) for plane strain .

=(3-v))/(1+v)) for generalized plane stress .
transform variables of Fourier Transform .
singularity at the crack tips, i=1,2.

the m™ root of equation (2.81) .

stiffness of the elastic foundation.

radius of curvature of the deflected composite beam .

=x/2k, 0.

contour integral .
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ABSTRACT

In many applications, such as nuclear pressure vessels, micro-electronics,
and the chemical industry, the study of transient thermal stresses in layered
cylinders and plates in the presence of a crack is required. In this study first the
cladded pressure vessel under thermal shock conditions which is simulated by
using two simpler models. The first model (Model I) assumes that, if the crack
size is very small compared to the vessel thickness, the problem can be treated
as a semi-infinite elastic medium bonded to a very thin layer of different
material. However, if the crack size is of the same order as the vessel thickness,
the curvature effects may not be negligible. In this case it is assumed that the
relatively thin wailed hollow cylinder with cladding can be treated as a
composite beam on an elastic foundation (Model II). In both models, the effect of
surface cooling rate is studied by assuming the temperature boundary condition
to be a ramp function. Among the crack geometries considered are: the edge
crack in the clad, the broken clad, the edge crack going through the interface,
the under-clad crack in the base material, and an internal crack crossing the
interface.

The calculated results include the transient temperature, thermal stresses
in the uncracked medium and stress intensity factors which are presented as a
function of time, and the duration of cooling ramp . The stress intensity factors
are also presented as a function of the size and the location of the crack. The
problem is solved for two bonded materials of different thermal and mechanical
properties. The mathematical formulation results in two singular integral
equations which are solved numerically. The results are given for two material
pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a

ceramic coating on ferritic steel. In the case of the yielded clad, the stress



intensity factors for a crack under the clad are determined by using a plastic
strip model and are compared with elastic clad results. When the results
obtained are compared with the corresponding elasticity solution for the thick-
walled cylinder, the agreement was found to be quite satisfactory.

In the composite plate with finite thickness the calculated results indicate
that the peak values of the stress intensity factors decrease with decreasing
cooling rate of the surface. On the other hand, in the case of semi-infinite
medium (Model I), since the medium is fully constrained at infinity, the
maximum values of the stress intensity factors are attained at steady state.

The technique developed and the dimensionless results given in this study
are , of course, applicable to any composite plate that is locally subjected to
thermal shock.



Chapter 1
INTRODUCTION

It is known that the cladding, when bonded to the inner wall of pressure
vessels or pipes, can be very effective in protecting the base metal from severe
corrosion. In the nuclear pressure vessels the cladding serves the additional
purpose of protecting the base metal from radiation damage. In some other
applications, as in micro-electronics and the chemical industry where coating is
used very widely, the study of residual stresses and transient thermal stresses
in layered cylinders and plates is required.

Our aim in this work is to study the structural integrity of cladded
materials under sévere thermal transient stresses in the presence of pre-
existing flaws. These flaws may be due to imperfections such as voids,
inclusions, or weld defects, which are generally treated as cracks. In case of
pressure vessels with cladding, the cracks have been observed underneath the
clad oriented in a plane perpendicular to the cylinder axis and terminating at
the interface.

In analyzing the subcritical crack growth in homogeneous materials, it is
generally accepted that the stress intensity factor can be used quite effectively
as a correlation parameter. The objective of this study is therefore to investigate
the effect of the clad on the stress intensity factors in the case of a crack
perpendicular to the interface under transient thermal stresses. Once we know
the stress intensity factor, we could also determine whether catastrophic failure
will occur in brittle materials due to unstable crack propagation.

The thermal shock problem for a circumferentially cracked hollow cylinder
with cladding was considered by Nied [1] for two special crack configurations.

First, the circumferential crack embedded in the base metal, where the crack tip



is located just underneath the clad. Second, the edge crack which completely

passes through the clad. His basic assumptions were

1. The problem is axisymmetric for both crack geometry and
temperature boundary conditions.

2. The change in surface temperature is a unit step function.

3. The transient thermal stress is quasi-static, i.e, the inertia effects
are negligible.

4. The materials are assumed to be isotropic, homogeneous, and
linearly elastic such that the clad and the base material have the
same elastic modulus and Poisson’s ratio. i.e, E; =E, , v{ =V, , but
non-homogeneous in thermal properties.

5. If the cladding is sufficiently ductile, during a thermal transient,
the cladding may yield. In this case the clad is examined by using a
plastic strip model, which assumes that the clad is perfectly
plastic.

Now, by assuining an extremely severe temperature change at the inner
wall of the cylinder, i.e.,, a step change in the inner wall temperature, he
obtained a peak value of thermal stresses. These stresses should be lower if one
assumes a more realistic temperature boundary condition. Erdogan [2]
compared two sets of data to show the effect of the temperature boundary
condition at the inner wall of a vessel without cladding, first set for a
homogeneous vessel which contains a circumferential edge crack on the inner
wall obtained from [3] where a step change in temperature is used as the
boundary condition, and the second set for the same problem where a smoother
temperature boundary condition obtained from [4] was used. He showed a
significant difference between the two sets. Hence, a reduction in the stress
intensity factors in Nied’s results would occur if we repeat his work with more
realistic temperature boundary condition.

The main objective of this work is to solve the crack problem under
transient thermal stresses with temperature boundary conditions at the inner

wall of the cylinder that are somewhat more realistic than the step function



temperature used in previous studies as shown in Figure 1.1.c , and provided
that the clad and the base materials have different thermal and mechanical
properties.

The actual problem is a very complicated three-dimensional problem and
seems to be analytically intractable. So, we are going to simulate the problem by
using two simpler models depending on the crack size.

Model I

Since the clad has a relatively small thickness, the base material has a
large bulk, and the radius of the cylinder is large, the total strains in axial and
circumferential directions would be nearly zero during transient heating or
cooling. Also, since the surfaces of the cylinder are stress free, the radial
stresses would also be negligible small. Thus, in case of a crack that is very
small in size compared to the other dimensions, the problem can be treated as a
semi-infinite elastic medium (base) bonded to a surface layer of different
material (clad) of thickness 4, shown in Figure 1.1.a (see for example [2]). In
some other applications, this model can also be applied to certain micro-
electronic devices and ceramic coated metal parts consisting of a relatively thin
coating bonded to an elastic substrate and subjected to rapidly changing

thermal environments.

Model II

In the case of a relatively large crack size, the more realistic model for
thin walled hollow cylinders with cladding would be a composite beam on an
elastic foundation in which the modulus of the foundation % is a function of the
thickness of the cylinder wall, the radius of the cylinder, and the modulus of
elasticity, see [5]. The problem of interest is depicted in Figure 1.1.b. This
model can also be used in other cases such as, for example, a fully or partially

constrained composite plate in which the effect of the constraints can be
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Figure 1-1: a-The geometry for Model I, b-The geometry for Model II, c-The
temperature boundary condition at the inner wall.

represented by an elastic foundation.

In recent years the results of various studies on the fracture mechanics of
layered composites appeared in literature. These studies were concerned with
interface cracks, cracks perpendicular to the interface, cracks terminating at the
interface, and cracks crossing the interface. The singular behavior of stresses
around a crack at the interface of two elastic half-planes of dissimilar material
are examined by Williams [6]. Rice and Sih [7] considered a finite crack at an
interface of two joined materials subjected to both symmetric and skew-
symmetric in-plane loading. Also, the interface crack problem under "bending"
was reported by Sih and Rice [8]. Stress distribution of two half-planes bonded
to each other containing cracks along the bond was considered by England [9]
and Erdogan [10]. The interface crack problem in multi-layered material has
also been studied by Erdogan and Gupta [11]. Stress distribution in case of
penny-shaped cracks lying between two bonded half-spaces are reported by
Lowengrub and Sneddon [12], Lowengrub [13], and Willes [14]. A more

generalized situation corresponds to the case of interface cracks lying on a



circular arc was considered by Perlman and Sih [15,16].

Khrapkov [17], and Cook and Erdogan [18] have considered the problem of
a crack normal to a bimaterial interface. The case of a laminated composite
containing a broken lamina was investigated by Ashbaugh [19] and Gupta [20].
Erdogan [21] has investigated the singular nature of the crack tip stress field in
a non-homogeneous medium having a shear modulus with a discontinuous
derivative for the antiplane shear loading of two bonded half spaces in which
the crack is perpendicular to the interface. The fracture problem of a single
layer of dissimilar material with a crack normal to the interface between two
other layers of infinite height was considered by Hilton and Sih [22], Bogy [23],
and Arin [24], while a crack parallel to the interface was considered by Hilton
and Sih [25]. The anti-plane shear case was treated by Chen and Sih [26]. The
same problem with penny-shaped crack under normal extension was solved by
Arin and Erdogan [27] and torsion by Sih and Chen [28].

A crack going through the interface in two bonded half planes was
investigated by Erdogan and Biricikoglu [29]. Erdogan and Cook [30] considered
antiplane shear cracks terminating at and going through the interface. The
fracture problem of a composite plate which consists of a bonded parallel load
carrying laminates and buffer strips, and its limiting case of the collinear cracks
joining and forming a stress-free end have been considered by Erdogan and
Bakioglu [31, 32]. Also, Delale and Erdogan [33] considered the same problem
but for orthotropic materials. Goree and Venezia [34] have investigated the
bonded elastic half-planes with an interface crack and a crack perpendicular to
the interface. The problem of two bonded semi-infinite elastic media with a
crack in one of the half-planes lying parallel to, and at an arbitrary distance
from the interface has been investigated by Erdogan [34). A summary and

discussion of the various modes of cracks in composite material has been
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reported by Erdogan [36].

The problem considered can be solved by the superposition technique as
shown in Figure 1.2. Once the temperature distribution is known, the thermal
stresses for uncracked problem can be obtained. The perturbation problem
(mixed boundary value problem) can then be formulated by using the thermal
stresses from uncracked problem, but with opposite sign, as the crack surface

traction along the line of the crack.

thermal stresses thermal stresses T

R —_ pry + %

uncracked problem perturbation problem

Figure 1-2: The superposition

First, the problem of cracks fully embedded into the homogeneous strips,
perpendicular to the interface is considered. A general formulation of the
perturbation problem is given for plane strain and generalized plane stress
cases by the use of Fourier Integral Transform. The singular behavior of the
stresses for different crack geometries is studied in some detail by using the
Muskhelishvili Technique [37]. In cases where the crack terminates at the
interface, or goes through the interface, the stress singularity is a function of
material constants as well as the intersection angle.

The resulting system of singular integral equations is solved numerically
by using the technique described in [38 , 39). The stress intensity factors are

calculated as functions of time and dimensions concerning the size and location

8



of the crack for various crack geometries and for two materials combinations
described in Table 6-1. Also, in order to study the influence of the thermal
boundary conditions on the stress intensity factor, the increase in time of the

surface temperature is assumed to be an additional variable.



Chapter 2
ANALYSIS OF THE PROBLEM

2.1 Model I- Semi-infinite elastic medium (base metal)
bonded to a surface layer of different material (clad)

2.1.1 Temperature distribution
2.1.1.1 Unit step function at the boundary

y | T A
1 2 " T o t
0 P
2
T
clad { base metal Y
B et a7t} P

() (b)

Figure 2-1: a-Geometry of the problem (Model I) b-Temperature boundary
condition (unit step function)

Figure 2-1(a) represents the problem of interest, where x’ is measured
from the interface of the two materials, and Figure 2-1(b) represents the
temperature change at the boundary. Let D, , k) and D, , %, are the thermal
diffusivity and thermal conductivity for the clad (1) and base (2), respectively.

So, the differential equations for materials 1, 2 are :
T (01) 1 9T (xD)
ax2 Dy ’

~h<x<0,t>0, (a)

2.1)
PTy(xt) 1 9T,(x0)

"B 3 ; O<x<oo,t>0. (b)
x 2
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where T, and T, are the temperatures in materials 1, 2 respectively. The initial

and boundary conditions are

T,(0,0) =Tp(x,0)=T,, (a)

T,(0,5) =T,(0,p), (b)

" aTali(,)J) ) a?i?.t)’ © @2
Lim Ty(ep) =T, (d)

x>

Ty(=ht) =T, +(Ty-THQ). (e)

where T is the initial temperature for both materials 1, 2, and T is the
temperature at the boundary at any time ¢> 0, and H{(¢) is the Heaviside step
function. Condition (2.2)(c) implies perfect heat transfer at the interface (x'=0).

Let,
0,x,0=T,xn-T,, (a)
O, 1) =TH(x,1)-T,,, (b) 2.3)
0, =To-T.. (c)

Then, the two differential equations (2.1) can be written as
#0,(x) 1 00,00

=5 "D, 5 , ~h<x<0,t>0, (a)
1

2.9
?20,01) 1 30,(x0)

5. 3 ,0<x <o, >0, (b)
X 2

Also, the initial and boundary conditions (2.2) become

11



0,(x,0) = B,(x,0) =0, (a)

0,(0,) = 0,0,1), (b)
d0,(0,¢) 90,(0,)
K =k, ,
1 ax 2 x ©
lim ©,(x,) =0, (d)
X —>oo
O,(=ht) = O, H(r). , (e)

2.5)

By applying Laplace Transform to the partial differential equations (2.4) with

respect to ¢, and by using condition (2.5)a), they may be reduced to two ordinary

differential equations of the form

d20(xp) 5 _
— = 7 8,(xp), ()
dz_éz(x’,p) 2 —
— % 0,(x'p). (b)

where
INT IR
ql-\/Dl v 4 \JDZ .
The integral transform is defined by
6(x',p) = J.w O, e Pt dt.
0
The general solutions of (2.6) are

—(:)l(x',p) = A (p)coshqx +B,(p)sinhqx, (a)

©,(xp) = Ay(p) €92 +By(p)e %" . (b)

2.6)

2.7

2.8)

2.9

where, A;(p), B;(p), Ay(p), Bo(p) are unknown functions to be determined from

conditions (2.5)(b-e). By applying Laplace Transform to the conditions (2.5)(b-e)

we obtain
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©,(0,) = 6,(0,p), (b)

de,o de,(o,
v 1( P)=k, 6,(0.p)

1 dx, 2 dx, 13 (c)
lim ©,(rp)=0, d) (210
X —)oo
_ c)
By (-hp) = —. e)
p

After substitution of the conditions (2.10)(b-e), and determination of the

constants A;(p), B;(p), Ay(p), Bo(p), the equations (2.9) become
Oy [coshqx—~n sinhq x]

©1(ep) = plcoshq h+msinhqh] ’ @)
2.11)
— ONCacd .
O,xp) " plcoshgh+nsinhqh]’ ®)
where
k, D,
=21 (2.12)
D,
ky

The temperature distribution ©;(%,t) , ©4(x,t) can be obtained by applying

the Inversion Theorem of Laplace Transform on equations (2.11), i.e,

+ico O [ coshCyx =M sinh Cyx
0,0 = % J- :_,-,, zo[[cosh Cgllh + nnsinh Cf;t ] ] etdz, @)
(2.13)
O, (x,0)= LJ‘ " 20 e‘Cz*". e?dz . (b)
2RiJy joo z[cOsh G h+M sinh k)
where
¢, =Nz/D;, C=Vz/D, . (2.14)

Since, the functions (e"‘lm"‘ ) and (sinh\lz/Dlh) are double-valued

13



functions when the angle in the complex domain is changed from 0 to 2=, the
integrands in (2.13) have a branch point at z = 0, and the integration contour
should be as shown in Figure 2-2.

7-1M

Figure 2-2: Contour for evaluating the integrals in eqns. (2.13)

So, applying the Residue Theorem in equations (2.13), and using the
contour integral I' shown in Figure 2-2, we obtain the following closed form
solutions for ©,(x,7) , ©,(x,1)

O,x)  onp> ePEsinE(x+h) dE

=1-21 ot 3
O 7t Jo [cos?En+n2sin2ER] § @)
O(x,1) 2 (= e [cos EnsinEdx +m sinEhcosEdx ] dE,
=]-= =, b 2.15
©p 7"’.0 [cos2Ehn+n2sinEh] 3 ) e
8=D,/D,. (c)

Defining now the Fourier Number t and the dimensionless parameters by

t=tD, /K , & =hE ,x* = (x+h)/h . (2.16)

equations (2.15) become
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e *rT oo —E2 o ™ '
19 2 e singx  db 0sx*<1, (a)
© T Jo [cos? & +n?sin?E] &

(2.17)

0,(*1) =1 2 J‘ o e“éz[cos Esin&d(x*-1)+nsin& cosE8(x*-1)] d_§_
69 ®Jo [cos2E +n?sin?E] &

i 1€x* <0, (b)

2.1.1.2 Ramp function at the boundary

v |

T IS
A -
0 -
clad | base metal T, "_E

-y

(a) (6)

Figure 2-3: a-Geometry of the problem (Model I) b-Temperature boundary
condition (ramp function)

Figure 2-3(a) represents the problem of interest, and Figure 2-3(b)
represents the temperature change at the boundary. The differential equations

for 1, 2 are:
320, 1 90,00

) D, 3 1—h<x<0,t>0, (a)
X 1

(2.18)
0?0, (x1) 30,(x)

1
ax2 D, ot '

O0<x<o,t>0. (b)

The initial and the boundary conditions are:
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0, (x,0) = ©,(x,0) = 0, (a)

0,(0,n = 0,(0.9), (b)
00,(0,f 00,(0,f
K, x )=k’2 209 © (219
ax ax
lim @,(x,)=0, (d)
X ~» oo
9 9
@, (=h,f) = —tH({E)—— (1) H(t—1t). (e)
) o

As before, by applying Laplace Transform to equations (2.18), and using
the condition (2.19)(a), we will obtain two ordinary differential equations having

the general solution of the form

©,(xp) = A;(p)coshqx+B (p)sinhqx, (a)
(2.20)
©,(xp) = Ay(p) €72 + By e %" . (b)
where A;(p), B;(p), Ay(p), By(p), are unknown functions to be determined from
the conditions (2.19)(b-e).
Now, applying Laplace Transform to the boundary conditions, we may

have

©,(0,0) = 0,(0,p), (b)

; d®;0p)  d6,(0p)

k , (c)
' 2"
lim ©,(xp)=0, @ (@21
X —» o0
— G 1 Y1
O,(-hp)=— —=~-——= e P, (e)
! to p* o p?

Then, by substituting from equation (2.20) into equation (2.21), and

16



solving for the constants A,(p), B;(p), Ay(p), By(p), we find

©,(rp) =Fy,(p) . B1, (@),

6,(xp) =F1,(p) . Bio(p).
where

Oy [coshqx—nsinhqx']
Fll

B plcoshqh+msinhq h]

@o e_qz"'
plcoshq h+nsinhq k]’

F() =

1 ePh

B11(p) = Bp(p) ——(———)

It is clear that, F'y;, F;,, are the same as equations (2.11).

