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The study of rotationally excited, far-infrared OH line emission from Orion- 

KL using the KAO has been highly productive. The Table below summarizes the 

flight series and their accomplishments since December 1984. 

Date of 
0 bservat ions 

December 1984 

February 1985 

February 1986 

January 1987 

Summary of Observations 

In Collaboration 
with ... 

Houck 
Cornel1 University 

Townes, Genzel 
U. C. Berkeley 

Houck 
Cornell University 

Townes, Genzel 
U. C. Berkeley 

OH Line Observed 

46.19 pm 21111/2 J = 1112 + 912 

163.2 pm 2111/2 J = 312 --+ 112 
162.8 pm CO J = 16 + 15 

46.19 pm 2111/2 J = 1112 -+ 912 
34.61 pm 2111/2 J = 512 -, 2113/2 J = 312 

119.2 pm 2113/2 J = 512 + 312 
53.35 pm 2111/2 J = 312 + 2113/2 J = 312 
120.2 pm 180H 2113/2 J = 512 + 312 

To date, the publications that have resulted from these observations are : 

1. Observations of Rotational Transitions of OH from OMC- 1, Gary Melnick, 

in Masers, Molecules, and Mass Outflows in Star Forming Regions, A.D. 

Haschick (ed.), Haystack Observatory Press, p. 33 (1986). 

2. Observations of Far-Infrared Line Profiles in the Orion-KL Region, Michael K. 

Crawford, John B. Lugten, W. Fitelson, Reinhard Genzel, and Gary Melnick, 

Ap. J., 303, L57 (1986). 
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5.  “Infrared Line Emission from High Velocity Outflows in Star Forming Re- 

gions.’’ Invited review talk given at the 22”d European Space Agency Sym- 

posium on Infrared Spectroscopy in Astronomy, Salamanca, Spain, December 

7 - 9, 1988. 

In addition, a paper analyzing the results of the January 1987 flight series is 

about to be submitted. A copy of this paper is attached. 



FURTHER OBSERVATIONS OF ROTATIONALLY EXCITED 
FAR - INFRARED 160H AND ''OH EMISSION IN ORION-KL: 

TIGHTER CONSTRAINTS ON THE NATURE OF THE 
EMITTING REGION 

G.  J .  Melnick 
Harvard-Smithsonian Center for Astrophysics 

R.  Genzel, A .  Poglitsch 
Max-Planck Institut fur Physik und Astrophysik 

Institut fur extraterrestrische Physik, Garching, FRG 

G.  J .  Stacey and J .  B .  Lugten 
Department of Physics, University of California, Berkeley 

ABSTRACT 

We have observed the region within 1 arc-minute of Orion-KL and report 

the first detections of the 160H 2111/2 -, 2113/2 J = 3/2- -+ 3/2+ 

rotational cross-ladder transition (53.351 pm) and the ''OH 2113/2 J = 

5/2+ + 3/2- rotational ground-state transition (120.1719pm). We find 

that both of these lines exhibit a P-Cygni profile. In addition, we have 

velocity resolved the I60H 2113/2 J = 5/2- + 3/2+ rotational ground- 

state transition (119.234 pm) and find that its intrinsic full-width at 

half-maximum is 25 km s-'. We model both the line fluxes and line 

profiles, along with the previously measured 160H 2113/2 84pm and 211r/2 

163 pm rotational transitions, and find that no single temperature and 

density component can reproduce the data. Rather, the best overall 

fit to the data requires emission from three main components of the 

gas: (1) post-shocked gas with the profiles of temperature, density, and 
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OH abundance like that predicted by Draine and Roberge (1982) for a 

38 km s-l C-type shock, (2) a higher density (H, N 2 x lo7 ~ m - ~ )  

component to the cool post-shocked region than given by Draine and 

Roberge, and (3) the plateau region. All three components require a 

significant radiative background in order to fit the data. 

