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LIST OF SYMBOLS

Definition
fluid sonic velocity in elastic pipe

coefficients in polynomial displacement function for normal displace-
ment w (j = 0,1,...,5)

cross-sectional area of fluid conduit

matrix which transforms displacements and rotations at the ends of
an element to coefficients of polynomial displacement functions [see
equation (16) and Appendix A]

coefficients in polynomial displacement function for meridional dis-

placement u

matrix whose elements are coefficients in an expression for work
done on the shell element in terms of actual displacements [see
equation (26)]

matrix whose elements are coefficients in an expression for the
strain energy of a shell element in terms of polynomial displacement
functions [see equation (22)]

membrane stiffness constants

matrix whose elements are coefficients in an expression for work
done on an element in terms of coefficients of polynomial displace-
ment functions [see equation (30)]

flexural stiffness constants

middle-surface strains [see equations (2a) and (2b)]

Young's modulus

force matrix for element [see equation (32)]

shell force matrix

submatrices of G [see equation (34)]

wall thickness

wall elastic stiffness constant

number of elements used to represent a shell

stiffness constants representing interaction between in-plane and
out-of-plane strains



Symbol Definition

n circumferential wave number

P internal pressure

r radius of a shell measured in-plane normal to shell axis

R 1,R2 principal radii of curvature of shell

R matrix whose elements are coefficients in an expression for strain
energy of the shell element in terms of actual variables in strain
energy [see equation (19) and Appendix B]

s meridional coordinate

Sk element stiffness matrix

S shell stiffness matrix

811,812,821,522 submatrices of S [see equation (34)]

8o meridional distance from origin of s to reference edge of a shell

8y meridional distance from reference edge of shell to center of kth
element

t time, transpose of matrix

Ty inverse of matrix A,

u meridional component of middie-surface displacement

Vk strain energy of kth element

\'4 strain energy of shell, volume inside shell segment
normal component of middle-surface displacement

Wk work integral [see equation (25)]

X meridional coordinate measured within a single element (see Fig. 2)

X matrix which deseribes assumed form of variables appearing in
strain energy [equation (11)]

Vi c(:g])tlxmn matrix of element displacement and rotations [see equation

y column matrix containing unknown displacements and rotations

¥1:Yq submatrices of y [see equation (34)]

Y matrix which describes the assumed form of displacements u and w



Symbol Definition

B rotation of shell generator relative to unstrained direction [see
equation (12)]

column matrix whose elements are coefficients of assumed-displacement

'k polynomials [see equation (10)]

AV volume change under applied pressure

e meridional length of kth element

8 cylindrical coordinate

K fluid bulk modulus

K1:K9sK19 changes in curvatures [see equations (2c) and (2d)]

u Poisson's ratio

gk column matrix whose elements are displacements and rotations at

ends of an element [see equation (15)]

Primes denote differentiation with respect to s or x; superscript t denotes transpose
of a matrix.



TECHNICAL MEMORANDUM
PRESSURE-VOLUME PROPERTIES OF METALLIC BELLOWS
I. INTRODUCTION

The purpose of this report is to develop a method of calculating the elastic
stiffness constant, kb, of a propellant line wall with complex geometry, such as a

bellows section, within the linear range. It may be noted that kb has significance in

both the static and dynamic sense similar to that of the spring constant, which
appears in both the force-deflection and the frequency equations for a single-degree-
of-freedom spring-mass system. Thus, while the bellows equations of this report are
developed from a static point of view and a static experlment is used for ver1f1cat10n,
the end result is used to calculate the sonic velocity in a bellows section.

Metallic bellows are commonly used as segments of propellant feedlines for
rocket-propelled vehicles to accommodate temperature-induced length variations, manu-
facturing tolerances, and gimbaling of the engines. These bellows sections deform
radially and change volume when internal pressure varies, and the magnitude of such
deformation is much higher than that for the straight, cylindrical segments of the
line. The greater flexibility, or lesser stiffness, of the bellows decreases the fre-
quency of acoustic oscillations in the line. These acoustic oscillations are a major
factor in the so-called POGO phenomena which have plagued most of the larger liquid
rocket-propelled vehicles for many years.

Dynamic phenomena of fluids flowing in lines involving both inertial and elastic

effects are commonly called water hammer. The equations given by Paynter [1] for
the axial fluid sonic velocity in a line can be combined into the form

2 1/p (1)

2_ 1/p :
a® = y—7- (1a)

where a is the sonic velocity, p is the fluid density, « is the fluid bulk modulus, and
kb is the wall elastic stiffness constant. Then 1/kb, the wall elastic flexibility, is

24
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Values of 1/kb have been tabulated in Reference 1 for straight walls of various

thicknesses. Equation (la) is the equation for two springs in series.