(a)

(b)

(a)

(b)

(c)

By applying the convolution theorem to equations (2.22), we find

t
Oj(x1) = jobu(:,)flj(:—z’) i 5 (j=1,2).

where,
fll(f)=L_1[F11(P)]
_2_n D sinE(e+h) dE
0 [coEh+2sin2ER] &

=1

fi12(0 = L1 [F,(0]

—D
=®o[1-1—2tj D8 [ cosEh sinEdx +nsm§hcos§8x]d§]

[cos2En+n2sin2Eh)
b0 =bp() = L1 (G1®@]= ;(;[ 1-H(t-t5)] .

From (2.16) , (2.24) and (2.25) it then follows that

GI(X*,T) 1 +2Tl ec(e—-‘tgi__l) ,
© T ®Jy T

sinEx* ag
[cos?E+n25in?E] €3

17
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(a)

(b)

(c)

(a)

(2.22)

(2.23)

(2.24)

(2.25)



0,(x"1) _m ‘l'”e—fig(efoé'z—l)*

S T
sinEx* dg
==  ;0sx*<s1, , (b
[co &1 sin?E] £ FELET. ®)
(2.26)
O _ 1 2 =% -1,
% % 7w T
(cos&sinEDd(x* -1)+n sinEcosEd(x* - 1)) d_&
[cos*E+n? sin?E] &3
1Sx*<e0 , 1< 7, ()
* Y 2
O, (x ’T)=1_3J' e (5 -1)
@0 T RJg TO
(cosEsinEDd(x*—1)+nsinEcosEd(x*—1)) id_é_
[cos?E+n?2sin?E) g3
1Sx%*<e0 , 1> 15. (d)
where
D
SOt Y Idz 8= \’ . 2.27)
h? v D, D,
1

2.1.2 Thermal stresses in uncracked problem
Consider the plane strain problem in y and z directions as shown in
Figure 24, i.e,
€iny = Ciy; = €1 = €3y =€, =0, (1=1,2) . (2.28)
Since the temperatures 9;, (G =1, 2) are functions of (x , ¢), then the
stresses are functions of (x, ¢) only. It is obvious that all the shear stresses are

zero. Then, the equilibrium equation for each medium (ignoring the inertia

effects) is :
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-4
Figure 2-4: Geometry of Model I (uncracked problem)

do, (x.0) 0
dx - .

(2.29)

Since, we have a stress-free boundary , i.e, 5,,(0,¢) =0, then,
6,0 = 0. (2.30)

So, the Hooke’s Law becomes

-® =I17:[oyy—vozz], ()

(2.31)
(b)

1
@ = E[czz—v Gyl -

where a- is the coefficient of thermal expansion, E is the Young’s modulus, and v
is the Poisson’s ratio of the material. From equations (2.31) we may have
wEO

O'),y =0,= ‘-(1——:\7)- . (2.32)

Then, the thermal stresses in materials 1, 2 are:

o E 0,(x,0)
(2.33)
- E, O,(x,1)
ozyy(x,t) = 0,,,(X,1) = —0_12_(_12__;?2_5_ : h<xSoo . (b)
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O'T————_- , X == T= . (2.34)

Then, equations (2.33) become

6. (x*1) ©,(x*71) '
1y = 1 ; 0sx*<1, (a)
Gy G")O

(2.35)
Oy 05 By (1-V)) ©y(x°7)

ool a’lEl(l—vz) 6

1Sx* <o . (b)

2.1.3 Formulation of the crack problem (perturbation problem)

e

Figure 2-5: Crack geometry (Model I)
Consider the two-dimensional composite medium shown in Figure 2-5,
where each material contains a finite crack perpendicular to the interface.
Because of symmetry, the problem will be considered for, 0 <y <. It can be

shown that, the governing differential equations for the displacements in each

medium are (Appendix A)
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?u v

—1)V2 J e =
(x=1)V<u+2¢( x2+axay) 0, (a)
2 (2.36)
V2428 & “y=0.
(x-1) Vv + ( 323y ayz M)

where u and v are x and y components of the displacement vector, respectively.
x=(3—-4v) for plain strain, and x=(3-v)/(1+v) for generalized plane stress, v is
Poisson’s ratio.
Assume that the solution of equations (2.36) may be expressed in terms of
the following Fourier Integral, i.e,
u(x,y) = 2 J- Fx,00) cosyada+-—1—j h(y,B) &P ap, (a)
®Jo 2r) .,
' (2.37)
v(x,y) = EJ‘ g(x,00) smyadoc+ﬁj‘ k(y,p)eBap. M)
(4] —o0

Because u, v, are symmetric and antisymmetric with respect to y, respectively,
the first term of u is a Cosine transform, and the first term of v is a Sine
transform. The second terms in equations (2.37) represent the general Fourier
transform. Substituting equations (2.37) into equations (2.36) we obtain a

system of ordinary differential equations for the unknown functions f, h, g, k .

_dj"f(x’a)—za2iz'ﬂx’a) +a4f(x’a) =0, (a)
@t a2
<) 2p2 L 4 = b
Y o.B)-28 Eh(y,BHB h(y.B) =0, (b)

) (2.38)
§ g(x,a)—2a2% gx,o)+al g(x,o) =0, (c)
i”ikw) 2132 k(yﬁ)+B“k(yﬁ) 0. (d)

The general solution of these four differential equations are:
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fx,0) = (C +Cpx) €%+ (C3+Cyx) e
g(x,0) = (C] + Copx) €%+ (C + Cyx) e 7™,
k(y,B) = (D, +D,y)e"Bl+ (D3 +Dy) e MBI,

h(y.B) = (D, + Dyy) eBl+ (Dy + Dy) e ¥BL.

where 0<a<o , —o<B<o , y20. C; and C}, (i=

(a)
(b)

(2.39)
(c)

(d)

1,..,4) are functions of the

transform variable o and are linearly dependent. Similarly, D; and D;, (i=1,...,4)

are functions of the transform variable B and are not independent.

Since, u,v are bounded as y — oo, from (2.39) it follows that D,, D,, D}, D,

must be zero. Thus, after eliminating C; and D; (i=1,..,4;j=3,4) by using

coupling relations, equations (2.39) may be written as
fx,0) = (C1+Cpx) % +(Cy+Cyx) ™

glx,0) = (—Cl—gcz—czx)e"“+(C3—§C4+C4x)e"‘°‘

k(y,B) = (D3+Dyy)e Bl

h(y,B) III3B|(D3—-|—E-|D4+D4y)e"YIBl_

(a)
(b)

(c) (240

(d)

Defining, D,(B) = A(B), the equations (2.40) (c,d) can be written in the form

A(B)

B
"o Gy B+1BLe

k(y,B) =

lIBlA(B)
OB === g A(B)

Hence the displacements u, v are in the form

> |Bl-x+|Bly)eNBl

ux,y) = %J: [(C1+Cx) €% +(C3+Cx) e ] cosyada

+21t.|’ _IIBIA(B) ”3[ K+(BlyleNBleiBgg,

- B IBI A(ﬁ)

22

()

(2.41)
(d)

(a)



(2.42)
2 L]
ve)=2| (O Col px D™+ (Cs=Cyl Gmx )™

00 D ;

sinyodo+-— i A A
a7 IR YRRV

The stress-strain relations for plane-strain problem are
20-V) (o LV

O =H (1_2v)( o l_vsyy), (a)
_ . 2(1-v) v
Gy, =K ) (syy+1_ven), ®) (2.43)
Ory = HYpy- (c)
where u = E/2(1+v) is the shear modulus.
Also, the strain-displacement relations are
a
€ = B_Z’ (a)
=30 ®) @44
du ov
'ny = 5;4"5. (C)

By substituting equations (2.42) into equations (2.43) and (2.44), and
observing that at the plane of symmetry y = 0 the shear stress Oy is zero, we

find

D, K+1
— = e— 2.4

Equations (2.42), (2.43), (2.44), and (2.45) are valid for both materials.
Therefore, the stresses and the displacement fields in terms of the Fourier
Integral for each material may be expressed as
Material (1) 0<x<h,0<y<oo
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-1
+ox})e™

1 2
—0 . xy== C,a+C
2p1 ux( y) [( 1 2{

%] cosyoda

1 .
t5a] _A1(1+1Bly)ePlePap,

- *x.y) 2 ”[(—C C {K1+3
=G, (Xy) == a-
2|J~1 lyy Y. 0 1 2

+0x}) e

X, +3

+(C3oz—C4{1 —ox})e**]cosyoda

b5 A1 (-1-1Bly)ePleiBap,

: +1
L<5m,(,t,y)=—2- (-C - C2{ +ox}) e

2

K+ 1
+(—C30+Cy{

—ox}) e ] sinyoda
1 -] . _ .

uy(xy) = 2 :[(Cl +Cox) % +(C3+Cyx) e cosyoda

1 = iA; |B|‘<1

oIBl ixB
Ty —-By)e™ ap,

21 X1
vi(xy) == 0 [(—Cl“cz{'a—"‘x he*

K
+(C3=Cyl =5 e sinyordar

1 = Ay Kl
—«lﬁl 2

Material (2) A <Sx <0 ,0<y <o

+|B|y)e-yfﬁ'e“ﬂdﬂ

Asx—e,u,v,0, » Oyy» Oy BTE bounded. Then

(a)

(b)

(c)

(d)

(e)

(2.46)



21,

-1

Lcm(x,y) = z [—CSa+C6{EZ———0Lx}] e *cosyada

1 (= .
t5m]_Ar(-1+1BIyePlefap, (a)

1 2(° 2
a0 =1 | 1Cs-Col

+3
—ox}] e *cosyoda

ta=[ Ay (-1-IBI)ePleBap, b)
1 Ky, +1 s
uzozxy(x,y)——j [—Cs0ut Col 2o cux}] e sinyoudax (2.47)
L[ 4, ByeiBleiB
+EI iA,ByePle”Pap, (c)

uy(x,y) = %J‘O [Cs+Cex]le ™ cosyada

‘3 BRTTAN:

(__ 2_ ﬁy)e—ylﬂleixﬁdﬂ, (d)

Uy (x,y) = %fo [C5—C6{%—x}] e sinyodo

IJ“” A, “2
+
2n —oolBl 2

where the unknowns C,,(i=1

Bl e IBleBap, (e)

,....60) are functions of o, and Aj,(j=1,2) are

functions of B, and are to be determined from the boundary and continuity

conditions.

The homogeneous boundary and continuity conditions of the problem

described in Figure 2-5 are
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0., 0y) =0 ; 0S y<oo, (a)

G150y =0 ; 0L y<eo, (b)
O1a(hy) =0y (hy) ; 0Sy<eo, (c)
O1yy(hy) = Oy (hy) 5 0Sy<ee, , (d) (2.48)
ui(hy) =uy(hy) ; 0Sy<eo, (e)
vy(hy) =vy(hy)  ; 0Sy<eo, ()

The mixed boundary conditions are

v1x,0)=0; 0sx<a;, bysxsh

1 (a)
Uy(x,0)=0 ; h<x<a, , bySx<eo

(2.49)
01,,(x0) =~0,T(x) ; ay<x< by
}. (b)

0y, (%:0) = ~0,7(x) ; ay<x< by
where, GlT, 02T are the thermal stresses which can be determined from the
uncracked problem.

First, let us define the following density functions

¢1(x)=-éa;vl(x,0) ; O<x<h, (a)

3 (2.50)
$y(x) = gzvz(x,O) s h<x<oo, (b)

If we substitute equations (2.50) into equations (2.46)(e) and (2.47)(e) we

obtain
—| — ~IB| -
,_l’f‘oan|B|< s—+IBly) eV PlePap=¢,(x), (a)
BA 1 (2.51)
LN il Poc Ml B B g5 —
Jim o) Tpr Ca Bl db=0,00. b)

By applying Fourier inverse Transform, we have
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iBA; x;+1

= '[ - o, e~ Par,

1Bl 2
iBAz K2 +1 oo —iﬂfd
TB_l— ) = j4¢2(t)e t.

From condition (2.49)(a), it may be seen that
$,(x)=0 ;O0<x<ay,bj<x<h,
0,x)=0 ;h<x<ay, by<x<os.

Then, A;, A, can be put in the form
_ =2 |B|

I +1 B

b |
J' Yoyt e Bhr,
|

-2 1B
2 K+l B

b .
J 2ot e~ Pladt, .
2

(a)

(2.52)
(b)
(a)

(2.53)
(b)
(a)

(2.54)
(b)

By applying the boundary conditions (2.48), and using Fourier Inverse

Transforms and equations (2.54), with the help of the integration formulas given

in Appendix (B), we find
1 b,
—Bl—€1C2—Bs+81C4=—)-c—l-;—1J‘ M1¢1(t1)dt1,
a

1
x;+1

bl
Bl+€2C2—B3+ezc4= J M2¢1(t1)dtl,
a4

8431 +83C2—mB3+e5C4+Bs+€6C'6
1
K+l

1
x1+l

b, b,
[ 0idn+— [ Myapean,
al az

27

(a)

(b)

(c)



(2.55)

b
]

1c1+1

"1031+e11C2+33+e1zc4“35‘e12C6

J' M7¢1(t1)dt1 j Mg d,(1y)dt,, (e)

K1+l

—€10B1+€13C, +By+e,Cy—Bs+e sCo

K1+1j My, (£)

where, B, = Cya, Bé = Cga, By = C50, m = /iy and e’s and M’s are given in
Appendix (C).

Equations (2.55) form a system of six equations in eight unknowns C; ,
(i=1,..,6) , ¢;,(=1,2). After lengthly calculations, we can solve the first six
unknowns in terms of ¢;,(j=1,2). The results are presented in Appendix (C).

The two unknowns ¢,,(j=1,2) can then be obtained by using the mixed

boundary conditions (2.49)(b). Noting that
01,,*.0) = =0, T(x) ; a;<x<by. (2.56)

By substituting from equation (2.46)(b) and taking the limits y —»0% we

have
y—0 0
K +3
+(C30—C,{ 5 —ox}) e cosyodo
1= ,
+2p1§—ij Ay(—1-|Bly)eNBleiBaB=—c T(x) . (2.57)
Or
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K, +3
5 +ox}) &%

2 o0
2”1;!() [(Cia—Cy{

K +3

+(C30.—C,{ 5

-ax})e ™ do

+ lim 2p1i _[ - A(-1-|Bly)eBleBaB=~g T(x). (2.58)
y—>0 2 —o0
By using equation (2.54)(a) and taking the limit, the last integral of
equation (2.58) will be equal to

b, ¢,(ty)
2 1 j‘¢1 Var,. (2.59)
TR, +1 a, 117X

Substituting into equation (2.58), and dividing by n(x; + 1)/4u, , we may

have
oo K +3
(K1+l)j [(-Cia~Cyf 3 +ox}) e
0
X;+3
+(C30—Cy{ 3 —ox}) e ] da

6,7(x) ; ay<t;<b;,a,<x<b,. (2.60)

+J»b1¢1(t1) n(k; +1)

a] tl“x

Similarly for the second condition (2.49)b) we find

X, +3
2

—ox})e**da

(K +1) f:(csa—cé{

dt, =~

b t +1
"'J- 2 §2(2) n(Ky )0'2T(x) s Gy<ty<by,a,<x<b,. (2.61)

a

Substituting for C,,(i=1....,6), from Appendix (C), we obtain the following

singular integral equations for the unknowns ¢.,(j=1,2):

29



where

and

b 1 by
[tk e dn + | rae e
a h=x a,

w(x, +1) T
=— m ' (x)) ;s a;<x;<by. (2.62)
1
2 b, 1
| Metateiedn s [ T+ eed,
a, a, 27X
(%, +3)
=- :2% 6,1(xy) ; ay<x,< b, . (2.63)
k12(x1,t2) = J':Glz(xl,tz,a) do s (b)
2.64)
br(epi) = [ Gty o0der ©
kpp(tpty) = J'O Gplipty, o) det . d)
K;+3 1
X;+3
+[Hs~ e (a)
2
x;+1 Ky +3
‘<2+ 3 1
+[Hg—(: 3 —wcl)BHs] en%} , (b)
3 (2.65)
Gy (xp,t,00 = ( ){[ 9— ( —ox ) Hy le™ %), (c)
K+3
Gzz(xz,tz,a) = [Hlo—(T—ax2)H12] e—'x2a . (d)

where HJ , (G =1,2,..11, 12), D, can be found in Appendix (C).
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For internal cracks, i.e, a; >0, b; <h, ay > h, b, < o it can be shown
that the kernels ki, @i,j=1,2), are bounded for any combination of the variables
X, ¢, o (j =1, 2). So, the two singular integral equations (2.62) and (2.63) are of
the Cauchy-type.
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2.2 Model II - Layered Medium on an Elastic Foundation

2.2.1 Temperature distribution
2.2.1.1 Unit step function at the boundary

¥y b
T
A
ey
T +
0
z
clad base metal To
w
Iy -
by > - hy )

(a) ()
Figure 2-6: a-Geometry of the problem (Model II) b-Temperature boundary
condition (unit step function)

Consider two dissimilar infinite layers having thicknesses A, (coating) and
hy (base material) as shown in Figure 2-6(a). Figure 2-6(b) shows the
temperature change at the boundary. Let D; , &k} , Dy , k; be the thermal
diffusivity and thermal conductivity for the coating and base, respectively.

Then, the differential equations for 1, 2 are
20,0 30,

1
dx2 5_1- dt '

-h<x<0,:>0, (a)

(2.66)
FO,(x) 1 30,(x)

ax2 D, ot '

O<x<hy,t>0. ()

The initial and boundary conditions for the heat conduction problem are
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0,(x,0) = B,(x,0) =0, (a)

0,(0,) = ©,(0,8), (b)
20, (0, 90,(0,
K, 109 _ K 204 : (¢) (267
dx Jx
00,(h,,
2%k _ )
Jx
©,(=hy,1) = Oy H(p). (e)
where
0,x)=T,x)-T,, (a)
O, (1) = Ty(x ) = T, (b)  (2.68)
@ =Ty-T.. (c)

T, is the initial temperature for both materials, and 7)) is the temperature
at the boundary at any time, ¢t> 0. Condition (2.67)(c) implies no resistance at
the interface, and condition (2.67)(d) implies insulated outer boundary.

Again, if we apply Laplace Transform to equations (2.66), and use
condition (2.67)(a), we will end up with two ordinary differential equations that

have the general solutions in the form

él(x’,p) = A,(p)coshqx +B(p)sinhqx, (a)
(2.69)
©,(x,p) = A (p) cosh g, +B(p) sinh gy (b)
where A,(p), B,(p), Ay(p), By(p) are four constants that can be determined from

the conditions (2.67)(b-e). So, after some manipulations equations (2.69) will

become
— Oplcosh g hy coshqx =M sinhq,h, sinh qx°]
O,(xp) = . - , (a)
plcoshqh, coshq,hy +M sinhq b, sinh g h,]
| (2.70)
— Oplcoshqyhy coshq,xr—sinhqyh, sinh gyx]
8,(rp) = (b)

plcoshqh, coshqyhy + M sinhq h, sinhq,h,]”
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where

N N S Ny @
q1 D, 9> D, n )

Applying the Inversion Theorem the temperatures ©;(v,t), ©y(x,t), are

found to be
1 r+i=Og[coshCoh, cosh x —n sinhlyh, sinhl x')e”
91("’,’):——.]' - - dz,(a)
2mily o z[coshGihy coshlyhy +1 sinhG,h, sinhCyh,)
2.72)
4ivo - Opycoshl,(x—h,) e?
®2<xut)=i.j" 0CoShG k) dz. (b)
21tid y_joo 2[cosh C hy cosh Cyhy + M sinh C by sink N
where
¢, =Nz/D; , {,=\z/D,. (2.73)

It is clear that the integrands in equations (2.72) are single-valued functions of

z, with simple poles at z = 0, and at the roots of the equation
coshyh, coshCyhy +n sinh G hy sinhCyhy = 0. 2.74)

Let,
L (2.75)
¢, =Vz/D, =io,z =-D,e?.