Subject Headings: infrared spectra - interstellar molecules: nebulae: 

Orion Nebula 

I. INTRODUCTION 

160H far-infrared line emission from excited rotational states was first detected 

toward the embedded star-forming region in Orion-KL by Storey et al. (1981). 

Though the OH line widths were unresolved in these early measurements, two ob- 

servational features lead these authors to assume that the OH 2113/2 J = 5/2 + 3/2 

119pm emission they detected comes from the shocked gas region surrounding BN- 

KL: (1) the emitting region had to be warm since the OH lines were seen in emission 

and the temperatures above the ground state for the upper J = 5/2 levels are N 

121 K and, (2) the OH emission was observed 30" north of KL, toward the peak 

of the shock-excited H, emission (e.g., Beckwith et  al. 1978). Subsequent observa- 

tions, with improved spectrometer sensitivity and spectral resolution, have resulted 

in the detection of two additional far-infrared, rotational doublet transitions: the 

2113/2 J = 7/2 + 5/2 lines at 84.4202 and 84.5966pm and the 2111/2 J = 3/2 --+ 1/2 

lines at  163.121 and 163.396pm (Watson et al. 1985; Viscuso et al. 1985; Viscuso 

et  al. 1985a; Melnick et  al. 1987). Unfortunately, even with the detection of six 

OH far-infrared rotational transitions, it was not possible to distinguish between a 

variety of different models for the emitting region, including shocks and a number 

of non-shock scenarios (see Melnick et al. 1987, hereafter referred to as Paper I, for 

a review of these models). 
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In this paper, we present the first observations of two additional OH far- 

infrared transitions, the 160H 2111/2 + 2113/2 J = 3/2- + 3/2+ cross-ladder 

transition at  53.351 pm (see Figure 1) and the "OH 2r13/2 J = 5/2+ + 3/2- 

rotational ground-state transition at 120.1719pm, plus a spectrum of the previously 

observed 160H 2113/2 j = 5/2- + 3/2+ 119.234pm line which has now been velocity 

resolved. Because the intensities and profiles of these lines are sensitive to the 

radiative background, density, temperature, and gas velocity, these transitions can 

now be used to considerably narrow the range of conditions in the OH emitting 

region. Here we present a model of the OH emitting regions which successfully 

accounts for the observed line emission. 

11. OBSERVATIONS AND RESULTS 

The observations were carried out 1986 November and 1987 January using the 

91 cm telescope aboard the Kuiper Airborne Observatory. The data were taken with 

the Mk I1 UCB cryogenic tandem Fabry-Perot spectrometer (Lugten 1987). The 

spectra were obtained with the beam centered on the Becklin-Neugebauer object 

(a1950 = 5h 32m 47s, 61950 = 5" 24' 17"). The 160H 21T3/2 J = 5/2- + 3/2+ 119.234pm 

spectra were taken at resolutions (FWHM) of 40 and 24 km s-', while the 160H 

2r11/2 + 2113/2 J = 3/2- + 3/2+ transition at 53.351 pm and the 180H 2113/2 

J = 5/2+ + 3/2- line at 120.1719 pm were observed with spectral resolutions of 

38 and 55 km s-l, respectively. Due to terrestrial O3 and H20 absorption, neither 

the accompanying 160H 2111/2 + 2113/2 J = 3/2+ + 3/2- 53.261 pm or ''OH J = 

5/2- 4 3/2+ 119.9659 pm transitions were observed. 

The telescope's secondary was chopped at a frequency of 33 Hz with an am- 

plitude of 317 in azimuth (approximately east-west). The line fluxes were derived 

from the measured line-to-continuum ratio and the photometric measurements of 

Orion-KL (M. Werner, private communication). Table 1 summarizes our results 
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along with selected previous observations of OH from Orion-KL (a more complete 

listing of previous OH rotational data is provided in Paper I). The spectra of the 

individual OH lines are shown in Figures 2-4 .  The uncertainty in the absolute 

value of the continuum is the largest source of error and limits the accuracy of 

the derived fluxes to approximately 30%. The absolute velocity (and wavelength) 

scale was determined relative to H2S (53.3242pm), HD"0 (119.3950pm), and D2O 

(120.2554 pm) absorption in a gas cell and is accurate to f 3 km s - I .  