For an incremental length,

3A _ 13V
5p P

1
v

B

where V is the volume, equation (1) can also be written
2 _ 1/p
S 4 e
K )

By definition, 1/k is the change in fluid volume per unit volume per unit
change in pressure, and the second term in the denominator is the corresponding
change in container volume.

A literature search of material dating back to 1950 (which included NASA and
DOD computer searches and the Engineering Index) revealed few references to bellows
elasticity. Earlier work probably does not exist since the problem is complex enough
to require a digital computer for practical solution. Some studies of axial and bending
stiffnesses of bellows segments have been made, but not a single reference to volu-
metric stiffness calculation has been found. Reference 2, a recent and extensive
report on bellows analysis, gives simple formulae for axial and lateral spring constants
and a comparison with experimental data. Methods for stress calculation are also
given, but internal volume changes are not mentioned. References 3 and 4 constitute
an extensive bibliography on fluid component technology with 54 references to bellows
structures. Several concern axial or bending stiffness, but again, there is no refer-
ence to pressure-volume calculations or measurements. Much of the current work is
being done in Japan and, unfortunately, has not been translated. Miyazono [5] has,
for example, calculated the strains and axial force-deflection relationship for an
unpressurized bellows. Daniels [6] describes a semi-empirical method of determining
the modes of a bellows filled with liquid. The existence of the fluid column mode
was not expected by this investigator until it was found in the experiment. Most cur-
rent POGO analysts do not mention in their reports what approximations are used in
the development of their line wall elasticity constants.

This study makes extensive use of a method developed by Adelman, Catherines,
and Walton [7], who have developed a normal mode vibration analysis using a finite
shell element of revolution with arbitrary meriodional curvature. The stiffness matrix
derivation given is that explained in the reference, except that the provision for
circumferential motion was removed (n = 0).

The major steps which are needed for the development of the static analysis
were: the calculation of the nodal forces from the internal pressure, including pro-
vision for a more complex shell geometry; addition of matrix inversion for calculation
of deflection; the inclusion of additional end conditions; and the calculation of volume
change. An experimental verification was also made.



II. ANALYTICAL METHOD

A. Stiffness Matrix
The stiffness matrix derivation given follows closely that given by Adelman [T7].

The structure to be analyzed may be taken as a thin shell of revolution with
given meridional curvature (coordinates are shown in Fig. 1). The displacements in
the meridional and normal directions are given by u and w, respectively, and R1 and

R2 are the radii of curvature in the meridional and normal planes, respectively. The

radius normal to the axis is denoted by r. All three radii are functions of the
meridional coordinate, s. Derivatives with respect to s are denoted by primes.

Ry (In Meridional Plane)
' Rz (in Plane Perpendicular to u)

NS

Figure 1. Shell geometry and coordinates.
The six strain displacement relations describing the local state of strain for a
thin shell of revolution, as given by Novozhilov [8] and modified by the removal of
all circumferential terms are:

Membrane strain in meridional direction:

= kLl (2a)

Membrane strain in circumferential direction:

H =

e, r'u + R‘”_2 . (2b)




Change of curvature in meridional direction:

= -w" + 1 u' - —17 Rl'u . (2¢)

K
1
1 R1

Change of curvature in circumferential direction:

Kg = —5— + o r'a . (2d)

The plane shear strain e 9 and twist of the middle surface K19 are zero.

1
The strain energy for the shell is:

2

— 2 2 2
V = 1r‘/‘(Cl1e1 + 2012e1e2 + sze2 J)rds + f(DllKl + 2D12K1K2 + D22K2 )r ds

+ an[Kllelncl + Klz(elK2 + ezKl) + K22e2|<2]r ds , (3)

where in equation (3) the integrations are taken over the shell surface, and the
following definitions hold:
1) C C

C are membrane stiffnesses

11> 712° 722

2) D11’ D12, D22 are flexural stiffnesses

3) Kll’ K12’ K22 are stiffnesses due to the interaction between in-plane
strains and changes in curvature.

All of these stiffnesses are, in general, functions of the meridional coordinate, s.
Substitution of the strains from equation (2) into the strain-energy expression

of equation (3) yields the strain energy in terms of displacements. The amplitude of
the strain energy is as follows:

€))
(Continued)



1
2D (" u' R1')<r' e I ) D (r" X )2]d
+ -wh + u - — w' 4+ uj + - —W'+ —=—1u r ds
12 Tl Rl2 rR, 22 r R1
(4)
(Concluded)

The main steps of conventional finite-element analysis are followed by the pres-
ent method. It is noted that each element coincides exactly with a slice of the actual
shell.