Then equation (2.74) becomes

cos Wh, cos dwh, —1 sinwh, sindwh, = 0. (2.76)
where
D,
=V —. 2.77
5= B, 2.77)

It can be seen that the roots of equation (2.76) are real and symmetrically
placed with respect to ® = 0. The roots w; are obtained from the intersection of

the two families of curves y = cot wh,, y = ntan dwh,. The simple poles of
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equation (2.76) are distributed along the real axis in the negative direction, and

are equal to

=-Djw, , m=1,2,3, ... (2.78)

zm
The residue at these poles z =0,z = -Dlmfn) can be found in Appendix

(D). Then, by using the Residue Theorem, the contour I' shown in Figure 2-7,

and letting
: hy D,
%=(x*—1) CREE L A=y, T (2.79)
1

the closed form solutions for ©,, ©, are found to be

1+ iM
T ~

e
1" il‘!{

Figure 2-7: The contour for evaluation of integrals in equations (2.72)
—t\ 2

S22y o
P

[cos, (x*—1)cos A, SR +msin A, (x*—1)sinA, OR]
(1 +MdR) sin ., cos A, OR +(OR +M) cos A, sin A, OR]

0,(*1)

0

:0<x*<1, (a)



(2.80)
@2(x*,'t) o e—‘[;\.mz
=1-
60 m=1 ;"m

cosA,3(x*~1-R)
[(1+M3R)sin A, cosA,OR +(OR +7M)cos A, sin A, OR]

i 1Sx*SR+1). (b)

where A, ,(m = 1,2,3,.....,) are the roots of the equation
cosA, cosA, OR-msink, sin) SR =0. (2.81)

2.2.1.2 Ramp function at the boundary

y 3
’T T}
To
0
2
clad base metal )
TO I
T !
o h—] ! _
— L —  ——y tO t

(a) (6)

Figure 2-8: a-Geometry of the problem (Model II) b-Temperature boundary
condition (ramp function)

If we apply a ramp function at the boundary, Figure 2-8(b), the

differential equations for the materials 1, 2 , and the initial and the boundary

conditions are the same as equations (2.66), (2.67), except that, condition

(2.67)(e) should be changed to
6y 6
©;(=h.t) = — tH(t)—— (t—to) H(t—t;). (2.82)
) fo

Again, by applying Laplace Transform, we obtain equations
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©,(xp) =Fy,(p) . By @), (a)

(2.83)

8,(p) = Fpy(p) - By(p). (b)

where
F _ Oglcosh gyhy cosh g x—n sinhq,yh, sinhqx'] @)
21 plcoshqh, coshqyhy +M sinhq h, sinhqyh,]’
Oplcoshqyh, coshgyx— sinh g, hy sinh gox]
Fyp) = 0 2 22 , (b) (2.84)
plcoshqh, coshgyh, +M sinhq hy sinhq,h,]
1.1 ePh ). ©)

321@) = Bzz(P) = ;8 (;— »

By applying the Convolution Theorem to equations (2.83), and observing

that F,,, Fy, are the same as equations (2.70), and letting

y h tD IOD
X 2 1 1
Zox* 1), R=2, A, =k, , T=—t , Tg= 21, (2.85)
hl hl m m h12 h12

the temperature distribution for strips 1, 2 become

0,x* 1) oo
S A D R Catc D
90 TO m=1

[cosh,, (x*~1)cosh,8R+msinh, (x*—1)sin A, OR]
Tohp [(1 +M8R) sin A, cos A, 8R + (SR +M) cos A, sin A, 3R]

; 0€x*<1, 151, (a)

Ql(x* ,1)
S

=1-23 e’ (ern—1)
m=1

[cos A, (x*~1)cos A, SR +m sin A, (x* —1)sin A, OR)
Toh [(1 +N8R) sin A, cos SR + (SR +M) cos A, sin A, SR]

; 0€x*<1, 1>15, (b)
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GZ(X*;C) _ T
® T

+2Y (™' -1) (2.86)

m=1
cos A, 8(x*~1-R)
Tohy L(1+M3R) sin A, cos A, 8R + (SR +M) cos A, sinh._SR]

; 1SX*S@R+1), 1817, (c)

Gz(x*,‘c) hd
=1— —tA 2 ,Th 2
%, =1 2m§=1 e m (e¥m —~1)

cosA,d(x*—1-R)
Toh L(1 +N8R) sin A, cos A, 8R + (SR +M) cosA,, sin A, SR]

;o ISX'SR+1) 1>15. (d)

where 6 = \!DI/DZ, and A, are the roots of equation (2.81)

2.2.2 Thermal stresses in uncracked problem

Consider a thin-walled hollow cylinder with cladding of thickness 4, and
base metal of thickness k4, shown in figure 2-9(a).

Let us take an element from the composite shell of unit length and a very
small angle d¢, as shown in Figure 2-9(b). Assume a uniform strain over the

shell thickness €oy» Eops then from the Hooke’s Law we have

1 1
2.87)
1 1
€or = E—l(clt‘vlcly)*“alGl:i;(GZ’—VZ"zy)““O’"z@z- (b)

where 6y,, 6y;, Gy, Oy, are the stresses in axial and tangential directions for 1,
2, respectively, v;, E;, a3, Vg, Eq, o, are the Poisson’s ratio, Young’s modulus
and thermal expansion coefficients, respectively. By integrating equations (2.87)

over the shell thickness we obtain
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('_

(o)

Figure 2-9: Geometry of thin-wall hollow cylinder with cladding to calculate
thermal stresses in uncracked problem

1 — — , 1 — — )
e()y=E_l(ol)'—vlclt)-*-al610V=.E'—;(62)'—v2621)+a2920"’ (a)
(2.88)
1 — — , 1 — —_ )

where
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— 1l — 1k

c1y=h_1 0 Oyydx ' °1r=‘,q 0 Gy dx
_ IJ-h1+h2 — 1tk
G, =— O, dx , Go,=-—— O, dx (2.89)
2y h2 h, 2y 2t h2 B, 2t
1k 1 fhithy
elav=h—ljo el(x,t)dx N @2av=h—2 \ @2(x,t)dx
1

The resultant force in radial and axial directions must vanish giving

hy h +h,
j "ndx"'f 0,,dx =0, (a)
0 k,
(2.90)
hy h +h,
J clydx+j Opydx =0. : (b)
0 'k,
Equations (2.90) can be put in the form
Oy +0yhy =0, (a)
(2.91)
61, + 0oty = 0. (b)

Equations (2.88) and (2.91) are six equations with six unknowns (aoy, €ops

Ely, O1p Ezy» G4,). By examining these equations we can see that they would be

unaltered if the subseripts y¥ and ¢ were changed. Therefore,

Ely = Elt = c_’:1 ’ (a)
0y, =05 =0y, () (292)
€0y = €or = €o- ©)

Then, equations (2.88) and (2.91) are reduced to
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£o=%(51—v151)+a’1 (< T (a)
1

Elh1+62h2 = 0. (C)

By solving equations (2.93) together we can get

E 1 wl @lav E2a'2 ®2av

+
€0 = = 3 ) (2.94)
1 2
hy+——h,

Also, from equations (2.87) we can see that
Gly =0,;,=01 , 62)' =0y, =0;. (2.95)

Then equations (2.87) become

1-vy ’
&=—% o (xn)+0a) O,(x,0), (a)
(2.96)
1-v, '
€= E, Oy (x,8) +0t, Oy (x ). (b)

Substituting equation (2.94) into equations (2.96), the thermal stresses in

materials 1, 2 can be written as

E
o, (x,t) = 1_—; (&o—0r; ©,(x,1)], (a)
(2.97)
E
6a(x.) =1—_272[s0—a:2 0,1 (b)

Thus, in the concentric cylindrical shells having a radial temperature
variation, the axial and tangential stresses are given by equations (2.97) at all
points except at the ends of the cylinder. The end surface tractions produce
thermal end moments at the rim of the cylinder, and these generate axial

bending stresses which disappear rapidly with the increase of distance from the
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end. Let

D
x*=hi , R="2 , T=—a, (2.98)
1

Then, equation (2.94) becomes

I 1 @l(x*,‘t)dx* Eza’z 1 —Vl JD 1+R @2(x*,1)dx*

o 9o Ela, 1-vyJy 9
1
=, 2.
1+— R
E, o) 6,

By letting o,! = - , from (2.97) and (2.99) the thermal stresses in

1-v,
materials 1, 2 are found to be

o,x"1)  0,(x%7)

ool ©

10,(H*1) E, o 1=V, p1+R O,(x*7)
J‘ 1 dx*+—%iz- 1J' 2 it
o 9 E,  1-vyJ; )
oy
1+—

R

(2.100)

Gz(x*,T) E2 1—V1 a'z GZ(X*,T)

lel(x*,T) . E2 a,z l—Vl 1+R @2()6*,17) .
ax*+— — dx

o 9 E; 1-v,Jy S

o) }

E,1-v

142 1p
;1€x*<R+1. (b)
where the integrals
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19,(x*, O,(x*,
_f 1 e j“R 2000 o (2.101)

o 9 1 ©

are given in Appendix (E). Equation (2.100) give, essentially, the thermal
stresses in a composite plate constrained.to remain in its own plane.

2.2.2.1 Stiffness of the elastic foundation

B

Yy

Figure 2-10: Geometry of thin-wall hollow cylinder with cladding to calculate
stiffness of elastic foundation g

It is well known that the thin-wall hollow cylinder can be simulated as a
beam on an elastic foundation of stiffness related to the radius of the neutral
surface of the cylinder, the thickness of the cylinder , and the Young’s modulus,
[51.

In case of thin-walled hollow cylinder with cladding, Figure 2-10, the
stiffness of the elastic foundation y can be determined by taking a strip AB of
unit width cut from the composite cylinder. Assume that x, denote the change of
the radius R, (radius of the neutral surface, € = 0), i.e, x, = AR, which is the
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deflection of the strip at any section measured from neutral surface. The strain

over the cross section g,, would then be

AR, x,
g =—0r=_", (2.102)
! RII Rll
Now, the corresponding stresses are
E %n
Gll = Rn s (a)
. (2.103)
2*n
02’ = Rn . (b)
Then, the force per unit length on the strip AB is
E 1*n E2‘xn
=g h1-+ 7 (2.104)
The radial component of this force is
E.x E E\h.+E
*n 2%n 1h1 +Eohy
Fdg = [+ h)do = [——5—]%,. (2.105)
n

where d¢ = VR, .

That is, radial force is proportional to the deflection x,. So, we conclude
that a longitudinal element of a cylindrical tube loaded symmetrically with
respect to its axis can be regarded as a beam on an elastic foundation, having

the stiffness
E h +E5h,
n

where R, is the radius of neutral surface of the cylinder. To obtain R,, let us
consider the composite beam shown in Figure 2-11.
Let p’ is the radius of curvature of deflected beam and x, is the distance
from the neutral axis, then
X, A
g, =— (2.107)
p1

So, the stresses in 1, 2 become



T

STEH H—

‘E_T_ — ° .g" N.A. 2 ‘} agv

Iw _JL__L’ \ _ _
z’l W
¢ stiffness
z
X

Figure 2-11: Geometry of composite beam to calculate the radius of neutral

axis R,
Ex
Oy = -, (@)
p' .
£ (2.108)
0y =22, (b)
p'
The total force in y-direction must vanish, then
J. olydA1+j Oy,dA; = 0. (2.109)

where A, A, are the cross section areas of 1, 2, respectively. Substituting

equations (2.108) into equation (2.109) we may have

E E.
4 xncml+——2-jxndA2=0. 2.110)
P P
Since
jngI = —;lnAl' (a)
(2.111)
J.ng2= ;2"A2. (b)

where X ;,,, % 5, are the distance from the neutral axis to the center of the cross

sectional area for strips 1 and 2 respectively. Then equation (2.110) can be
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written as

—Ex 1 Ay +Epx 5,4, = 0. (2.112)
Also

- - 1

Solving equations (2.112) and (2.113) for x 1ns x on» We have

E)A,

— 2.114
E\A | +ExAy ( )

— 1

Since, the beam has a unit width, i.e, A; = k.1, Ay = h,.1, then equation (2.114)

becomes
- 1 Exhy
=— _— 2.11
*n=z(Mth) e @113
So, the natural axis radius R, is
hy _
R"=Ri+§-+x 1n> (2116)

where R, is the inner radius of the cylinder.

2.2.3 Formulation of the crack problem

Consider the problem that is shown in Figure 2-12, where y is the
stiffness of the elastic foundation. The analysis is the same as in Model I, and
equations (2.41), (2.42), (2.43), (2.44), and (2.45), are still valid. Then the

displacement fields and the stresses are

Material (1) ,08x<h;,0Sy<o

1 (xy)=3J'°°[(c a+C {K1_1+wc})em

|, =Y TRy T2
+(—C3a+Cy{ 5 —ax})e ™ cosya.do.
+LI“A (—1+lBl )e—)’lﬁlei"ﬁdB (a)
2t L y ’
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»
”

Figure 2-12: Crack geometry Model I1

1 e CoaC X, +3 o
3 Oin) = 2 [Cia-Cal=g— v
K +3
+(C30—Cyf —ox}) e cosyada

2

1 = )
— o Bl ,ixP
+21t." A (-1-]By)e e*Pdp,

3 O =1 | 1-Clo-Cy—varp
K +1
+(—C30+Cy{ 3 —ox}) e sinyada

1 1. — ;
+EJ#IA1Bye ABIEB 4B,

u(xy) = %J‘: [(C{+Cxx) €% +(C3+Cyx) €™ cosyoda

1 (= A pix-l B
+§—1;qu(? ) -By)e yIB!equ[},
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(c)
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oo K
v,(ey) =1—2th (€, =Cal 42D e™

K
+(C3-—C4{E1—x})e"‘°‘] sinyadot

el J‘” A "1
2nd_.|Bl 2

Material (2) ,h;Sx<h;+h,,0Sy<oo

+|B|y)e NBlexBap,

1

Lo, )= —j [(c7cc+cg{1<2 +ox}) e

21,

+(—Csa+C6{KzT—ocx})e‘x°‘] cosyoda

L7 4, 1Bl gizh
t52] AC1+iBlyePletap,

1 2> Ky +3
A O = 2 [ (Cra-Cel T axe
K, +3
o +(C5a—C6{———2——onx})e"‘°‘] cosya.da

1> ,
- —1— ~yI B gixB
+21J Ay (-1-Bly)e e*Pdp,

1 K, +1
2O = 2 [ ICra Gl F—roxhe
Ky +1
+(—C50+Cg 3 —ox}) e ¥} sinyodo

1 ¢ :
el i -MBlixB g
+2nj—°°zA2[3ye e*Pdp,

uy(x,y) = 1% I ” [(C7+Cgx) €%+ (C5+Cgx) €] cosyada

L= B Bt ey
taxl g Cp g e iPlebap,
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(a)

(b)
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vy(xy) = %j: [(—c7—c8{%+x}>em

+ (C5-C6{%2-—x})e"‘“] sinyo.do.

1 J‘°° Ay "2
+o- By eBleiBap, (e)
2n —oelﬂl
where Cj ,G=1,2, ... , 8) are functions of «, and A, A, are functions of f, and

are to be determined from the boundary and continuity conditions. Eight of
these conditions are given by (2.48), (2.49) while the two remaining conditions at
x=hy+h,are
Oy +hy,y) = =p, = —Yup(hy +hy,y), (&)
Gy (1 +1p3) = 0. (h) (2.119)
By using the same definition of the dens_ity functions ¢(x), ¢o(x), as in
equations (2.50), and by using the boundary conditions (2.48), (2.119) and the
Fourier Inverse Transform, with the help of the integration formulas given in

Appendix (B) we will have

1 b,
%

1 b,
Bl+e202—33+e2c4=ﬁj My, dr,, (b)
9

8431 +e3C2—’nB3 +85C4+Bs+86c6—81037+€25C8

J'b‘M¢(t)dr+ 1 J'b’M¢(r)d: (©)
Mttty ], MatatDd,

K +1J,

1 b
e IJ' Ms 0yt + L:M6¢2(t2)dt2, ()
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€108 +e11Cy+By+e,Cy—Bs—epC—e 9By~ 1Cy

! ! Jsz d,(y)dt
g ¥2152)¢42»
X +1 Ky+1 a,

bl
J M6, de +
9

—e10B1+e13C, +By+e4Cy—Bs+esCo+e gBr+e7Cq

1
1c1+1

1
Ky +1

bl b2
[ Myeiendn+ = [ Moo dry,
4 %

1

b2
— M ty)dt,,
i), Muhd

a,

—Bs+ey0Ce+e1gB7+e19Cg=

(p - I)BS + (p824 + 822)C6 + (—p - 1)81887 + (p823 + 821)C8
1
Ky +1

b2
J. M,y 028ty .
22

(e)

()

(g)

(h)

(2.120)

where By = aC; , By = aC3 , Bg = aCs , By = aCq, €'s and M’s are shown in

Appendix (F), and p = x/2p,0.

Equations (2.120) give eight equations in ten unknowns. After long

manipulations, we can obtain the unknowns Cj ,(=1,2,

two other unknowns ¢, , ¢5. The results are shown in Appendix (F).

, 8) in terms of the

By using the mixed boundary conditions as in Model I, we obtain two

singular integral equations of Cauchy-type in the same form as equations (2.62),

(2.63), where G

ij»(,j=1,2,), in this case are

K;+3
Gilxpot ) = [-Q; = ( 3 +0ux)0;5] €1
K +3
+[05— (———ax))Q7 e,
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K +1 K +3
K, +3
+[Qg—( 5 - )Qgle™ 1%}, (b)
1 o 3 0 (2.121)
K+ 13 Kt 15
Gy (x,t1,00) —E'l_{_—l{[—D_o-(-T*'axz)D—o] 2
K,+3
+[Qg—( 2 —0x)Q0,,1e72%} (c)
Q4 ¥3+3 Q16
G ( o+ va)=[———(__+ )__]exza
22\%2:8 DO 2 X DO
Ky +3
+[Q10—( 5 _%)le]e—xza' (d)
in which Qj , G =1, 2, ... » 16), Dy, are found in Appendix (¥F),

al<xl<bt,al<t'<bl,(l'=1,2).
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Chapter 3
THE SINGULARITY AT THE CRACK TIP

It is well known that the stress fields around a crack tip is proportional to
r=, where r is a small distance from the crack tip at which we measure the
stress field, and s is called the power of singularity which should be between
zero and one, i.e, 0 <5< 1. If s is less than zero, the stress is bounded as r— 0,
and there is no singularity at the crack tip. If s is greater than one, the strain
energy density is unbounded and goes to infinity as r— 0, which also is
impossible.