The three main results of our most recent observations are: 

(1) We have detected the first isotopic counterpart of a far-infrared rotational 

line. The "OH 120.1719 pm line, counterpart of the I60H 119.441 pm transition, 

is observed in absorption in the velocity range between approximately - 100 and 

+ 10 km s-' and in emission between about + 10 and + 80 km s - * .  

(2) We report the first detection of an OH cross-ladder transition. The 160H 

53.351 pm line is observed strongly in absorption in the velocity range between 

- 100 and + 10 km s-l and more weakly in emission between + 10 and + 80 km 

s-l. 

(3) The previously observed 160H 119.234 p m  transition was re-observed with 

sufficient spectral resolution, 24 km s-l, to determine that its FWHM is 25 km s-'. 

This compares with a FWHM for the 163.121 pm line of 2 45 km s-l (Crawford 

et al. 1986). The peak of the 119.234 pm line emission occurs at a VLSR of + 10 km 

s-l. 

/ A number of 

model adopted: 

(1) Assuming 

general conclusions emerge from the data, independent of the 

that the "OH 120 pm transition is optically thin and that the 

lGOH : "OH abundance ratio is 500 : 1 (cf., Comben et al. 1986), then, by assuming 

LTE, the minimum 160H column density responsible for the far-infrared emission 

we detect is determined to be 3 x 10'' cm-2. 

(2) The relative strengths of the 160H 53.351 pm absorption feature and the 
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163.396 pm emission line previously detected (e.g., Melnick et al. 1987) clearly 

demonstrate the importance of radiative excitations. In fact, a comparison of the 

excitation rate to the 2111/2 J = 3/2- level due to the absorption of 53.351 pm 

photons, 8 x lo3 photons cm-, s-l (e 3 x lo-'" erg cm-' s-'), with the de- 

excitation rate out of that level via 163.396pm photons, l x lo4 photons cm-, s-' 

(e 1.3 x 10-l' erg cm-' s-'), shows that radiation dominates collisions in exciting 

the ,1111/, J = 3/2 levels. 

(3) As noted in Melnick et al. (1987), the comparable strengths of the 84 and 

119pm lines require that a significant portion of the OH emitting region has tem- 

peratures greater than 50 K, densities greater than 10' ~ m - ~ ,  or both. 

(4) The symmetry of the "OH 120pm P-Cygni profile indicates that most of 

the OH emitting gas is involved in radial expansion from BN-KL with a maximum 

velocity difference between the emitting and absorbing gas of 80-100 km s-'. 

111. CALCULATIONS 

In order to model the 160H line intensities, the equations of statistical equi- 

librium and line formation for the lowest 30 levels of the OH molecule have been 

solved; these include all levels up to the J = 17/2 level in the ,I13p ladder and 

the J = 13/2 level in the 2111/2 ladder. These calculations take account of the A -  

doubling, but ignore the hyperfine structure. The radiative transition probabilities 

were provided by Black and van Dishoeck (1985, private communication) based on 

the transition matrix elements computed by van Dishoeck (1984). Dewangan et  al. 

(1987) have calculated the OH-H, excitation rate coefficients for the lowest 18 ro- 

tational transitions. Downward transition rates are obtained using the principle 

of detailed balance. Additional rate coefficients were obtained from Lulf (1985), 

Schinke and Andresen (1984), and van Dishoeck (1985, private communication). In 

all cases, the downward rate coefficients are taken to be independent of tempera- 
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ture. For lack of any published rate coefficients for 180H, the rate coefficients for 

160H were assumed to apply. 