The value of singularity s is dependent on the crack configuration as well
as the material properties. For each special crack configuration, some terms of
the kernels in the singular integral equation (2.62), (2.63) become singular. By
using Muskhelishvili’s technique [37], the siﬁgular behavior of the stress state
at the crack tip can then be examined for each case.

Since, the singularity at the crack tip will be the same for both Models I
and II, the results would be valid for both models.

3.1 Embedded crack in both materials

The case of a crack embedded in both materials is shown in Figure 3-1.

The only singular terms in the integral equations (2.62), (2.63) are the dominant

1 1

terms and

— e other kernels are bounded as a—. The two singular
1771 2"

integral equations can thus be written in the form
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Figure 3-1: Geometry of embedded crack in both materials

bio,(t) - ok, +1)
dr,+ B.T. =— o, J(x,);a,<x,< by, (a)
thl_xl 1 an, 1 &) <x;<by
3.1
b2¢2(t2) n(x‘2 +1)
dty+ B.T. =— 0,7 (x,)) ; 4, < x, < by. (b)
jazfz—xz 2 L, 2 B<X<0

where B.T. correspond to the bounded terms.
To examine the behavior of the unknown functions ¢;,¢, around the
irregular points (end points), following Muskhelishvili [37], we assume that the

unknown functions ¢, , ¢, may be expressed as
S (tj)

(t =
K (6=a)%ib- )P

=g w;r) ; j=1,2. (3.2)

where &) satisfies a Holder condition in the closed interval a;S<b;, (=1 ,2)
and g{ap#0,g(bp#0,(=1,2). Also aj,B- ,({=1,2) are the singularity at the
irregular points which should satisfy the condition 0< Re(aj B j) <1,(=1,2),and
w;(t) is any definite branch which varies continuously on the interval

aj< tj< bj » (i-_'-l ,2).
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Define the following sectionally holomorphic function
@)
J' ¢J Pa; ; j=1.2. (3.3)

Substituting equation (3.2) into equation (3.3) we obtain

1 ij g;(t) e P;

Fi(2)== s j=1,2. 3.4
)= (t;=a)% ;=P (t;-2) 3 G4

Following Muskhelishvili, equation (3.4) can be written as
g;(a) ™% 8 ®)
(b;—a)% (z=b)P; sinmp;

F.(2) =
i® (bj—aj)Bj (z~a))% sinma

+Fo(@) 5 j=1,2. (3.5)

where Fo;(2) is bounded everywhere except possibly at the end points

a;,b;,(j=1,2), where it has the following behavior

lec .
|F0j(z)| < ————— ; j,k=1,2. (3.6)
jk

where ¢;,=q; , i2=b; » Pj1 <Re(), pjp < Re(Bj) , and Cix» P are real constants ,
ie., Fo;(2) has singularity less than o,B;. (G=1,2).

Using the Pelemelj formula [37]

1 bj¢j(tj) 1 4+ _ ) )
EJ-& tj—xjdtj _E[Ff (xj)+Fj (xj)] s aj<x;< bj ,Jj=1,2. 3.7
J

which, by using equation (3.5), may be expressed as
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T =

1 J.bj¢j(tj)d g;(a))cormoy; gj(bj)comﬁj
o =% 7 mapPi-a)%  (b;—a)%ib—x)Pi

Substituting equation (3.8) into equation (3.1) we can find
g;(a))cotmoy; g;(b) cotn:Bj
(bj—aj)ﬁl(xj-aj)al (bj—aj)al(bj—xj)ﬁl

=y x);j=1,2.

where ¥;(x),(=1,2) contain all the bounded functions.

(3.8)

3.9

By multiplying equation (3.9) first by (xj—aj)aj , and letting xi—a;, and

then by (bj—xj)ﬁj , and letting x;—b;,(=1,2) , we obtain the following

characteristic equations for o, B.,(=1,2)

g:(a)cotma;

Lﬁj = 0 ;]:1 ’2,
(bj—-aj) J

g:(b)cotnf;

La__{ = O ;J: 1 ‘2’
(bj—aj) J

Or

cotn:ozj=0 ; J=1,2,

cotnBj= 0; j=1,2.

(a)

(3.10)
(b)
(a)

(3.11)
(b)

The acceptable roots of this equation are o =% B = ;— , (j=1,2), which are

J

the known results in the crack problems. Hence, the fundamental functions of

the singular integral equations are
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1
w.(x)= , j=1,2_ (3.12)
T a2 (b-xp2

Therefore as long as we have internal cracks , the power of singularity
will be 5 .
3.2 Edge crack

3.2.1 Edge crack for Model I
This case is shown in Figure 3-2, in which 4, =0,b; <k . If a; goes to

vy
E v, E,,v,
b
0 =
n-Il,‘ z
e

Figure 3-2: Geometry of edge crack (Model I)
zero, the singular terms in the singular integral equation (2.62) are the

dominant term ;—_1}- and some terms in the kernel &, (x;,t;) . Let
1 1

b
ky Gep b)) = Kpq, Oept) +K7 Geputy) (3.13)

where kil , is the singular term in edge crack case, and k’;l is the bounded term.

The singular part k‘;l . of the kernel is given by

56



K1e Gty = -“o Glie Gyt da .

(3.14)

where G, is the asymptotic value of G, for c— e, #;— 0,x;— 0 . Then, from

(2.65) and Appendix (C) it follows that

s =1 ¥ Ky +3
klle(xl,t1)=jo [+ (14240~ (o ——0x)) (- 142,00
e Tx)e gy .
or
l1le t+Xxq (t +x1)2 , +x1)3 )
Equation (3.16) can also be written as
d? d 1
Ky, =[~2x2—=-6x;—=1]—— .
11le 1 1% X
i 1 (ytxy)

Then, singular integral equation (2.62) becomes

b
[ L 4K, ()] 04ty dt,+ bounded terms
a, h1=%

n(x+1)
4au,

GIT(xl) , @1 <x1<by.

Again, assume that
gy

bt = (t)% (b —tpPr

=g, @D w ().

where g, (t;) , w, (t}) have the same properties as before.

Define sectionally holomorphic function
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(3.16)

3.17)

(3.18)

(3.19)



dt; . (3.20)

Substituting equation (3.19) into equation (3.20) and following [37] , we

will have
2,0 ™ g1(by)

F (2= -
1@ (bl)ﬁx @% sinma; (b))% (Z—bl)Bl sinTfy

Then, as before by following [37], equation (3.21) becomes
_8(O)cormay  gy(by)cornf,
GOP ™ (b% (b —x P

eH) +Fg,(x)) - (3.22)

and

2.0
Fi(-x))= 1

B For (xp) - 3.23
(b)P1 (x))% sinmay +Fo o) (3.23)

where Fy,(x,) ,F:)l (x;) are similar to the Fofx) in equation (3.8). Substituting

equation (3.22) and equation (3.23) into equation (3.18), we obtain
g ®cormar;  g,(by)cornP;
(bl)B 1x* ()" (bl—xl)ﬁl

2 d? d_, £1(0)

rl-28 % —6x, 2
Voot (b ()™ sinmary
dxl

=y, (x)). (3.24)

where y,(r,) contains all the bounded functions. Equation (3.24) can be written

as
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g1(0)cotmo;  g,(by)cotnf;
GPL ™ (b))% (b ~xpPs

8 1(0)
(bl)ﬁl (x)*1 sinmoy

[—20(a;+1)+60;~1] = y,(x;). (3.25)

Multiply equation (3.25) by (bl—x1)51 , and letting x; — b, , the characteristic
equation for B, is found to be

, (3.26)

DN =

cotnf; =0 - B;=

Similarly, multiplying equation (3.25) by (x;)* , and letting x; >0 , the
characteristic equation for o, is obtained as
8(0)cotmary 2,0
+
GpPr (P sinmay

[-2a;(c; +1)+6a;-1]1=0. 3.27)

which can be written as
cosmo =2(o; ~1)2+1=0. (3.28)

Since ;=1 is unacceptable, the only possible root of equation (3.28) is

o, =0, giving the fundamental function as
1

- .. 3.29
TR (3.29)

wixy) =

3.2.2 Edge crack for Model II
This case is shown in Figure 3-3, in which a,> k, , by=h;+h, .
If b, goes to hy+h, , the singular terms in the singular integral equation

(2.63) are the dominant term and some terms coming from the kernel

2

kyy(xy,15) . Let
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w
E  v| Eyv, X
o azr b2\ ;
b1y
<~ h h »
2
L

Figure 3-3: Geometry of edge crack (Model II)

o) = Ky, (hpity) + Ky () (3.30)

where k;z . (%2.15) is the singular term, kzbz (x,.t;) is bounded and

K, = Jo Gy, (it 0)dot . (3.31)

G;Ze is the asymptotic value of G,, for a—> ,t,— hj+hy ,x;—> h;+h; . From

(2.121) and (3.31) it may be shown that

ko, (Xp.t0) = I:—[%+{1+2(:2—L)a}{%+(x2-L)a}] *

e h—x+2Da 4y (3.32)

where L=h, +h, . Evaluating the integrals equation (3.32) becomes
1 6(L-x)) 4(L-x,)?

- . 3.33
(L-x~1)) (2L—x2—r2)2+(2L—x2—r2)3 ¢33

e Gait) =

which is similar to the equation (3.16). Thus, by doing the same analysis as in
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section [3.2.1], we obtain the same singularities, i.e., = 5,[32=0 . The

fundamental function would then be
1

. (3.34)
(p—a)'?

3.3 Crack tip terminating at the interface from material (1)
This case is shown in Figure 3-4, in which a; >0, b;=h.

v}
N—
E v E; v,
a b
1 1
oL — >
|-11_. z

—

o

Figure 3-4: Geometry of the crack terminating at the interface from material
(1)

If b; goes to h, the only singular terms in the singular integral equation

(2.62) are the dominant term TL' and some terms coming from the kernel

1 1

ky; (x),2) . Let

b
kyy Gepty) = Ky Oty Gty (3.35)

where kj,;(x,.t;) is the singular term in the case of a crack terminating at the

interface, and kll’ { &1,)) is the bounded term. The singular term is found from

Gt = [ Tt @)de. (3.36)
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where G7}; is the asymptotic value of G;; for a— s, t;— h, x; = h . Thus, from
(3.36) and (2.65) it may be shown that

® m
kili(xl’t1)=_"0 [

-1 3
m+K1{1+2(t1—h)cx}{—§—(x1—h)a}

mK,—K
_l Ky 1]3('1+x1‘2h)°‘da , (3.37)
2mx,+1
or
c Ciph=x))  Ci3(h—x;)?
V(70 ) . i St A S (3.38)
where
_3m-1_ 1M (&)
U7 2m+x, 2my+1 "’
-1
. (3.39)
m—
C 3 = 4 ’ (C)
1 m+x,
m =21 )
Ho
Equation (3.38) can also be written in the form
s 1 , d? d
k110 Gpty) = =3 Crsth=x ) — = Cpplh=x )= Cy I
dx; 1
1
[—e———]. (3.40)

Therefore, the singular integral equation (2.62) can be written as
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b
j ’[t Ix +K]1; (¢ pst) 10, (y) dt, + bounded terms
a ‘171

n(x; +1) T
p el x) . (3.41)
We again define
0,(t) = (tl_ajf(i_tl)ﬂl = g,(t) wi(t)- (342)
Also, define the sectionally holomorphic function
F @)= —fh 4:11(:12) (3.43)

Using equation (3.42) into equation (3.43) and following [37] we have
gla;)e™ g1(h)

Fi(2) = -
1®) (h—al)ﬁx(z—al)“l sinmoy (h—a1)°‘1 (Z-h)ﬁl sinnBl
+Fy,@) . (3.44)
From (3.44) it can be shown that fora; <x, <4
g(ay) cotmee g(h)cot
Fixy) = —— 1 L Fy(x) (3.45)
(h—al)Bl (xy=ap)* (h—ap™ (h—xl)Bl
g(h) .

F Qh-x)) =~ - +Fo () - (3.46)

(h=a)*1(h —xl)Bl sinmf,

where Fy,(x;), FO1 (x;) are similar to Fo(x) in equation (3.8). Substituting from

(3.45) and (8.46) into (3.41) we obtain
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g,(a)cotwa, g (h)cornP,
(h“'a1)pl (x;=aP*  (h-a)™ (h—xl)Bl

1 , d? d
=5 C13t=x) —=Cpp(h~x) = Cyy ] *
2 1
dx)
-8;(h ]
(h—al)“l(h—xl)ﬁl sintB;

=y (). 3.47)

where y;(x,) contains all the bounded terms. From (3.47) we have
g1(ay) cotmoy g (hycornP,
(h=a)Pi(x;—a)®  (h—ap)®i (h-xB

_ g1(h) .
(h—a)*i(h —xl)ﬁl sinmf,

1
[=5C13B1 B+ D=CpoBy=Cyy 1=y (x. (3.48)

By multiplying equation (3.48) by (x;-4)* and letting x;—>a, , the

characteristic equation for a., is found to be

cotma; =0 o= % (3.49)

Also, by multiplying equation (3.48) by (h-xl)Bx and letting x;—> 4 , the
characteristic equation for B, becomes
g1(h) cotmP, g1(h)
" (h=ap®™ (h-ap™ sintp,

1

which can be written as
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1

Equation (3.51) has a real root in the interval (0,1) . The root is dependent
on the material constants. If material 2 is stiffer than material 1, the root will
be less than % . But if material 1 is stiffer than material 2, then the root will be

larger than % . The fundamental function of this case is

1

. 3.52
(xy—a) 2 (h-x )b (.32

wixy) =

3.4 Crack tip terminating at the interface from material (2)

This case is shown in Figure 3-5, in whicha, =h, by,> h.

L DY
E vl E,v,
a b
0 2 2
z
1,

=
Figure 3-5: Geometry of the crack terminating at the interface from material
(2)
If a, goes to h , the singular terms in the singular integral equation (2.63)

are the dominant term

and some terms coming from the kernel &y, (x;,2,) .

=%

Let
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kyp (g 510 = k;m (x29f2)+k;2 (x%,1) - (3.53)
where k;m (x4,1,) is the singular term for this case, and klz)z (x,,t,) is bounded.

Kty ty) = jo Gty ty, 00 der . (3.54)

where G,,; is the asymptotic value of G,, for a~ o , 1,— h , and x,— h . From

(2.65) and (3.54) it may then show that

s = 1MK=K m-1
. ’t = ——
ki 1) jo [ 2 m+x; mx,+1

{(-1+2(@t,-h)ax}

{_%+(x2_h)a}]e‘(’2+xz‘2h)°‘da : (3.55)
giving
c Coplty—h)  Cpa(ty—h)?
K (xut) = A mn 272 . (3.56)
t+2=2h) " (ty4x,—20)2 (t,+x,—2h)
where
C ——lm&—‘(1+§ m-1 (a)
217 2 m+x;  2me,+1°
m-1
(3.57)
m-1
€= 4m1<2+1 ’ ©
m =E, @)

The kernel given by equation (3.56) is quite similar to the corresponding kernel

given by equation (3.38) . Thus, following the procedure leading to (3.49) and
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(3.51) we obtain

1 d? d
dx2

[— 1.

J‘bz[ ! +K5,; (x2,5) 1 95(t;) dt, + bounded terms
y o, 222192

n(x,+1)
1 Ibz dy(1,) o 85(h)cot o, _ g,(by) cotnf,
mhh =X 2 (by—hPa(t-h)%2 (b= )% (by—xy)P2

+Fp,(xy) .

105 0(1) g, (h) "
— = F .
o, O Yoo

gkcormay  gy(by) cornf,
(by=h)P2(x, = )% (by—h)%2(by—x,)P2

1 , d? d
+ [§C23(x2—h) Zx—z—C22(x2—h)Ez+C21]

2
g&,(h) w0t
(by— KR (x,—h)%2sinma, Vaa) -
g7(h)cot o, ga(by) cotmP,

By P20y —1)%  (by— k)% (by—x)P

s g,(h)
(by— h)Pa(xy — )2 sin oL,
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1
[5C2300(0 + 1)+ Cap0 + Ca ] =W5(xy)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)



(3.64)

N =

corn, =0 - B, =

and

COSTOL,) +% Cor30y(0y + 1)+ Cpay +Cy =0 . (3.65)

Equation (3.65) is identical to equation (3.51) if the material constants are
changed. So, we have the same argument as before. If material 1 is stiffer than

material 2, o, is less than % and if material 2 is stiffer than material 1, o, is

larger than -21- . The fundamental function in this case is

1

) (3.66)
(xy—h)%2 (by—x,) 2

wy(xg) =

3.5 Crack going through the interface
This case is shown in Figure 3-6 in which a;>0,b,=hand ay=h,b,>h.

==
Figure 3-6: Geometry of crack going through the interface
In this case, the two singular integral equations (2.62) and (2.63) must be

examined. If b, and a, go to the interface, we will have three irregular points

x=a1 ’ handbz.
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The singular terms in the singular integral equation (2.62) are the

dominant term and some other terms coming from the kernels £, (x,.t;)

=%
and ky,(x;,;) . Similarly, the singular terms in the singular integral equation

(2.63) are the dominant term

- and some other terms coming from the
2" :

kernels k,, (x,,¢,) and ky, (x,,t,) . The singular terms in the kernels k;, (x,,#;) and
ky, (x5,t,) are sill the same as equations (3.40) and (3.58). By examining the
singular terms in the kernels &, (x;,;) and ky; (x;,#;) , let us define
k1p Gepotg) = Rip (epp) + K1y (xty) (a)
(3.67)
boy Gipty) = 5y (opy) + gy Gt - b)

where k;z (xp:8) , kél (x5.t)) are the singular terms, and Icll’2 (xy:19) kgl (x5.t,) are the

bounded terms. Since

ki (xy,tp) = J': Gy ety ) dat (a)
(3.68)
k;l (xp.1)) = jo G;l (xp.t), ) ot . ®)

where G|, , G, are the asymptotic value of G, ,G,; for x>, 3 h , x; > h
and c— o , t; = h , x,— h , respectively. From (3.68) , (2.65) and Appendix (C)

we then obtain
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5 - K+1 3 1
Ba=] (5ol =

o m+x

e MG+
k21-jo [mvc2+1

or, evaluating the integrals we find
dyp  dpGyg—h

kip (xptp) =

dyy dypn-h

k;1 (xgsty) =

where

1= 2m+x, —§m1<2+1 ’

1c1+1 K1+1

12 _m+1c1 —mK2+1 ’

_ 3m(xy+1) 1m(x,+1)
21" T2 me, + 1 3 m+x,

m(x,+1) m(xy+ 1)

27 T+l mtx
My

m=—.
Ha

+ ,
(ty—xy) (t2—x1)2

(x2—t1)+ (x2—t1)2 '

3
{=5+(xp—ho}-

70

K, +1 )
-1+ -h
gy 1 2o ]

e(h=%)% gor |

1m(K,+1)
m+1(1

e~ -1 goy

{1+2(t;-hMa}]

(a)

(b)

(a)

(b)

(a)

(b)

(c)

(d)

(e)

(3.69)

(3.70)

(3.71)



Equations (3.70) can also be written as
1

d
Klp (xytp) = (il =Wty e (a)
(3.72)
s d 1
(o)) = {dpplxy=h)5——dyy } —— . (b)
Ky (gt dyy(%y dx, 275
The two singular integral equations (2.62) and (2.63) then become
h 1 s by s
j = +k11i(x1’t1)}¢1(tl)dtl+j kyz (1tp) 2(tp) dty
a 1 "1 h
(K, +1
+ bounded terms = - ! )GIT(xl) , (a)
4u,
3.73)
hoo b, 1 s
A O R I e AR IS
a, B 07X%
(X, +1)
+ bounded terms =- 41 62T(x2). (b)
2

Substituting equations (3.40), (3.58), and (3.72) into equations (3.73), and
by using the same technique as before, we will end up with the same equations
as (3.45), (3.46), (3.60) and (3.61). Also, from the two kernels k';z (x;.1p) and

k;l (x9,11), We obtain

b, 0,(2) 8(h) *
%J' ztz 2 dt, = 2 —+F k), (a)
r ™% (bz—h)ﬁz(h—xl)“z sin oL,
04t (h) G719
h t g -
%J’ t1 L dhy == a 1 5 ) (b)
a,l17%2 (h—a)*1 (x,—h)P1 sinwB;

where F;z(xl) and F;l(xz) are similar to Fox)) in equation (3.8). Then the
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singular integral equations (3.73) become
81(ay) cormoyy g (W) cotnP,
(h—a)Pri(x;—a)®  (h—a)® (h=x)P

1 o d? d
+[~5Cah—x)*—=Cph—x)o—=Cy )
dx]

-—gl(h) ]
(h~a))*1(h —xl)Bx sinmB,

8,(h)

=¥ ,
(bz—h)ﬁz (h—=x)%2 sin noz2] 1) @)

d
+[dy5(x, _h)EI*'du] [

(3.75)

[y —h)i—d 10 i ]
22\%2 dx, 21 (h_al)al(xz—h)l31sin1t[31

ga(Mcotmay, g,(by) cot e,
(by—h)P2(xy = k)% (by—h)% (by—x)P2

1 d? d
+{ —C23(x2—h)2—--—C22(x2_h)__+c21 ]
? dx &y
2

g2(h)

=\P . b
(by—h)P2 (x, — h)% sinna,z] 22) (b)

(

where W¥,(x,) , ¥,(x;) contain all the bounded functions. Then equations (3.75)

can be written as
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g,(a;) cotma, g (W cotmP,
(h-a)Pi(xy—ap®  (h—a)®(h-x)Pi

_ g,(h)
(h—a))* (h —xl)ﬁl sinnB,

1
[-'2-C1331(Bl+ 1)—C12B1_C11]

+ & (k)
(By—h)P2 (h—x))% sin o,

[—dp0n+dy 1= (xy) , (a)

(3.76)
-g(h
(h—a)® (xy— hPrsinmP,

[~dpB—dy]

N go(h) cotmay, g4(by) cormf,
(by=hP2(xy— )% (by—h)%2(by—x)P2

. g2(h)
(by— h)Bz (xy—h)*2 sinmay,

[%C23°‘2(°‘2+1)+C22%+C21 ]
=¥,(x). (b)

It is important to mention that, we just have one irregular point at the

interface, therefore,

Bi=o0y. (3.77)

We now multiply equations (3.76)(a) and (3.76)(b) by (x;—a;)*1 and
(b2—x2)52 respectively , and let x, > a; and x,— b, . Then the characteristic

equations for o, and B, are found to be

cotmo; =0 o ;= % , (a)
(3.78)
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Also, multiply the same equations by (h—xl)Bl and (xz—h)ﬁl respectively,

and let x;, > h and x, — h . Then we find
81(h)
(h—a)* sinmfP,

1
[—§C13B1(B1 + 1)"C12B1—C11 +COS1IB1]

_ g(m
(b— m)B2sin 7B,

[-dy;B;+dy;]1=0, (a)

(3.79)
g1
(h—a)* sinwf,

[dyBy+dy ]

g>(h)
+
(by—h)P2 sinmy

1
[§C23B1(B1+l)+c22B1+C21+C0STtBl]=O. (b)

The solution of interest of (3.79) satisfies 0 < Re(B;) <1 . Thus, since g,(h)
and g,(h) are non-zero, the determinant of the coefficients in (3.79) must vanish,

giving the characteristic equation for §; as follows

1
[ cosmP, +§C23B1(Bl +1)+CpPBy+Cy; ]

1
{ cosnBl —§C13B1(51 + l)‘Cuﬁl'cll ]

+[dpPBy+dy 1[-d B +d; 1=0. (3.80)

It is clear from equation (3.79) that, g,(h) and g,(h) are not independent,
and are related by
(h-a™ 00s51+%cz3‘31(‘31+1)+sz51+€21
(by= )P dpPi+dy

g1(m)=—gy(h) (3.81)

Equation (3.81) will be necessary in order to obtain a unique solution for
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the singular integral equations (2.62) , (2.63) . Equation (3.80) has always a real
root in the interval (0,1) . The fundamental functions of the singular integral

equations (2.62) , (2.63) are
1
x—ap 2 (h-x)P1

(a)

wilx) =

(3.82)

1
= ) (b
wo(X5) g M)Ps (by—xg) 2 )
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Chapter 4
Numerical Procedure

The solution of the problem depends on the two unknown density
functions ¢, , ¢, which can be obtained by solving the two singular integral
equations (2.62) , (2.63) numerically by using any one of the techniques
available in [40] or [38, 39]. In this work the expansion method described in [38
, 39] is used. In order to solve them let us rewrite these two equations (2.62)

and (2.63) in the following form

by 1 by
J‘ [ +hky (X2 10,(2)dty +j kia(x1,t9) 05(2y) dty
a] tl —xl a2

=p;(x)) ;a;<x;<b;, (a)

@.1)
b, b, 1
[Ty enendn+ [ =m0, ) dr
a, a, =%
=p2(x2) ) a2 < x2 < bz. (b)
where
T(x,+1)
pi(x)) =— 4‘141 °1T(x1) ,
4.2)
n(xy+1)

Py(xg) =— L, GzT (xy).

Normalizing the two singular integral equations (4.1) by using the following

transformations
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=t (4SS b,~1S1<1) (a)
“.3)
b;-a; b;+a;
the two singular integral equations (4.1) may be expressed as
+1 1 +1
[ oo+ [ KuGirvedn
—_ 1 1 —_
4.4)
+1 . +1 1
Ky (Sprdwy(rdr + j ( +Ko(55.70) W (ry) dry
-1 -1 T2=%
=Py(sy) ;-1<s5,<1. ®)
where
i~ -
K,'_,'(s,',rj) = 5 k,'j (x,',tj) s (1,j=1,2). 4.5)

and y,(r;) , P(s;) are respectively the transformation of ¢,(t;) , p;(x;) (i = 1,2). Since
g,(ty)
(t;—a)® (by~t;)Pr

¢1(t1) = =81(t1) Wl(tl)’ (a)

(4.6)
85(tp)
(ty—ay)%2 (by—1,)P:

b,(8) = =g,(t) wo(2y). (b)

Then, y,(r)) , y,(r,) will be equal to
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Fy(r)

AP @
@7
Fy(ry
= . b
¥a(r) (1 +r,)%(1-rpP2 (b)
where
Fi(r) = G P A, (a)
4.8)
Fyry = (Ezf_az)wﬁz Ay(ry). (b)

and A;(r;) and A,(r,) are the transformation of g,(#,) and g,(z,) respectively.

Then, the two singular integral equations (4.4) may be written as

J-+1 Fl(rl) 1
-1(1 +r1)°‘1(l—r1)51 r-s

J+1 Fz(rz)
+
-1 (L+r)%2(1=ry)P:

rl N0 g s +J'+1 akid “9)
Sl r .
A @ A=rpP 2T e -rpPe
=5
We may define
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K, +1
Fy(rp = ;ul ST Fi(rp), (a)

(4.10)

+1 "
Fy(ry) = %GOT F,(rp). (b)

where

o, E 0
T __17170 4.11
i) l—Vl . (4.11)

Then, the two singular integral equations (4.9) can be put in the form

+K11(s1,r1)dr1]dr1

J-+1 FI (rl) 1
-1 (1+r)*Q —rl)Bl r-s

B+l pel Fo(r)
+

— K., (s,,r5)dr
Mo X+ 1y (e d-r)B 20122

GlT(Sl)

=-—T T

;—l<s;<1, (a)
So

TS IS T )

R+ (L4r D A -rh

Ky, (s, dr (4.12)

J~+1 Fy(r) 1

+Kyn (Sa,r5) ] dr
L (ra(mrhy Tamsy 2TEET2

ool

;—l<s,<1, b)

Let us assume that the two functions FI (r) and F; (ry) are in the form of simple
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power series such as

N
* n
Firp=3 a,r.
n=0

M
*x*
Far)= Y, b,y
m=0

(a)

(b)

(4.13)

where a, , b, are the coefficients of these series to be determined, the numbers

of which are (N+1) and (M+1) , respectively. Substituting equation (4.13) into

equation (4.12) we obtain

where

N M
%anE’lll(slﬂ %meJB(Sl):Pl(sl) ; —l<s;<1,

N M
N a,Ep (s)+ Y, bpEpy(s) =Pylsy) 5 ~1<5,< 1.
n=0 m=0

n
+1 r 1
E} (sp) = ‘ [——+K; (sprp 1 dry,
W) @i (trBorpmsy
HiKy+1 sl r
Efy(sp) = — : Ky p(syrp)dry,
Hoxy+1J (1+r2)°'2(1—r2)Bz
Hoky+1 p+1 ]
E (sp) = 2t - K, (sy,ry)dry,
21(82) o1 GeryRaor P 21(82.r1)dry
+1 ro
2
Ep(sy) = +K55(sp,79) 1dr,

-1 +r2)°"2 (1 —r2)Bz ["2"-92
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(a)

(b)

(a)

(b)

(c)

(d)

4.14)

(4.15)



c,(sy)

Pys))=-m ST (e)
0
0,7(s)
Pys)=—m 2 T2 . )
0

It is obvious that equation (4.14)(a) has (W+1) coefficients a, , and equation
(4.14)(b) has (M+1) coefficients b,, . By choosing the number of the collocation
points for s, , s, between (-1, +1) , which depend on the number of the unknown
coefficients a,,b,, , we can obtain a system of linear equations that can be
solved to give these coefficients. It is clear that, the number of the coefficients
a, , b, depend on the convergence of the series in equations (4.13).

Although t.hex;e is no restriction on the choice of the collocation points, it
was shown by Kaya [41] that a symmetric distribution with respect to the origin
considering more points concentrated near the ends seems to help. So, the roots
of the Chebeychev Polynomial will be used as collocation points.

To obtain a unique solution for the singular integral equations (2.62) ,
(2.63) additional conditions are needed depending on the crack configuration.
Each configuration will be investigated separately in the following subsection.

4.1 Embedded Crack
Figure 3-1 presents this case in which a; >0, b;<h, a; >k and b, < o,
Also, the singularity at the end points are

1
o =Py =ay=B,=5. (4.16)

The collocation points for s, and s, are selected as
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x(2k-1)

Sy = cos 1 k=1,2,...N, (a)

(4.17)
r@l-1)
M

S5; = COS 1=1,2,...M. (b)

where sy, ,5, are the roots of the Chebeychev Polynomial. By substituting
equations (4.17) into equations (4.14) we obtain the following system of (N+M)

equations for (N +M +2) coefficients a,,b,,

N M
z:anE"l'1 (st Z me"lnz(slk)=P1(s1k) iml<s <+l
n=0 m=0

; k=12,.N, (a)
‘ (4.18)
N M
%a 21620+ Y, buEy () =Polsy) 5-1<sy<+1
n= m=0
C1=12,.M. ()
where
E’" +1 r'; 1
-1 2 rl Sk
‘jl—rl
ET (s )—l’ll‘c2+1 + r; K5 (5375 dr (b)
12‘ W irgFil), » 1281k 72)ary,
1-ry
o Wy Ky +1 o+l 7] Ko y ©
() =— S~7,01)arq, c
2= 3T = FarCarm)en
l—r1
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(4.19)

+1 rm 1
E’znz(szz)=j .y +K55(59r9)1dr, (d)
-1 5 T27%2
‘Jl—rz
6,7 (s
Op
6,7 (sp)
Py(sy) =~ ——. (f)
So

Two extra equations are needed. From the definition of the density functions
¢, , ¢, , we have the following single valuedness conditions providing the (N +1)™

, and (M + 1) equations :

bl
j 6, (t;)dt, =0, (a)
4
(4.20)
b2
o

which can be written, after changing the variables #; and ¢, , and using

equations (4.13) , in the following form

N
Y a,G"=0, (a)
n=0
(4.21)
M
Y b,G"=0. (b)
m=0

where

83



+1 r
Gn=J. drl, (a)

(4.22)

+1 7
on= | Zdn,. ()

The integrations in equations (4.19) and (4.22) can be found in appendix (G).

4.2 Edge Crack
Figure 3-2 shows this case in which a, =0 and b, < & . Also, the singularity

at the end points are

o;=0 , B1=%. (4.23)
Since, we have one edge crack, then the collocation points for s, are
r2k-1)
Slk-:COSm N =1,2, ..... (N+1). (424)

In this case, the number of the collocation points are (N+1) which should be
equal to the number of the unknown coefficient a, , because the single

valuedness condition (4.20)(a) is no longer valid. Thus, by substituting equation

(4.24) into equation (4.14)(a), considering one crack in material (1), we obtain

the following (N+ 1) equations for (N+1) coefficients a,, which are

N
2 anE'l'l(slk) =P, (s;p)i—1<s;<1 ;k=12,.(N+1). (4.25)
n=0

where



n

+1 ry 1

Ellll(slk)=j [ — + Ky (S dry, (a)
-1NT-r; T1751

(4.26)

6, T(s1)

. b)

So

The integration in equation (4.26) can be found in Appendix (G)

4.3 Crack Terminating at the Interface
Figure 3-4 shows the case in which ¢; >0, b;=h , and the singularity at

the end points are o, = % and B, , where B, can be obtained from equation (3.51).

Similarly Figure 3-5 shows the case in which a,=4, b, < c and the singularity at

the end points are §, = % and o, , where o, can be obtained from equation (3.65).

For the case shown in Figure 3-4, the collocation points and equation (4.14)(a),

(considering one internal crack in material 1), become

s1k=cos“(2k2N'l) ck=1,2,...N, (4.27)
N

Y a,E} (510 =Py(syp) 5 k=1,2,..N. (4.28)
n=0

where
E (s j“ d [ Ky (syerp)]d 4.29)
S1p) = + Si.r)1dr. .

nEW =) AP 1o 1Sy iar

Equation (4.28) has N-equations with (N +1) coefficients a,. The W+ 1) equation
necessary to obtain a unique solution can be obtained by using the following

single valuedness condition;
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b
_[ "o, () dt, =0, (4.30)
a,

which can be written in the form

N
Y a,G"=0. 4.31)
n=0
where
n
G” J' i 1 d (4.32)
= rq. .
-1 A+rRQ —rl)ﬁx !

Similarly, for the case shown in Figure 3-5, the collocation points and equation

(4.14)(b) (considering one internal crack in material 2) will become

s2,=cos“(§’1;1) 1=1,2,..M, (4.33)

M

Y buEp () =Py(sy) 5 1=1,2,.M. (4.34)

m=0

where

Eon(S5) rl 2 K )] 4.35)
Sap) = + Sapr)1drs. .

R v R A (

Equation (4.34) has M-equations for (M+1) coefficients b,,. The (M+1)* equation

can be obtained by using the following single valuedness condition;

b2
f ¢, (rp)dt; =0. (4.36)
a,

which can be written as

M
Y 5,G™=0. (4.37)
m=0
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where

Gm j“ "2 d (4.38)
= . .
o1 () (- 2

The integrations in equations (4.29), (4.32), (4.35), (4.38), can be found in
Appendix (G).

4.4 Crack Going Through the Interface
Figure 3-4 presents this case in which a; >0, b;=h, ay=h, by <o, and the
singularity at the end points are

a1=;52=%. By =ay. (4.39)

where B, or o, can be obtained from equation (3.80). In this case equations

(4.17) and (4.18) will still be the same with

E" +1 r’; 1 X 4 (

11(slk)—-"-1 +rp2A-rph r1‘51k+ bl ®)
HyKy+1 ptl ry

Ef (s)=— : Kip(syra)dra- (b)

Hy K+ 1 (1 +rPr(1-ry)'2

(4.40)

By Ky +1 e+l ri
Er =
21 (520 ™ p+1)_; (1 +r1)1f2(1_r1)[31

Kzl(le,rl) drl . (c)

m
+1 r, 1

En (o) = j -1 L +rPi (1=l z 2‘321+K22(s21’rz)] : @
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and P,(s;,),P5(s,) can be found in equation (4.19)(e, f).
Equations (4.18) have (N+M) equations for (N+M+2) coefficients q,,b,, .

So, the two extra conditions we need to obtain a unique solution are

bl b2
[ ¢1(rl)dt1+J' 0, (ty)dty = 0. 4.41)
4 %

and
1

(B)=—gy(h
81 ga( )(bz—h)ﬁz TP 7 dy;

(4.42)

After changing the variable and substituting from equations (4.13), equations

(4.41) and (4.42) become

N M
Y a,Gi+R; Y b,G; =0. (4.43)
n=0 m=0
M M
Ry a,(+1)"+R3 Y b, (-1D"=0. (4.44)
m=0 m=0
where
M K+l by—h
[=— =, (a)
Ry =(dyBy+dy)), (b)
Ky+1 by—h
M”27 %, (4.45)

3=EK1+1 h-a,

1
(Z)al—ﬁz[cosnﬁl+§C23 BB+ 1)+CyBi+Cyyls ()
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G rl g d (d)
= r.,
Vi aerp2a=rph !

+1 r
GT = 2 dr,. (e
2 J‘—1 Q +r2)pl ¢! —r2)1/2 "2 )

The integrations in equations (4.40), and (4.45) are found in Appendix (G).