As discussed in section 11, radiative processes must be considered along with 

collisional processes. For Orion-KL, the intensity of the local radiation field is 

represented by an infrared continuum of the form 

where B, = Planck function at the color temperature of the continuum, T,. Taking 

T, = 72 K and r0 = 0.503 reproduces the 20- 100 pm flux density of Orion-KL 

measured with a 50” beam by Erickson et  al. (1981) and is consistent with the 

400 pm flux density measured with 35 and 90” beam sizes by Keene et  al. (1982). 

A twofold approach was taken to modelling the OH emitting gas: (1) an at- 

tempt was made to fit the data with one gas component, characterized by a single 

temperature, density, OH abundance, velocity gradient, and radiation background, 

and (2) a sum was made of the contributions from several known components, such 

as the shocked gas, plateau, compact ridge, and hot core regions. Conditions char- 

acterizing the plateau, compact ridge, and hot core regions have been determined 

through studies of a variety of molecules and are summarized by a number of au- 

thors (e.g., Wynn-Williams et  al. 1984; Masson e t  al. 1984; Blake e t  al. 1987). Less 

is known of the conditions that prevail in the shocked gas region where the observed 

outflowing gas impacts the surrounding quiescent material. In general, the models 

which come closest to reproducing the existing high-J CO, fine-structure [OI], and 

ro-vibrational H, lines invoke the presence of a magnetohydrodynamic “C-type” 

shock (cf., Draine and Roberge 1982; Chernoff et al. 1982). Though more recent 

CO and H, data have highlighted shortcomings in these C-type models, we use the 

profiles of temperature, density, velocity, and OH abundance given by Draine and 

Roberge (1982) as the basis for our shock calculations. Discrepancies between this 
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assumed shock model and the OH data will be discussed in section V. 

The geometry of each component is idealized as spherical, except for the 

shocked gas region which was assumed to be a thin, spherical shell. In all cases 

the gas was assumed to be symmetrically distributed around the central continuum 

source. Because the measured velocity widths of the OH lines are between 25 and 

50 km s-l (Crawford et al. 1986; this work), the radiative transfer in the lines was 

solved simultaneously with the level populations under the large velocity gradient 

approximation (Sobolev 1960). In addition to the line intensities, the intrinsic line 

profiles were calculated from each component. In order to relate these profiles to 

those observed, the intrinsic line profiles were convolved with a Lorentzian profile 

with a FWHM equal to the instrumental spectral resolution achieved for each line. 

Iv. RESULTS OF MODELLING 

In Paper I, fits to the then available 84, 119, and 163 pm line data were 

obtained with a number of different single-component models. A re-examination 

of these models in light of the most recent data indicates that all fail to reproduce 

the strong 53 pm absorption observed; at the densities suggested for most of those 

models, i.e., n H 2  > 5 x lo' cmW3, the profile of the 53 pm line would be mostly 

in emission and only weakly in absorption. Even our best single component fit 

(T, = 150K, T,,, = 80K,  n H 2  = 4 x lo6 ~ m - ~ ,  and d v / d r  = 500 km s-l pc-') 

results in a 53 pm profile which exhibits almost equal emission and absorption, 

contrary to what is observed. Attempts to fit the 53 pm line profile by lowering 

the gas temperature has the effect of reducing the expected 84 pm line flux below 

its detected value. We therefore conclude that no single temperature, density, and 

velocity gradient model adequately reproduces the measured line fluxes and profiles. 

Instead, the best fit to the data is obtained by assuming emission from three 

main regions; (1) the C-type shocked gas region, (2) a dense (n~:, N 2 x 10' ~ m - ~ ) ,  
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warm (T N 75 K) addition to the post-shocked region, and (3) the high velocity 

plateau. The two post-shocked components are thin (few x 1015 cm), but are 

assumed to subtend about 43" - corresponding roughly to the observed separation 

in both the [OI] 63pm and H, v = 1 + 0 S(1) 2.12pm emission peaks (Werner et al. 

1984; Beckwith et al. 1978). The high velocity plateau is assumed to encompass 

the Av 2 18 km s-l gas observed within about 20" of IRc 2. A summary of these 

best fit conditions is given in Table 2. 