4.5 Edge crack going through the interface
This case is shown in Figure 4-1, in which a; =0, b, =a;=h, b,> k. Also,
the singularity at the end points are

LB

_
Figure 4-1: Geometry of edge crack going through the interface

=0, B =% , By=a, (4.46)

where B, or a, may be obtained from (3.80). The collocation points for s5; and s,

are
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2k-
5y = cos ’;((N+11)) Ck=1,2,.(N+1), (a)
4.47)
s2,—cosn(§lM1) ;1=1,2,....(M). (b)
Equations (4.14) may then be expressed as
N M
Y a,EL (sp)+ Y, buE(s1)=P(s1p)5k=1,2,.(N+1), (a)
n=0 m=0
(4.48)
N M
Zoa,, 1(s21)+z by B (52D =Pa(s3)) 5 1= 1,2 (M) (b)
n m=0
where
Eyy(sy) = J. s rl)Bl =y k+K11(51k”1)]d’1’
(4.49)

n

My Ky+l e+l 1y
Ey (sy) = — Ko 1(8,,r,)dr .
2V T o) (—-rpPi 215207197

and E7, (s15) , Eq» (s5)) are the same as in equations (4.40)(b,d).
Now equations (4.48) have (N+M+1) equations for (N+M+2) coefficients
a,.b,, . Since, condition (4.41) is no longer valid, then the only extra condition

that we need to obtain a unique solution is equation (4.41) or (4.44). Appendix

(G) contains all the integrations needed.
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Chapter 5
Stress Intensity Factors

5.1 Embeddgd Crack

The stress intensity factors at the irregular points a, , b, , a, , b, may be

defined by

ka,) = lim \12(a1—x)olyy(x,0), (a)

X—> al
k(by) = lim V2(x-b 0), b
) x_)n}71 (x 1)51yy(x ) (b)

(5.1)

k(a,) = lim \12(a2—x)02yy(x,0) , (c)

X—> a.2
k(b2)=x1i)rr’§ N2(by~x) 6, (x,0) . (d)

2

We note that the expression for the stresses O1yy (x,0) and Gayy (x,0) in equations
(5.1) are for x outside the crack and can be obtained from the two singular
integral equations (2.62) and (2.63), by observing that these equations give the

stresses for y=0 outside as well as inside the cracks. Thus,
by 1 b

. [rlTx+K 11 &0, dny +J‘ K, () &y(2y) dty
1 2

n(x;+1)

Tclyy(x,O);0<x< a; ; by<x<h, (a)

5.2)
b b, 1
I Ky (x,t) &, (e)) dty +J [g——x+K22 (1)1 0,(25) dty
a a,

_TE(K2+1)

—4“;—G2yy(x,0);h<x<a2 ; by<x< oo, b)

Substituting equation (5.2)(a) into equation (5.1)a) we find
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S
Hap = lim N2a =9 e

by 1 b,
([ ke 0 dn + | K dn ). (5.3)
a, 1y—x a,

Since, for embedded cracks the kernels K, (x,1}) , K;, (x.t;) are bounded , equation

(5.3) can be written as
4, S
a,)=———— lim Y2vVa,—x

o) = e Dy,

b
{j S (tl)dt1+ bounded terms }. (5.4)

al tl—x

By defining the sectionally holomorphic function

1¢0:0, @
Fi()= EJ'a1 A (5.5)
and observing that
g:(tp) g1(t)e™Ps
oyt = ik il (5.6)

(tl—al)al (bl_tl)B1 - (tl—al)al (tl—bl)ﬁl '

After separating the leading terms at the end points of the cut for a; =, =% ,

equation (5.5) can be expressed in the following form,

T

g(apez g,y

F = -
l(z) (bl _al)I/Z (z_al)lfl (bl _a1)1/2 (z_bl)l/Z

+Fg,(2). (5.7

where F;(z) has the same properties as in equation (3.6). By using the Plemelj’s

formula, equation (5.7) can be written as follows
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J‘b 191 (’1) g;(ay)
(bl _al)I/Z (al _x)lfl

B g1 (by)
(by-a) P (x-b )12

+F5 (x) 5 x<ay. (5.8)

Substituting equation (5.8) into equation (5.4) we find

31(‘11)
= lim \2V(a,-x
k(a]_) ( l)x—)ntl;l (al x)[( l_al)lﬂ(al_x)lﬂ
gl(bl)
oy Pyt ounded terms . 59)
giving ,
4 2
k(al) had —lﬁ‘\j'bl_—algl (al), (a)

Similarly, the stress intensity factor at the other irregular points b, , q, , b, are

found to be

4 T2

Ko === V=g 1 (®)

(5.10)

W T2

Kap = Vg 82@), (c)
A T2

ko) =~ Vo824 ()

Equations (5.10) may also be expressed as
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by -a,

Kap) = N —5—0gTFi (1), (a)
N Sy P

Kby = N ——0yTFi (+1), (b)

(5.11)

by=ay ;&

kay) = N ——0,TF;(-1), (c)
by-ay 4.«

k(by) = = 500 Fa(+1). d)

5.2 Edge Crack
In this case, shown in Figure 3-2, the stresses are bounded at 4, =0, but
have singular behavior at b, . So, the stress intensity factor at b, may be defined
by
kb)) = xl_i)ml N2V(x=8))0,,x0) . (5.12)
where O15y(%:0) is the stress for x outside the crack, which can be obtained from

equation (5.2)(a), by considering one crack, i.e
(K +1)
4,

b, 1
j [th+K11(x't1)]¢1(t1)dtl =
1

. 01,y (1,0) . (5.13)

Substituting equation (5.13) into equation (5.12) and observing that the kernel

K, (xt;) is bounded as x— b, and t; = b, , equation (5.12) becomes
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4u, o
k(b)) =——— lim V2Vx—b
Y e e, '

b
{ ‘M%(tl)drl +bounded terms } . (5.14)
0 tl -X

The density function ¢, for edge crack is given by
£,

—_— 5.15
T (5.15)

6, =

Then, by following Muskhelishvili’s technique, the singular term in equation

(5.14) can be expressed as
J‘bl 6@t 20 gy

o (t;—x) 1= (bl)ln—(x—b1)1/2+F01(x) ) (5.16)

So, the stress intensity factor at the irregular point b, , can be written as

4 -
M lim \}2\fx—b1
x+Dxs b,

k(b)) =

£,(0) g1(by)

% )1/2—(x - )1/2+ bounded terms } . 5.17
1 -9

Therefore

4,
k(b)) = - Kl—tzfx!z 816y - (5.18)

which can be reduced to

k(b)) = Vb, of F;(+1) . (5.19)
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5.8 Crack Terminating at the Interface

The stresses have singular behavior, at the ‘ends a, and b, = h in Figure
3-4, and at the ends a,=h and b, in Figure 3-5. First, consider Figure 3-4 in
which the stress intensity factor at a; and b, = h may be defined by

Ka;) = lim V2(a;-x)0,(x0), (a)
X—> al
_ (5.20)
k(b = h) = . Lilﬁo V2 (x—m)Ps Oyyy(%0) - (b)

where the stresses olyy(x,O) and czyy(x,O) can be obtained from equations (5.2)(a)

and (b) by considering one internal crack, i.e.
n(k, +1)

h 1 ’
Ll [tlTx+K11(x’t1)] &,(t)dty = _ZE_GIYY(X’O); O<x<ay, (a)
(5.21)
h (K, +1)
J‘ Ky (x,t) ¢, (t)dty = —Zp;—ozyy(x,O) shex. (b)
!

Substituting from (5.21)(a) into (5.20)a), and observing that the kernel Ky,(x,;)

is bounded as x— a, , t; > a; , equation (5.20)(a) may be written as

4u, -
a;) =———— Lim V2Va,~x *
Kay) Ky + x> a, 1

hGy(t)
[J papps dt;+ bounded terms ] ; a;<x<h.  (5.22)
a 1=
Since, the density function ¢, in this case is defined by
g,(t)

) 5.23

o, =

by following Muskhelishvili’s technique [37], the singular term may be
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expressed as
ljbx¢1(f1)d g,(ay)

ty =
Rdg =X ! (h—a)Pi(a;~x )17

B g1(m
(h—-a) 2 (x—h)P1sinnp,

Thus, equation (5.22) becomes

- + bounded terms ] .
(h—a)V2 (x-hP1

The stress intensity factor at the end a; may then be expressed as

4, V2
(k1 +1) (h—a))Ps

ka;) = 8:@ay) .

Since, by definition
h-a; X, +1

= (— Hr+B o T L~ gy
81(41) ( 5 ) 1 G an; 1( ).

Equation (5.26) would be reduced to

h—
k(ay) =V % ool ()12-P1 Fi(-1) .

+ bounded terms .

(5.24)

(5.25)

(5.26)

5.27)

(5.28)

Similarly, the stress intensity factor at b;=h can be obtained by substituting

equation (5.21)(b) into equation (5.20)(b), i.e.
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4 _
i lim V2 (x—=h)P1

k(b,=h) =
©1=h TG+ D)o b

h
[J' Ky (6, (¢dt 1 5 h<x .
e

The singular terms of the kernel K,; (x,t;) ,as x> h,#; > his
+

Kél (xty) =

d 1
= [d22(x_h)z"d21] tlTx i h<x.

Thus, equation (5.29) may be expressed as

4, —
=R =—2= 1 —h)P
kb, =h) n(x2+1)xl_“f‘,,\j2(x myPy *

h d o, (tp
[L1 {d,, (x—h)a—dm} -t-ITxdt1 + bounded terms ] ; h< x.

Since the density function is defined by
£,(t)
(t,—a) 2 (h-1)Pr

6.t =

By following Muskhelishvili’s technique, we have
lJ‘h ¢1(f1)d -g,(h)

t, = + bounded terms .
T U (a2 (x— mPisinmB,

“1 tl_x

From equation (5.31) it then follows that
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(5.30)

(5.31)

(5.32)

(5.33)



Wy . = d
0 B e s
—g,(h
&) + bounded terms ].
(h—al)m(x—h)plsinnﬁl
giving
W o dpbitdy
by = h).
o (K+1)  (h—a)2sinnP, a®
By using

h-a, K+l
= 1 T
g1(h) = ("2 o - F1eD.

Equation (5.35) may also be expressed as

K +1 d,),B,+d,; h—a
k(b1=h)=% 1 2h1" 1
B, K+1  sinmf, 2

W1 6ol F(+1).

(5.34)

(5.35)

(5.36)

5.37)

Similarly, in the case of Figure 3-5, it may easily be shown that the stress

intensity factors at the end points a, =% and b, are given by

Kas=iy =" K+1 —dpop+dy (bz‘
277, K +1 sinmay, 2

h
)% 6ol Fy(-1),

by—h
Kby = =V —5— ogf @2~ Fy(+1).
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5.4 Crack going through the interface

As in the previous section [5.3] the stresses at the end point a, , b, have
singular behavior, and the stress intensity factors at these points are still the
same as equations (5.28) , (5.39) respectively, which can be put in the following

form

—_— ;I—_-
ka,) = % ool «l_la_l )12-By F[(-1). (5.40)

7 b,—h .
k(b,) = —«J% ool V -2—1-— @)2-By F, (+1). (5.41)

where [ is the total crack length. At the irregular point b;=a,=h , the stresses
O (hY) , Oy (hY) become unbounded as y— 0 . Thus, the normal and shear

components of the stress intensity factor may be defined as follows

k,= lim yPio_ (hy), (a)
y—>0
(5.42)
k= lim yPio_(hy). b
xy y_r)noy 10, (h,y) (b)

where 6. (hy) and O,y (h.y) are the components of the stresses at the interface

which after long manipulation, are found to be
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2, ho o
o (hy) = HE{:T)[LI K4 (16, () dry

b
+j > K4 (ht) 0, (1,) dr, + bounded terms ],
h

Oy () = 1)[ j K3 hip) oy (1),

+J : k;4 ()95 (1)) dty + bounded terms ].
h

where ki3 , ks1 45 k;3 , k;4 are the singular kernels given by
(h=17) B(h—rl){sf—(h—tl)z}

Ka(ht)=~[A -
13 () =~1 (h—1)2 +y2 {(h=1)2+¥2 )2

(t,~h) A (r2 —h) {3y = (t,— h)?}
(t,—h)? +y* {(ty=h)?*+y* }2

k4 (hity) =—[-B

Ky () =A—2 L 3G
BV =t 24y {h-1 2432 )2

y =31}

S (ht)) =B ,
A A TP B R

m(x,+1) B m(k,+1)

mic,+1 T m+x

ki3 , k'; 4> k;3 , k;4 can also be put in the following forms
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(b)

(a)

()

(c)

(d)

(e)

(5.43)

(5.44)



. 1
ki3 (ht) = [(A+2){(h t)+zy (h=t))- ’y}

1 1

-Biy{ - }H
[(h—t)+iy]? [(h—t)—iy]?

B A 1 1
14(’1 ) =-[(=5 ){(tz—h)+iy+(t2—h)_iy}

1 1
+Aly{ - }]s
[t~ +iy? [(t-h)—iy]?
s _A B 1
k23(h”1)‘(% 5)’{(h-rl)+iy (h—tl)—iy}

1 1

-B { + },
Y =i+ B [h-t)~iy 2

1 1

by (hiy) = ( ){(r2 hy+iy (t,—h)— zy}

1 1

-Ay{ + }.
[ty=h)+iy]? [(ty—h)—iy]?

Substituting from (5.43) into (5.42), we find

2u, h
= B, s
& yl—L?loy (K2+1)[J.a1 ky3 (hity) 6t dty

b,
+J' 2K, (ty) 0, (t,) dty + bounded terms,,
h
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(a)

(b)

(c)

(d)

(a)

(5.45)

(5.46)



kyy = lim ¥

By observing that

g1 ()

y—=0 TC(K2+1)

[j k23 (Bt () dt

+J 2k, () 0y (t)) dt, + bounded terms .
h

8> (%)

6, =

(t;—a) P (h—t)R

(5.47)

and following Muskhelishvili’s technique, the singular terms can be written as

g (e 3B

IJ‘ ¢1(t1)
(h t1)+ly

1 R o)

(h —al)“xyﬁl sinm B,

T.
g (e3P

—dt
a, (h_tl)_ly

b 6 (®)

- (h—a)* yP1 sinm B,

T,
g (e 7P

—dt, =
p (G—h)+iy 2

(by—)P2yPy sinm B,

2, (W5 By

1 J‘bz b, (2))

—_ ~ [~ =
Ry (—h)=iy 2

(by—m)P2yPy sinmP,

From (5.48)-(5.51) it follows that
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+ bounded terms .

+ bounded terms .

+ bounded terms .

+ bounded terms .

(5.48)

(5.49)

(5.50)

(5.51)



1% 1 1
L [(h t1)+1y (h=t))—- y]q)l(tl)dt1
g ()

= + bounded terms .
(h=a )™ By sing B,

1 1
}o, (t))dt
j (ht0+WF (h—tp-iy2 V1

dioph 1 1
‘""‘ETJ {(h Dy =y 1
B181(k)

= —+ bounded terms .
(h=ap®yPy sin=B,

1¢b 1 1
j Gy Gop-py 2%
&2 h)

= + bounded terms .
(bz—h)BZyﬁl Sing'Bl

1 1
} o, (1) dt
J [(tz h>+zy]2 [(—hy—iy]2 2 22

d1 1 1
==Y d_y /5 .‘- { (ty- h)+zy (t—h)—iy Fo (5
B8 (m)

= + bounded terms .
(by—h)P2yP1 singﬁl
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(5.53)

(5.54)

(5.55)



1k i
L =g+ O t) zywl(tl)dtl

h
= s + bounded terms .

(h—a)®yB cos-gﬁl

1k 1 1
-1 ¥ + } &, (t;)dt
TJ (=t +iy? [(i—tp—iy = =

i
I [(h t1)+1y (h—t)— ly]¢1(1)dt1

—Bigi(m

= ‘ + bounded terms .
(h—a)™ yBI cos-’zE B,

105 i i
j Py e e s =5y 92202
g, (h)

= + bounded terms .
(bz—h)Bzyﬁl cosg B,

1 1
+ } &, (25) dt
I [(r2 h)+xy]2 [(ty— )= iy 2 42 (),
dl i i
_yzy_nJ- [(t2 h)+1y (t,—h)— zy]¢2(t2)dt2

_ —ﬂ182 ()]
(by— h)Bz yﬁl cosg B,

+ bounded terms .

(5.56)

(5.57)

(5.58)

(5.59)

The two components of the stress intensity factor k, , k, are then found to be
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-2, B g1 (h)
k.= lim —+1 y 1[(A 5 =
y— 0K (h—a)®yP sinz By

B8y (h) B A g (h)

(h—al)“xyﬁl singﬁl 22 (bz—h)Bzyﬂl singﬁl

Big, ()
(by—h)P2yBs singﬁl

+ bounded terms ,

2 h
kg, = lim ___uzl P [(; 5 a®
y= 0K (h—-al)“1yﬁ1 cosg— B,

(—Bl)gl ) B A g, (h)

(h—-al)axyﬁl (:osgﬁ1 2 2 (bz—h)Bzypl cosgﬁl

(“Bl) & h

-A + bounded terms .
(by— h)B2 yBy cosg B,

These can be written as

-2 (n
k = ”‘?‘ —[{4+(1-2BpB) hgl .
2(1c2+1)sm§[31 (h=—a)™
+{-B-(1-2Bp)A} £® 1,
Y (by-hP
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(5.60)
(b)
(a)

(5.61)



2u, g

ko= [({A-(1-2B))B}
i 2(x2+l)cosgﬁ1 : (h=ay)*
+{B-(1-2B)A} &® ] (b)
T S
Since, by definition
K +1
g (h) = & )a1+Bx oo” Tu-—F T, (a)
1
by—h +1
g2(h) = (—)°2*P2 0T juz F; ). ()

where B, =0, and a;=3,=1/2, equations (5.61) may also be expressed as
K +1

=(_)B _; NN
k, (2) 167 ({A+(1- 2[31)3}( )11(2 1

sin® ﬁl (2)1f2+2

* by—h *
?F (+1)+{-B-(1-2 )A}<—21—>51F2(—1>1, (a)

1 hax

(2)1,2+2[{A (1-2B)B ) ( o

l
k,, = (E)ﬁxco
cosEB

* by—h *
EF1(+1)+{B—(1—2B1)A}(—27—)511’2(—1)1. )

I being the total crack length (I=b,-a;) .
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5.5 Edge crack going through the interface

In this case, as in section [5.4] the stresses at the end points b, and
b;=a,=h are unbounded (see Figure 4-1), but the stresses at ;=0 is bounded.
Equations (5.39), (5.61) (a,b) are still valid for stress intensity factor at the crack
tip b, and at the interface b, =a,=h respectively, provided we let 4,=0 ,
a;=0, B; =0y, and use the definition of g, () and g, (k) in equation (5.62). It may
then be shown that

. . Byh .
Kby =1 o V(=) @P1 Fj (+1). (5.64)

-1 1
k=BT
- smgsl[a)“ﬁl

— b - NI
{A+(1 2[31)8}(1) 1K2+l

K2

1
IR (+1)+
My 1

bz"h B *
GyeaeE, (B (- BpAN (R R D). (5.63)

h K1+1
—(1— g LI
(4-(-2BPB} (P g

1 1
k= (NP1 oyl [
i ° cos12—t[31 22 +h

My
— F. (+1
M 1 )+(2

by=h g
W{B-(I-ZBQA}(—-I—) 1 Fy(-1)]. (5.66)

where [ is the total crack length.
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Chapter 6
RESULTS AND DISCUSSION

As examples for the thermal shock crack problem two material
combinations are considered. Material pair A corresponds to an austenitic
stainless steel layer (material 1) and a ferritic steel base (material 2) which have
the same elastic constants but different thermal properties [1]. Material pair B
represents a ceramic coating (material 1) on a ferritic steel base (material 2) in
which both the mechanical and the thermal properties are different. Since the
problem is formulated in terms of dimensionless quantities, it is sufficient to
consider only the ratios between the properties of the two material combinations

shown in Table 6-1. -

6.1 Model I
Figures 6-1 - 6-10 show the normalized transient temperature and
thermal stresses distribution in material pair A given by equations (2.17) and
(2.35) for 1,=0 , and (2.26) and (2.35) for 15> 0 . The temperature plots
represent the ratio ©(x*,1)/0, (0=0, for 0<x<h, and =0, for h<x <) as a
function of non-dimensional distance x*=x/h for various values of non-
dimensional time (Fourier Number) 1 and 1, defined by
= %Dzl 1= ‘gth_l (6.1)
where f, is the actual duration time of the cooling ramp on the surface (see
Figure 2-3(b)). The non-dimensional thermal stresses oyy/ O'OT are plotted in the
same way, where
o1 E1 6
1-v;

T_

o,T = 6.2)
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From Figures 6-1 - 6-10 it is clear that, the derivative of the temperature
distribution, that is, the heat flux and the thermal stresses ¢, (0,,=0,,, for
O<x<h, Oy =02y for h<x<o) are discontinuous at the interface. The
discontinuity in the slope of the temperature, i.e., the heat flux, is due to the
difference in the thermal conductivity of the two materials (see boundary
condition (2.5)c) or (2.19)(c)). Also, the discontinuity in the thermal stresses
results from the difference in the coefficient of thermal expansion across the
interface which is given by (see equations (2.33) or (2.35))

Oayh) @E;@ 1-v; 04

= =-——=0.75 6.3)
G, (At 1—-v
i) o E, 0, 2 oy

since, there is no discontinuity in the temperature field itself ©,(k,t) = ©,(h,?) and
E,=E, , v{=V, in material pair A. The influence of the ramp cooling 1, on the
transient temperature and thermal stresses, particularly for small values of
time, are also shown in Figures 6-1 - 6-10. As the rate of cooling surface
temperature (1) increases, the transient thermal stresses decrease.

The normalized stress intensity factors (SIF) for various crack geometries,
subjected to thermal history shown in Figures 6-1 - 6-10, in material pair A are
given in Figures 6-11 - 6-23. Figure 6-11 shows the variation of normalized SIF,
k(b,)/6,INI;, for various edge crack lengths in material 1 (a;=0, b; < k) and for
To=0 as a function of Fourier Number t . Note that, since the material pair A
have the same mechanical properties, i.e. E;=E, , v;=V, , the normalized SIF
would approach the uniformly loaded half plane solution of 1.1215 as 1 — «. The
influence of the cooling rate 1 on the surface x=0 for a fixed edge crack b;/h=0.5
is shown in Figure 6-12. 1t is clear that, for small time 7, this influence could be
quite considerable, and the normalized SIF decrease as 1, increases. Figure 6-13

shows the effect of 7, on the normalized SIF, k(bl)/coT\Ja, for an edge crack
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terminating at the interface (a;=0, b;=h). Since, E,=E,,v,;=V, in material pair
A, the stress state at the crack tip b;=h has a square root singularity and the
normalized SIF would again approach the uniformly loaded half plane solution
of 1.1215 ag T — oo,

Figures 6-14 - 6-15 show the normalized SIF for an under-clad crack at
the crack tips ay,b, ( @y=h , h<by <o ), k(ay)/6g' NL,/2 , k(b,)/ 6T NIy/2 , for
various crack length and for 1,=0 as a function of time (Fourier Number). Since
E,=E, , v;=V, , the singularity at the crack tip a,=# is the square root. The
asymptotic values of the normalized SIF as 7 — « is depicted in the same
Figures. The influence of 1, on the normalized SIF for an under-clad crack with
fixed length /,/h=1.0 is shown in Figures 6-16 - 6-17. It appears from the
Figures that for small values of time, this influence could be quite significant.

The results of an edge crack crossing the interface are shown in Figures
6-18 - 6-19. In Figure 6-18 the normalized SIF at the crack tip b,, ( ;=0 ,
by=ay=h , h< b, <o), k(b2)/ooT\ﬁ , for various crack lengths and for 7y=0 are
shown as a function of time. Note that, the tensile and shear stresses at the
interface (b;=a,=h) are bounded, since the mechanical properties of the
material pair A are the same, i.e. E,=E,, v,=v,. Figure 6-19 shows the effect of
T, on the normalized SIF for fixed crack length //A=4.0. The limiting values of
the normalized SIF as t — « are also shown in Figures 6-18 and 6-19.

Figures 6-20 - 6-23 show the results of an internal crack crossing the
interface. The transient normalized SIFs at the crack tips a, and b, , (a; >0,
bj=h=a, , by <o), k(al)/coT\fl/_2 s k(b2)/00T\JI/_2 , for various crack length are
given in Figures 6-20 - 6-21. There is no stress singularity at the interface, since
E,=E,, v,=v,. Figures 6-22 - 6-23 show the influence of the ramp cooling as
measured by T, on the normalized SIF at the crack tips a; and b, for a fixed

crack length a;/h=0.2, b,/h=2.0.
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The results for the material pair B are given in Figures 6-24 - 6-38. The
normalized transient temperature and thermal stress distributions for various
ramp durations (1) are shown in Figures 6-24 - 6-29. Again, the discontinuity in
the thermal stresses at the interface (x=4) is given by (see equations (2.33) or
(2.35))

Oop(ht) 0 E0; 1-v, 4 Ey

= 1.4019 (6.4)
o1 £y
Note that in this case , E; # E|, v,=V; , and ©,=0, at the interface.

Figure 6-30 shows the normalized SIF for an edge crack in material 1
(a;=0, by < h) for various crack lengths and for 1,=0. Since the materials in pair
B have different mechanical properties and since E; > E,, the normalized SIF
would approach infinity as b, — A, but for very small value of b,, it would
approach to the half plane uniform load solution, 1.1215. Figure 6-31 shows the
effect of 1, for a fixed edge crack 5;/h=0.5. The results for an edge crack
terminating at the interface (a; =0, b;=h) are shown in Figure 6-32 for different
values of 1,. In this case the singularity at the crack tip b; =4 is f, =0.552538.

Figures 6-33 - 6-38 show the results of an edge crack going through the
interface (a;=0, by=a,=h , h < b, < ). Figures 6-33 - 6-35 give the normalized
SIFs at the interface and at the crack tip b,, k. /T Py, k,,/ 64T 1By, k(b,) /oo NI, for
various crack lengths and for 7,=0. The values of k, and kyy control the tensile
and shear cleavage stresses at the interface, (x=h, y > 0) (see equations (5.42)
and (5.43)), where the singularity at the interface is B;=0,=0.01872238. The
influence of 7, on the normalized SIF is also shown in Figures 6-36 - 6-38 for a
fixed crack length b,/h=2.0.

If the transient thermal stresses are sufficient to cause yielding through

the thickness of the clad, the stress intensity factors for an under-clad crack can
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be analyzed by using a simple plastic strip model which assumes that the
yielding in the clad is restricted to a very thin layer in the plane of the crack.
Thus, the solution can be obtained by changing the boundary condition (2.49)b)

as

Oy, (*.0) == 6,J(x)+0p ; 0<x<h, (6.5)
02,y (%0) = =0, 7(x) s h<x <b,.

where o is the average plastic flow stress. The normalized stress intensity

factor at the crack tip b, is given by

__k(_bz): = k(b)) + or ky (by) - , (6.6)

ol VI, /2 o’
where kI(bz) is the stress intensity factor for an edge crack going through the
interface subjected to —o,7(x) (0 <x<h) and -6,/(x) (h<x<b,), and ky(b,) is
the stress intensity factor for an edge crack crossing the interface subjected to
og (0 < x < h). The values of kI(bz) are given in Table 6-2, which shows the effect
of clad yielding on the stress intensity factors. The SIFs decrease as the crack
length increases. The comparison between the values of stress intensity factors
as T — oo for yielded clad and elastic clad for different values of crack length and
o5/0,l are shown in Table 6-3. It appears that, as 6,] becomes larger, yielding

in the clad will result in a much higher stress intensity factor at b,.

6.2 Model IT

To verify the computer program, the SIF for an edge crack in a
homogeneous strip (E;=E, , v;=V, , x=0) under uniform load is calculated and
compared with the results obtained by Kaya [41]. The results can be found in
Table 6-4.

The problem of a crack terminating or going through the interface in two
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bonded half planes can be obtained by letting the crack length very small
compared to #; and h,. The normalized SIF for these two cases are calculated for
material pair Aluminum and Epoxy and compared with the results obtained by
Kaya [41] and Erdogan and Biricikogh [29], which can be found in Tables 6-5
and 6-6.

To see the effect of the elastic foundation on the SIF for a homogeneous
strip, the normalized SIF for y > 0 (which is related to R;/L through equations
(2.106) and (2.116)) are calculated and compared with the results for x=0, (see
Table 6-4). Also, the effect of the elastic foundation % on the normalized SIF for
a homogeneous strip with a fixed edge crack b,/L=0.5 are shown in Table 6-7. In
this Table, the limiting case =0 means that the homogeneous strip has no
elastic foundation. The case y=o correspond to uniformly loaded strip of
thickness 2L having symmetrically located coplanar edge cracks of depth b; on
both surfaces. Note that in this case u(L,y)=0 , oxy(L,y)=0 , 0@ <y<o ., As
expected, the SIF is decreased for increasing x.

To show the comparison between the homogeneous strip on an elastic
foundation y ( which is related to R;/L through the equation (2.106)) and a
homogeneous cylinder the normalized SIFs for an edge crack under uniform
tension are calculated and tabulated in Table 6-8 (see Nied [42] for cylinder
results for R;/L=9.0) . Also, the comparison between the transient temperature,
thermal stress distribution and normalized SIF for the homogeneous strip on an
elastic foundation and a hollow cylinder obtained from Nied [43] for R;/L=9.0,
are shown in Tables 6-9, 6-10, and 6-11, respectively.

Figures 6-39 - 6-62 show the normalized transient temperature and the
thermal stress distribution in material pair A given by equations (2.80) and
(2.100) for 1,=0, and equations (2.86) and (2.100) for 1j > 0. The normalization of

the temperature and the stress is similar to in Model I, varying with the
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nondimensional distance x*=x/h, and nondimensional time (Fourier Number)
t=tD,/ hf. The results are given for different values of #,/h;= 3.0,9.0,24.0, and
different values of cooling rate as measured by 15=1,D 1/hi, where 1, is the actual
duration of the ramp cooling. The discontinuity in the slope of the temperature
as well as the thermal stress have already been discussed in the previous
section [6.1] for Model 1. It is clear from the Figures that, at any instant in time
and for fixed h,/h, , the transient thermal stresses decrease as 1, increases.

The normalized SIFs for various crack geometries and different values of
To and h,/h; =3.0,9.0,24.0 in material pair A are shown in Figures 6-63 - 6-107.
These results correspond to the thermal history shown in Figures 6-39 - 6-62.
The stiffness of the elastic foundation y are taken to be function of R;/L through
the equation (2.106), where R, is the inner radius of the cylinder and L is the
total thickness (4, +#h,). All the results are calculated based on R;/L=9.0 , which
means that the thickness L=h, +4, is fixed, but the ratio h,/h, is varied.

The results of the normalized SIF for an edge crack in material 1 (a;=0,
by <hy) , kb)/ GOT‘\IH , are shown in Figures 6-63 - 6-74. The variation of
normalized SIF with time 1, for various edge crack lengths for &,/k;=3.0 ,
14=0.0,6.0 , hy/h;=9.0 , T,=0.0,10.0 , and h,/h,;=24.0 , T,=0.0,20.0 are shown in
Figures 6-63 - 6-64, Figures 6-67 - 6-68, and Figures 6-71 - 6-72, respectively.
Also, Figures 6-65 - 6-66, Figures 6-69 - 6-70, and Figures 6-73 - 6-74 show the
influence of the cooling rate 1, for a fixed edge crack and h,/h =30,
by/h;=02,09 , hy/h;=9.0, b /h;=02,09 , and hy/h;=240, b /h;=02,09 ,
respectively. It is clear that, as the cooling rate or 1, increases, the maximum
normalized SIF decrease. Noting that, the total thickness L of the clad and base
material is fixed, and as h,/h,; increases the clad thickness h; decreases with

respect to h,. So, by comparing Figures 6-63, 6-67 and 6-71 in which 1,=0.0 and
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h,/hy =3.0,9.0,24.0 respectively, and by normalizing the crack length by L, i.e.
l,/L instead of /,/h, , it can be seen that the maximum SIF for fixed edge crack
length (/,/L) would decrease as k,/4, is increased, (see [1]). In the case of broken
clad the influence of 1, for 4,/h; =3.0,9.0,24.0 are shown in Figures 6-75 - 6-77.

The normalized SIF for under-clad crack at the crack tips a,,b, (a,=h,
b, > hy) , kay) /6o NI,/2 , k(by)/04 NIy/2 are shown in Figures 6-78 - 6-95. The
normalized SIF at the crack tips, for various crack length for A,/h;=9.0 and
70=0.0,10.0 are shown in Figures 6-80 - 6-83. It is apparent that, initially the
two crack tips have negative SIF, and then reach maximum values at different
times. Also, it is clear that, the maximum normalized SIF at the crack tip b, is
dropping faster than that at the crack tip just touching the interface (a,=#,).
The slope discontinuity in Figure 6-83 is due to the ramp function and takes
place 1=1,=10.0. Figures 6-88 - 6-91 show the normalized SIF at the crack tips
for hy/h,=24.0, 1,=0.0,20.0. The transient behavior of the normalized SIFs at the
crack tips a,=h; and b, for I,/h;=9.0 and 13,=0.0,20.0 is shown in Figure 6-88
and Figure 6-90. The results of the normalized SIF at the crack tip b, for various
crack length for h,/h;=24.0 and 13,=0.0,20.0 are also shown in Figure 6-89 and
Figure 6-91. Again the slope discontinuity which appears in Figure 6-91 is due
to the ramp cooling and takes place at 1=73=20.0 . The influence of the cooling
rate or 1, on the behavior of the normalized SIF for fixed length of under-clad
crack and for hy/hy=3.0, I,/h;=0.004 , hy/h;=9.0, I,/h;=1.0,3.0 , and hy/h,=24.0,
I,/h;=05,4.0, at the crack tips a,,b, are shown in Figures 6-78 - 6-79, Figures
6-84 - 6-87, and Figures 6-92 - 6-95, respectively.

The transient normalized SIFs for an edge crack going through the
interface (a;=0, b;=a,=h, , b, > h,) are plotted in Figures 6-96 - 6-107. Figures
6-96 - 6-97, Figures 6-100 - 6-101, and Figures 6-104 - 6-105 show the variation

as a function of time t for various crack length and for 4,/k,=3.0, 1,=0.0,6.0,
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hy/h;=9.0, 15=0.0,10.0 , and A, /h;=24.0, 1,=0.0,20.0, respectively. The influence
of 7, on the normalized SIF for fixed crack length for h,/h;=3.0, b,/h;=1.2,2.0,
hy/h{=9.0, b,/h;=1.5,40, and h,/h;=24.0, b,/h;=1.5,5.0, are shown in Figures
6-98 - 6-99, Figures 6-102 - 6-103, and 6-106 - 6-107, respectively. It is seen that
for any given crack length the normalized SIF increases until it reaches a
maximum value and then decreases as 7 increases. Also, as the cooling rate or 1,
increases the maximum value of the normalized SIF decreases for any fixed
crack length.

Tables 6-12 - 6-14 give the maximum of normalized SIFs for an under-clad
crack (a,=h, , by > h;) , and their comparison with the results obtained by Nied
[1]. Similarly Tables 6-15 - 6-17 give the maximum of normalized SIFs for an
edge crack crossing the interface (a,=0, b;=a,=h, , by > h},7,=0.0) and their
comparison with the results of Nied [1]. Note that, in this study the analytical
solution of the temperature, thermal stresses and the crack problem is based on
R;/L being very large. In Nied’s work [1], R;,/L=9.0 which still corresponds to a
relatively thick cylinder.

The normalized transient temperature and thermal stress distributions in
material pair B for h,/h;=9.0 as given by equations (2.80) and (2.100) for 1,=0.0
, and equations (2.86) and (2.100) for 1, > 0, are shown in Figures 6-108 - 6-115.
The stress discontinuity at the interface is due to the difference in Young’s
modulus and coefficient of thermal expansion (E; # E, , o] # o).

Figures 6-116 - 6-117 represent the transient normalized SIF for various
lengths of an edge crack (a;=0, b, < h;) for 1,=0.0,10.0. It is clear that, since
E, > E, , the maximum normalized SIF would increase to « as b, approaches the
interface. The effect of 7y on the normalized SIF for an edge crack having a fixed
length b;/h;=0.2 is shown in Figure 6-118. The influence of 7 on the normalized
SIF for broken clad (a;=0, b;=h;) is shown in Figure 6-119, in this case the
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singularity at the crack tip b;=h, is equal to B;=0.552538 . As expected, the
singularity is greater than 1/2 because E, > E,.

In case of under-clad crack for material pair B (a,=h; , by > k) , the
normalized SIF k(a,)/0y (l,/2)% , k(by)/0oINL/2 , at the crack tips a,,b, for
70=0.0,10.0 are shown in Figures 6-120 - 6-121, and Figures 6-122 - 6-123,
respectively. Since the crack touches the interface from material (2) and since
E| > E, , the singularity is less than 1/2 , and is equal to «,=0.4512416. The
effect of the cooling rate or 1, on the normalized SIFs at the crack tips a,=h; and
b, for a fixed crack length /;/h;=1.0 is shown in Figures 6-124 - 6-125.

The normalized SIFs for an edge crack crossing the interface (a;=0 ,
by=a,=hy , b, > h;) in material pair B, for 7,=0.0 and 10.0 are shown in Figures
6-126 - 6-128, and Figures 6-129 - 6-131, respectively. The normalized SIFs
kool Py, k/ogT P control the tensile and shear cleavage stresses at the
interface. The singularity at the interface is equal to B, =0,=0.01872238 . The
influence of 17, on the normalized SIFs at the interface x=hA; , y> 0, and the
crack tip b, for a fixed crack length b,/h;=1.5 , is shown in Figures 6-132 -
6-134.

6.3 Conclusions

Very often in transient thermal stress analysis it is assumed that the
relevant thermal boundary condition is a step change in temperature which is
used as a model to describe the sudden cooling or heating at the boundary. In
the case of cladded pressure vessels, the temperature of the inner wall of the
cylinder is suddenly brought down to the temperature of the cooling liquid (from
288° ¢ to 20° c¢). A simple calculation would show that under this idealized
thermal boundary condition the maximum thermal stress in the clad would

exceed the corresponding yield strength of the material (which, for austenitic
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steel, is 390 MN/m? ). It is therefore, clear that in this case the unit step function
in temperature is not a realistic representation of the actual boundary
condition. By using a more realistic thermal boundary condition such as ramp
function with cooling rate measured by the ramp duration 1, , the peak values of
the thermal stresses as well as the maximum stress intensity factors are shown
to reduce below the corresponding values given by the step function
temperature boundary condition.