A comparison of the observed line fluxes and those predicted by this model 

is shown in Figure 5.  The computed line profiles for each contributing component 

along with the resulting combined profile are shown in Figures 6 - 9. As is clear 

from these figures, most of the OH emission we observe arises in the shocked gas 

region. While agreement with the measured line fluxes could be obtained with only 

the shocked gas region simply by assuming a somewhat larger shock diameter, the 

resulting line profiles are at greater variance with the observations than emission 

from several components. In particular, for expected continuum backgrounds, emis- 

sion from the shocked gas component alone results both in a slight P-Cygni profile 

for the 160H 119.234pm line and a narrower 1 6 0 H  163.121pm line than is observed. 

The presence of a higher density region within the post-shocked gas is suggested 

mostly by its effect on the line profiles; such a component, sharing in the 38 km s-l 

velocity of the shock, serves to broaden all of the OH lines we observe. SI ilort- 

ing evidence for higher densities in the post-shocked region, beyond the Of1 data 

presented here, is discussed in the next section. 

It is interesting to note that the "OH 120 pm and, to a lesser er ' 1 I { ,  the 

I60H 53 pm P-Cygni profiles indicate that there is no significant O h  i4L~ational 

emission from regions having both a VLSR near + 9  km s-' and small internal gas 

velocities (< 10 km s-l). OH line emission from such regions at levels greater than 

about 10 percent of the total measured 120 pm and 53 pm line fluxes would begin 

to distort these line profiles in ways which are not seen. Thus, it is inferred that 'he 
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hot core, compact ridge, and extended ridge are not major sources of OH rotational 

line radiation. 

IV. DISCUSSION 

In this section we shall discuss the plausibility of our 3-component model for 

the OH emission. Specifically, we review the reasons why the shocked gas region, 

the high density post-shock gas, and the plateau are reasonable OH sources, while 

the hot core and compact ridge may be less likely candidates for the OH emission 

we detect. 

(a) Post-Shocked Gas 

The relatively fast moving (us - 40 km s-l) shock surrounding IRc2/BN- 

KL provides a natural explanation for both the broad profiles observed in the 119 

and 163 p m  lines and the P-Cygni profiles seen in the 53 pm and lsOH 120 pm 

transitions. Beyond this phenomenological association with the shocked gas region, 

the predicted abundance of OH within the post-shock zone is sufficiently high that, 

under the prevailing density and temperature conditions, strong OH emission is 

expected from this gas. 

Behind a C-type shock such as we consider here, the gas temperatures drop 

from a peak of about 3000 K to 50 K over a distance of - 2 - 3 x 1015 cm. Under 

these conditions, the gas phase abundance of OH is governed by relatively few re- 

actions, the two most important being: 

0 + H, + OH + H 

OH + H, + H20 + H .  

These reactions are endothermic, possessing activation energies of a few hundred 

degrees, but proceed rapidly once the thermal energy of the gas is sufficiently warm. 
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For the profiles of temperature and density given by Draine and Roberge (1982) the 

above reactions yield an abundance of OH within the post-shocked gas, /(OH) (f 
[N(OH)/N(H,)]), of between 2 x For a reasonable value of the 

shock radius, 43", and radiative background, T, = 80K, the range of gas densities, 

temperatures, velocity gradients, and OH abundances given by the Draine and 

Roberge model (1982) comes close to accounting for the OH emission we observe. 

and 4 x 

(b)  High Density Post-Shocked Zone 

A better fit to line profiles is obtained by assuming that the shock model 

described by Draine and Roberge possesses higher density gas in the post-shocked 

zone than is assumed in their model. Supportive evidence for higher densities in 

the post-shock flow is provided by recent observations of vibration-rotation and 

pure rotation lines of H, as well as CO vibration-rotation band emission toward H, 

Peak 1. 