In Model I it is seen that the stress intensity factors are monotonically
increasing functions of time. This implies that in this case the fracture process
would be unstable. On the other hand in the composite plate represented by
Model II, invariably the stress intensity factors increase, going through a
maximum and then tend to their steady state values asymptotically. In some
cases the under-clad crack may have initially negative stress intensity factors.
In such cases it should be understood that the negative stress intensity factors
may have a meaning only when they are used in a superposition with other
loading conditions in such a way that the resulting stress intensity factor is
positive.

The transient thermal stresses are strongly dependent on the material

properties. Thus, the steady state thermal stresses and consequently the

corresponding stress intensity factors for material pairs A and B are found to be
opposite in sign.

The results show that the initial flaw (the edge or the internal crack) in a
coated medium subjected to transient thermal loading generally tend to
propagate towards the interface. Since the power of singularity for a crack
terminating at the interface is not 1/2, the propagating crack would slow down
and possibly be arrested if it is located in the less stiff side of the interface and

would grow faster if it is in the stiffer material. The process of the propagating
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crack to cross the interface would be controlled by the relative magnitudes of
material toughness and energy release rate.

The effect of the clad yielding on the stress intensity factors for an under-
clad crack in Model I was investigated and it was shown in Table 6-3 that for a
fixed crack length the stress intensity factor is higher in the yielded clad case
than that for the elastic clad. Also, as the thermal stresses increase yielding in
the clad would cause an increase in the stress intensity factor.

As expected, it was found that an increase in the stiffness ()) of the elastic
foundation would cause a decrease in the stress intensity factors as it increased.

The results for the beam on an elastic foundation showed very good
agreement with that obtained from the axisymmetric elasticity solution for a
thick-walled cylinder, indicating that the model can be used quite satisfactory to
study the highly complicated problem of a composite cylinder containing a

circumferential crack.

6.4 Suggestions for Future Research

The way by which the crack problem in a composite beam on an elastic
foundation was formulated in this study would benefit the future research as an
extension of our work in the following areas :

i. The cracking of layered materials perpendicular to the interface

with a stress free boundary (y=0) under residual and transient
thermal stresses.

ii. The cracking of fully constrained layered materials perpendicular
to the interface under residual and transient thermal stresses.

Other interesting problems can also be done in the future such as :

iii. The cracking of layered materials along the interface with free and
fully constrained boundaries under residual and transient thermal
stresses.
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iv. The cracking of layered materials perpendicular to and along the
interface under residual and transient thermal stresses.

v. The "free-end" problem in bonded layers under thermal cycling.

121



Table 6-1: Properties of materials pairs used in this work

ky [ ky D,/ D, ay/ e E,/E vy /vy
material pair A 3 3 0.78 1 1
material peir B 3.3856 4.070 2.2939 0.6111 1

Table 6-2: Normalized stress intensity factor for an embedded crack (equation
(6.6)), obtained from the plastic strip model, 173,=0.0,

6ol == E; ©y/1 -V, for Madel I. (Material pair A)

4 x
L/ h k(b)) as 7 — oo k,(b,)
0.025 9.8778 - 8.9580
1.0 1.9008 - 0.8354
4.0 1.4046 - 0.2598
8.5 1.3450 - 0.1882

Table 6-3: Comparison of the normalized stress intensity factors obtained from
a yielded clad and an elastic clad for various values of the crack

length, 7,=0.0, 6o/ =~} E; ©,/1-v,, for Model I.(Material pair A)

k(b,) / 0,TVI,/2 as 1 — oo (yield clad) k(b)) /0, TVI,/2 as 1 — oo

T_ .
L/h |og/0y =1 1/2 1/5 1/10 (elastic clad)
0.026| 0.921567 5.39959 8.08840 8.98201 0.7584
1.0 1.085639 1.483089 1.73372 1.81728 0.7740
4.0 1.14489 1.27478 1.38272 1.37870 0.82856
e.b 1.17884 1.280982 1.31138 1.32820 0.8532
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Table 6-4: Normalized stress intensity factors for an edge crack in a
homogeneous strip of thickness L under uniform load 6, (without
elastic foundation, x=0.0 and with elastic foundation R;/L=9.0 and
xL/E=0.01108 )

Kaya present work
b, /1L k(b)) / oy Vb, , x=0 k(b)) /oo Vb, x=0| Kk(b)/o,Vb R [/L=9.0

. 001

&

00000000000
© 00w h N~

.1215
.1892
.3673
.8599
L1114
.8248
.0332
.3549
11.955
18.828
34.832

CRNNKH -

[« 2N NI SRR TR

.1216
.1892
.3873
.8599
.1114
.82486
.0332
.36563
11.968
18.8356
34.841

1.12156
1.1674
1.2726
1.4267
1.5983
1.81356
2.0776
2.3801
2.7399
2.98356
3.38860

Table 6-5: Normalized stress intensity factors for a crack terminating at the
interface under uniform load o, (/,/h;=0.1 in the present work).

K(a,) [ 04 V1, /2 k(b,) / 0y V1,/2

Aluminum-Epoxy Kaya 2.7997 0.8828
V1=O.3 s V2=O.35 present work 2.7948 0.8842
pl/p2=23.077

a,=0.3381

Epoxy-Aluminum Kaya 0.095656 1.3398
u1=0.35 » V5=0.3 present work 0.0983 1.3403
py/p,=0.0433

a,=0.8248
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Table 6-6: Normalized stress intensity factors for an embedded crack going
through the interface under loading P,/P,=(E;/E,)(1-Va/1-v2),
v;=03, v,=035, W,/p,=23.077, B=B;=0,=0273692, I;/h;=01,
1,/h,=0.05,0.025.

k(a,) k, kay k(by)
L/
P, Vijz P, (i/2)P P, (i/2)P vijz
1 1 1 4/2) Py Vi/2
0.5 present work| 1.2408 - 0.08127 - 0.02034 1.5628
Erd. & Biri.| 1.2378 - 0.06900 - 0.021568 1.5661

0.25 | present work| 1.3409
Erd. & Biri. | 1.3324

0.084568 0.03088 2.1320
0.08113 - 0.03184 2.1391

Table 6-7: Normalized stress intensity factors for an edge crack in a
homogeneous strip of thickness L under uniform stress o, and for

fixed crack length b,/L=0.5, various values of x (stiffness of the
elastic foundation)

0.0 2.8248
103 2.8238
108 2.5282
10° 1.8040
1012 1.2000
1018 1.1693
1020 1.1601
o0 1.1548
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Table 6-8: Comparison between normalized stress intensity factors for an edge
crack under uniform loading 6, in a homogeneous strip on an elastic

foundation ¥, and a homogeneous cylinder R;/L=9.0.

bl /L k(bl) / % Vbl k(bl) / % Vbl
cylinder strip
0.1 1.1568 1.1874
0.2 1.2863 1.2726
0.3 1.392 1.4287
0.4 1.688 1.56983
0.8 1.779 1.8136
0.8 2.0256 2.0775
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Table 6-9: Comparison between transient temperature distribution ©/6, for a
hollow cylinder and a homogeneous strip on an elastic foundation %
due to a unit step temperature change on the inner wall, R;/L=9.0

and yL/E=0.01108, t=tD/L2.

L

e/e

0 » T=001

©/8,, r=005

present work

Nied

present work

HOO0OO0OO0O0ODO0OOOOO0OOOODOOODO0OOO

.00
.06
.10
.15
.20
.2b
.30
.35
.40
.45
.80
.66
.80
.85
.70
.76
.80
.85
.90
.96
.00

000000000000 OO0O0OO0O00OO0OR

. 000
.723
. 477
.288
.1568
.078
.033
.013
.006
.001
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000

. 000
.724
. 480
. 289
.167
.077
.034
.013
. 0056
. 001
. 000
. 000
. 000
. 000
. 000
. 000
. 000
.000
. 000
. 000
. 000

OC000O0OO0O000CO0O0O0O0O0OO0OO0OO0O0COO

.000
.872
.748
.830
. 521
.423
. 337
.263
.201
.1581
.111
. 080
.0568
.038
.028
.017
.011
. 007
. 006
.003
.003

Q0000000000000 0DO0OO0OO0OOO K

1.000
0.874
0.7b62
0.8356
0.5627
0.429
0.343
0.268
0.208
0.1566
0.114
0.082
0.068
0.040
0.027
0.018
0.012
0.007
0.008
0.003
0.003
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table 6-9, continued

z/L 0/6,, =01 ©/0,, r=05
Nied present work Nied present work

0.00 1.000 1.000 0.999 1.000
0.08 0.908 0.911 0.987 0.971
0.10 0.818 0.823 0.837 0.942
0.156 0.731 0.737 0.9086 0.913
0.20 0.648 0.68656 0.877 0.885
0.256 0O.588 0.5678 0.848 0.8568
0.30 0.494 0.502 0.820 0.832
0.35 0.4286 0.434 0.794 0.8086
0.40 0.383 0.371 0.789 0.782
0.45 0.307 0.315 0.7458 0.759
0.580 0.267 0.284 0.723 0.738
0.556 0.213 0.220 0.703 0.718
0.80 0.178 0.181 0.8856 0.700
0.65 0.144 0.149 0.668 0.884
0.70 0.117 0.121 O.854 0.870
0.75 0.086 0.0989 0.641 0.6567
0.80 0.078 0.081 0.631 0.847
0.85 0.0856 0.087 0.623 0.839
0.80 0.068 0.0568 0.617 0.6834
0.856 0.080 0.083 0.814 0.630
1.00 0.048 0.0561 0.813 0.629
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Table 6-10: Comparison between Stress distribution o,,/c, for a hollow
cylinder and a homogeneous strip on an elastic foundation % due to
a unit step temperature change on the inner wall, R;/L=9.0 and

xL/E=0.01108, 1=tD/L2,

z/L ayy/aoT, 7=0.01 aw/aoT, 7=0.05
Nied present work Nied present work

0.00 0.892 0.8872 0.76568 0.7477
0.086 0.814 0.6108 0.630 0.8221
0.10 0.369 0.36888 0.508 0.4995
0.156 0.179 0.1760 0.388 0.3829
0.20 0.048 0.0445 0.280 0.2748
0.256 - 0.031 - 0.0357 0.182 0.1769
0.30 - 0.074 - 0.0789 0.098 0.09056
0.356 - 0.094 - 0.09956 0.022 0.0181
0.40 - 0.103 - 0.1082 - 0.040 - 0.04864
0.458 - 0.108 - 0.1114 - 0.091 - 0.0878
0.580 - 0.107 - 0.1124 - 0.131 - 0.1388
0.556 - 0.107 - 0.1127 - 0.182 - 0.1703
0.80 - 0.107 - 0.1128 - 0.188 - 0.1945
0.856 - 0.107 - 0.1128 - 0.203 - 0.2125
0.70 - 0.107 - 0.1128 - 0.2186 - 0.2264
6.78 - 0.107 - 0.1128 - 0.224 - 0.23456
0.80 - 0.107 - 0.1128 - 0.230 - 0.2308
0.85 - 0.107 - 0.1128 - 0.234 - 0.2449
0.90 - 0.107 - 0.1128 - 0.237 - 0.2474
0.95 - 0.107 - 0.1128 - 0.238 - 0.2488
1.00 - 0.107 - 0.1128 - 0.239 - 0.2482
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table 6-10, continued

/L ayy/aoT, 7=0.1 dw/aoT, r=0.5
Nied present work Nied present work

0.00 0.8586 0.6432 0.251 0.2381
0.086 0.588 O.b65642 0.220 0.2089
0.10 0.475 0.468863 0.189 0.1780
0.15 0.388 0.3806 0.159 0.14986
0.20 0.304 0.2979 0.129 0.12156
0.256 0.225 0.2194 0.100 0.0942
0.30 0.1561 0.1457 0.073 0.0877
0.35 0.083 0.0772 0.048 0.0423
0.40 0.020 0.0148 0.021 0.0181
0.456 0.038 - 0.0420 0.002 - 0.0047
0.560 c.088 - 0.0925 0.025 - 0.0281
0.556 0.130 - 0.1389 0.045 - 0.04569
0.80 0.187 - 0.1754 0.083 - 0.0839
0.856 0.200 - 0.2082 0.080 - 0.0801
0.70 0.228 - 0.2358 0.084 - 0.0943
0.756 0.248 - 0.2881 0.108 - 0.1085
0.80 0.2856 -~ 0.2759 0.117 - 0.1188
0.856 0.279 - 0.2894 0.1285 - 0.1246
0.90 0.288 - 0.2988 0.130 - 0.1302
0.956 0.283 - 0.3043 0.134 ~ 0.1338
1.00 0.2986 - 0.30861 0.136 - 0.1347
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Table 6-11: Comparison between normalized stress intensity factors for an edge
crack subjected to transient thermal stresses in a hollow cylinder
and a homogeneous strip on an elastic foundation ¥, R;/L=9.0 and

xL/E=0.01108, 1=tD/L?, oyl == EQy/ (1 -V).
T,/ _ T,/ —
b,/ L k(b)) /oy Vb, , 7=0.01 k(b)) /ey Vb , 7=0.05
Nied present work Nied present work
0.01 0.962 0.956886 0.833 0.8214
0.1 0.857 0.8532 0.701 0.68913
0.2 0.428 0.4318 0.5689 0.5916
0.3 0.300 0.3072 0.601 O0.5094
0.4 0.238 0.2402 0.432 0.43563
0.6 0.206 0.2088 0.378 0.3793
0.8 0.185° 0.1888 0.334 0.3389
T./ T,/ —
bl /L k(bl) / 7 b1 , 7=0.1 k(bl) /60 bl , 7=0.5
Nied present work Nied present work
0.01 0.724 0.7083 0.277 0.2608
0.1 0.833 0.68207 0.247 0.2327
0.2 0.5680 0.65589 O.224 0.2147
0.3 0.b5602 0.5089 0.208 0.1997
0.4 0.4863 0.4538 0.190 0.1829
0.5 0.408 0.4086 0.174 0.1877
0.8 0.387 0.3887 0.158 0.1529
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Table 6-12: The maximum of normalized stress intensity factors for an under-
clad crack subjected to transient thermal stresses, h,/h;=3.0,
R;/L=9.0 and xL/E,=0.01108 . (material pair A).

Nied present work

12/h1 r=0.0 r=0.0 r=1.0

Kay) k{b,) Ka,) K(,) Ka,) k{b,)

TVi 7 TV T ; T TV 75 TV 75

ool Viiz | o TVi,2 oo Vig 2 oot Vijz | ot Vigi | o7 Vi,

0.004 0.0114° 0.0111 0.0088 0.00856 0.0061 0.0048
0.040 0.0101 0.0073 0.0068 0.0027
0.200 0.0048 - 0.0088 0.0000 - 0.0138
0.400 0.0022 - 0.0277 0.0071 - 0.0333
0.600 0.0080 - 0.0453 0.0142 - 0.05614

131




Table 6-13: The maximum of normalized stress intensity factors for an under-
clad crack subjected to transient thermal stresses, h,/h;=9.,

R;/L=9.0 and yL/E,=0.01108 . (material pair A).

Nied present work

I,/ hy r=0.0 r=0.0 r=10.0

k(“z) k(bz) k(“z) k(bz) k(az) k(bz)

TV 7 T 7o T Tvi 7o TV T

oo Viiz | oI Vi ot Viiz | o7 Viy2 oo Vig/2 oo Vig/2

0.01 0.2245 0.2240 0.2270 0.2264 0.2032 0.2027
0.5 0.2150 0.1897 0.2171 0.19156 0.19456 0.1717
1.0 0.2080 0.1589 0.2101 0.1803 0.1883 0.1437
2.0 0.19561 0.1030 0.1950 0.1018 0.1749 0.0908
3.0 0.1800 0.08623 0.1790 0.0498 0.1804 0.0429
4.0 0.1818 0.0068 0.1804 0.0028 0.1434 - 0.0002
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Table 6-14: The maximum of normalized stress intensity factors for an under-
clad crack subjected to transient thermal stresses, h,/h;=24.0,

R;/L=9.0 and xL/E,=0.01108 . (material pair A).

Nied present work

I,/ h, r=0.0 7=0.0 7=120.0

Kay) Kb,) Ka,) K(,) Kay) k(b,)

Ti 7o TV 7 TV 75 TV 7, TVi o TVi

oo Vijz | o7 Viyiz oo V2 | 0T Vig/2 ool Vi/z | ot Viy/2

0.026 0.3908 0.389¢9 0.3980 0.3971 0.3877 0.3889
0.5 0.3873 0.3701 0.3941 0.3788 0.3842 0.36877
1.8 0.3904 0.3389 0.3880 0.3438 O0.3888 0.33856
4.0 0.4008 0.2622 0.40567 0.2887 0.3974 0.2612
8.0 0.3919 0.130¢% 0.3942 0.1308 0.3874 0.12856
14.0 0.3494 0.0200 0.3520 0.01886 0.34683 0.0161
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Table 6-15: The maximum of normalized stress intensity factors for an edge
crack subjected to transient thermal stresses, hy/h;=3.0, R;/L=9.0

and xL/E,=0.01108 . (material pair A).

Nied present work
L/ hy r=0.0 r=0.0 r=86.0

k(b,) k(b,) k(b,)

T T, T

% 1 % { % i
1.004 0.4780 0.4829 0.37963
1.2 0.4097 0.4000 0.3143
1.4 0.3728 0.3574 0.2779
1.8 0.3449 0.3252 0.26156
2.0 0.3082 0.2759 0.2127
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Table 6-16: The maximum of normalized stress intensity factors for an edge
crack subjected to transient thermal stresses, h,/h;=9.0, R;/L=9.0

and xL/E,=0.01108 . (material pair A).

Nied present work
L/ h, r=0.0 7=0.0 7=10.0
() K(b,) (b,)
- p p
aoT v aOTVI UOTVl
1.01 0.8080 0.8298 0.5898
1.6 0.4740 0.56080 0.4683
2.0 0.4151 0.4529 0.4196
3.0 0.3481 0.4044 0.3751
4.0 0.3034 0.3887 0.3589
5.0 0.2722 0.3839 0.35687
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Table 6-17: The maximum of normalized stress intensity factors for an edge
crack subjected to transient thermal stresses, h,/h;=24.0, R;/L=9.0

and xL/E,=0.01108 . (material pair A).

Nied present work
l/hl r=0.0 r=0.0 7=20.0

K(b,) K(b,) K{b,)

T T, T

% i % { % i
1.026 0.7383 0.7631 0.7372
1.6 0.6138 0.8307 0.6188
2.0 0.5564 0.8708 0.55689
5.0 0.4071 0.4363 0.4282
7.5 0.3531 0.4172 0.4110
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Figure 6-32: The influence of 7, on the normalized stress intensity