Recently, Brand et al. (1988) have reviewed the column densities needed to 

achieve the measured intensities of a total of 19 previously and newly detected H, 

lines from the shocked gas region in Orion-KL (H, Peak 1). Of particular interest 

here is their finding that the C-type shocks proposed by Draine and Roberge (1982) 

and Chernoff et al. (1982) underestimate the column densities needed to explain 

the H, data at both high temperatures (Tgm 2 3 x lo3 K) and low temperatures 

(Tga 5 1000 K) by about a factor of 10. At the higher temperatures this finding 

has little effect on the predicted OH line flux since the total column density of this 

hot gas is low. However, at the lower temperatures, the higher column densities are 

reflected in the line fluxes and profiles. 

Similarly, the detection of the 4.7 pm fundamental vibration-rotation band of 

CO in emission toward H, Peak 1 (Geballe and Garden 1987) requires densities and 

column densities in excess of that predicted by the C-type shock models. Specifi- 

cally, a density of lo7 cm-3 and a column density of 2 x lo2, cm-, are necessary 

to excite the 4.7 pm fundamental vibration-rotation band into emission. 
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(c) Plateau, Hot Core, and Compact Ridge 

Like the shocked gas region, OH emission from the high velocity gas in the 

plateau fits the observed line profiles. However, significant OH emission from the 

low velocity gas within the hot core and compact ridge is not consistent with the 

measured "OH 120 pm P-Cygni profile. This distinction between regions likely 

results from a larger OH abundance in the plateau than either the hot core or 

compact ridge. 

Within the warm gas found in the plateau, hot core, and compact ridge, OH 

can be formed in two ways. First, recombination of H?O+ can produce both H20 

and OH via the reaction 

- O H + - " ,  . 

Second, even when H20 is preferentially produced via the above reaction, the OH 

abundance subsequently can be increased by the photodissociation of water, 

H20 + h~ -+ OH * H ,  

where the cross-section for photodissociation is highest for photon wavelengths be- 

tween 1000 and 1800A. For the conditions within the plateau, hot core, and com- 

pact ridge, these processes lead to an f(0H) between 10-l' and (Lepp, private 

communication), too low to result in significant far-infrared OH emission. However, 

recent interferometric observations of HDO in Orion-KL by Plambeck and Wright 

(1987) indicate an unexpectedly high HDO/H, abundance of - lo-' toward both 

the hot core and compact ridge which, like the anomalously high abundance of "3, 

HCN, CH,OH, and NH2D in these regions, is believed tobe  due to the evaporation 

of these species from dust grain mantles. H 2 0  released in this manner would be 

quickly converted to OH via photodissociation in those regions exposed to a strong 

, 
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ultraviolet (UV) field. That HDO is predominantly observed in the hot core and 

compact ridge, with only a small contribution from the plateau, suggests that self- 

shielding against UV photodissociation is less effective in the high velocity gas. This 

would lead to a higher OH abundance in the plateau than either the hot core or 

compact ridge, which is consistent with our model. Significant OH emission from 

the extended ridge is not expected due to the low density (- lo5 ~ m - ~ )  and low 

temperature (- 50 K) of this region. 

v. SUMMARY 

We report the first detection of two important OH far-infrared, rotational tran- 

sitions: (1) the 160H 2111/2 -+ 2113/2 J = 3/2- --+ 3/2+ cross-ladder transition at 

53.351 pm and the 180H 2113/2 J = 5/2+ --f 3/2- rotational ground-state transition 

at 120.1719pm. This data, along with previously obtained OH rotational line data, 

show the following: 

(1) The minimum 160H column density toward Orion-KL is 3 x 1015 cm-2. 

(2) Radiative excitations play an important role in populating the rotational 

energy levels of OH in Orion-KL, as evidenced by the ratio of the 160H 53.351 pm 

absorption and 163.396 pm emission intensities. 

(3) The width of the 160H 119 and 163pm lines along with the P-Cygni profiles 

exhibited by the 160H 53 pm and "OH 120 pm lines confirms that the origin of 

most of the OH emission we detect is associated with high velocity gas. 

(4) No single component model can account for the observed OH line fluxes 

and profiles. 

(5) The best fit to the data assumes that the OH emission arises within a 

C-type shock of the type described by Draine and Roberge (1982) and Chernoff 

et al. (1982) with a higher density post-shocked region than given in these models. 

Emission from the plateau source also contributes to the OH flux we detect. All 
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regions are subject to a strong infrared continuum background. 

(6) The hot core, compact ridge, and extended ridge do not contribute signif- 

icantly to the detected OH emission. 
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FIGURE CAPTIONS 

Figure 1. Part of the rotational energy level diagram of OH. The rotational ladder 

has two branches, 2113/2 and 2111/2, due to spin splitting. The A - doubling, which 

splits each rotational level into two sublevels, is not drawn to scale (the hyperfine 

splitting that gives rise to the maser transitions is not shown). Both the level J -  

value (J) and parity (p) are also indicated. The transitions of interest here are 

marked with solid lines along with the wavelength in microns. 

Figure 2. Spectrum of the 53.351 pm 160H 2111/2 + 2113/2 J = 3/2- + 3/2+ cross- 

ladder transition. The accompanying cross-ladder doublet transition at 53.261 pm 

was not observed due to interference from a terrestrial H20 absorption feature at 

53.2605 km. 

Figure 3. Spectrum of the 119.234 pm 160H 2113/2 J = 5/2- + 3/2+ transition. 

Figure 4. Spectrum of the 120.1719pm "OH 2113/2 J = 5/2+ ---f 3/2- rotational 

ground-state transition. The accompanying ''OH doublet transition at 119.9659pm 
was not observed due to interference from a nearby terrestrial O3 absorption feature 

at 119.9947 pm. 

Figure 5. Comparison of model OH line fluxes with that observed. The model assumes 

OH far-infrared rotational line emission from three sources within the Orion-KL 

region: (1) a 43" diameter, 38 km s-l C-type shock like that described by Draine 

and Roberge (1982) and Chernoff et al. (1982), (2) a high density (H, N 2 x 

lo7 ~ m - ~ ) ,  warm (Tgas E 75 K) zone within the post-shock flow and, (3) the 20" 

diameter plateau region. The plateau region is assumed to be subject to an infrared 

continuum background with T, = 130 K, while the shock plus high density shell 

which are further from IRc2 are assumed to see a central infrared continuum with 
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T, = 80 K (see eqn. 1). A more complete listing of the best-fit conditions is given 

in Table 2. The observed OH line fluxes are indicated by the open boxes and the 

error bars reflect the f 30 percent uncertainty in each value. The fluxes predicted 

by the model are shown as dark circles. The 160H 53 pm and "OH 120 pm lines, 

both of which exhibit a P-Cygni profile, are represented by two points each: one 

for the absorption line flux and the second for the emission line flux. 

Figure 6. OH line profiles resulting from best-fit three-component model described 

in the text. In order to match the observed profiles, the predicted profiles were 

convolved with a Lorentzian line shape that has a full-width at half-maximum equal 

to the instrumental spectral resolution obtained for each line: 38 km s-l at  53 pm, 

40 km s-l at 119 pm, 15 km s-l at 163 pm, and 55 km s-l for the 180H line at 

120 pm. The 163 pm observations were obtained previously (Crawford et al. 1986). 

The peaks of the predicted line profiles have been normalized to the data. 

Figure 7. Same as Figure 6, except for the contribution from the C-type shock alone. 

The intensity scale is the same as that used in Figure 6, thus permitting a direct 

assessment of the relative contribution from the shocked gas region to the final line 

profile. 

Figure 8. Same as Figure 6, except for the contribution from the high density shell 

alone. The intensity scale is the same as that used in Figure 6, thus permitting a 

direct assessment of the relative contribution from the high density shell to the final 

line profile. 

Figure 9. Same as Figure 6, except for the contribution from the plateau alone. 

The intensity scale is the same as that used in Figure 6, thus permitting a direct 

assessment of the relative contribution from the plateau to the final line profile. 
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