A typical idealization of a shell of revolution is shown in Figure 2. Counting
elements from the reference edge, the following definitions are made:

K = total number of elements

g = length of kth element, measured along meridian curve of shell

x = coordinate inside kth element, measured along meridian from center of kth
interval so that

ek < < ek
- T =X = T . (5)
Sy = distance along meridian from reference edge of shell to center of the kth

element.
From the foregoing definitions for x and Sy it follows that
s =8 +x . (6)

A numbering system has been adopted in which quantities such as displacement,
derivatives of displacements, and rotations at s = S - (ek/ 2) and s = 8y + (ek/Z)

are indicated by subscripts k and k+1, respectively. Thus, for example, Wi is the
normal displacement at s = Sk - (ek/ 2), and U1 is the meridional displacement at

8 = 8 + (ek/ 2). Also, it is necessary to have a notation for the radius of curvature
R1 at the locations s = ) + (ek/Z). The symbols, Rl,k and Rl,k+1 represent the
respective values.

As an approximation, the displacements u and w are assumed to have the
following polynomial forms [9] over the kth element:




Typical idealization of shell of revolution.

Figure 2.
_ 2 3 4 5
w(x) = ao,k + al’kx + az’kx + a3’kx + a4’kx + as’kx
u(x) = b +b, . x+Db x2+b x3 7N
o,k 1,k 2,k 3,k

where the a's and b's are undetermined coefficients. From equation (7) it follows that

fy } = X1 {r )} (8)
where

{yp = (ww whu ant (9

(10)

_ t
Iy} = (8, ¥ 81 % 22 x 23,k %4,k 25,k Po,k P1,k P2,k P3,K)

and



l-_lxx2 x3 x4 x5 0 0 0 0—
0 1 2x 3x? 4x® s5x? 000 0
(x]1=]0o 0 2 6 12x2 20x® 0 0 0 0 . (11)
000 0 o0 0 1 x x% x3
000 0 o 0 0 1 2x 3%

The rotation of the meridian curve relative to the unstrained direction is defined
as B and is given by

= w! - U
B=WwW K-I . (12)

It follows that

.
B =W - (13)
k k Rl,k
and
u
k+1
B = w! " - (14)
k+1 k+1 1,k+1

The quantity g' may now be defined as the meridional derivative of the meridional
rotation; i.e., B' = 38/3s. Now a vector containing the end deflections of an element
may be defined so that

_ t
Bt = Wi Uy By Uk’ Bx' Wice1 Yiert Bicrn Ukrr Bierr) (1%

where the subscripts k and k+1 refer to the displacements at x = -ek/2 and x = € /2,
respectively.

Inserting x = —ek/2 and x = ek/Z into the appropriate locations in equation (8)

results in the following relationship:

(g} = [AD I} (16)



where the matrix [Ak] is given by equation (A-1) of Appendix A. When equation (16)

is inverted, the following relationship results:
fred = [Ty {53 (1n

where

[T a1t . (18)

k]
The inverse matrix [Tk] is given by equation (A-2) of Appendix A.

From equation (4) the strain energy of an element may be written as follows:

- g /2
V. =% f fy, ' [R] {y, } dx . (19)

where [R] is a 5 x 5 symmetric matrix, the elements of which are known functions of
the meridional coordinate x. The elements of [R] are listed in Appendix B. Using
equation (8) in equation (19) permits the strain energy to be written in terms of the
undetermined polynomial coefficients as follows:

ek/2
v, =73 tr 1 1X1% IRY IXD (v, ) ax (20)
-ekl2
or
v, =1 (vt 1CL] (v} (21)
k-2 'k k' k7
where
eklz
[C.l = f (x1* [R] [X] dx . (22)
-t—:k/Z

Finally, use of the transformation expressed by equation (17) gives the strain energy
as



_ 1 t t
Vk =35 {€k} [Tk] [Ck] [Tk] {Ek} . (23)
Inspection of equation (23) identifies the shell element stiffness matrix [Sk] as
_ t
[Sk] = [Tk] [Ck] [Tk] . (24)

The type of bellows being considered is made from a single piece of metal. All
radii and their first derivatives, the parameters which describe the shell geometry,
are continuous within each segment.

B. Force Matrix

The work done by the internal pressure, p, on an element may be defined as

sk/2
W= f [B] {3} dx , (25)
-ek/2
where
[B,] = [p.x(x) 0 1 . (26)

Here the u displacement has been included to permit later studies for axial loads.

Based on the assumed displacements of equation (7), the following relation may
be written:

w
{J = [Y] {Yk} , 27
where
1 x x2 x3 x* x> 000 o
[Y] = 2 3 (28)
0 0 0 O 0 0 1 x x"x

Substituting equation (27) into equation (25) yields

W, = D] Iy}, (29)



where

ek/2
D, =1 [Bk] [Y] dx . (30)

g /2
Further substitution of equations (17) and (29) gives

W, = [D T, 1{g, } . (31)

The force matrix, G, then is
[Gk] = [Dk]‘[Tk] . : (32)

C. Assembly and Solution of Equations

The stiffness matrix [Sk] and the force matrix [Gk] for an element have now

been computed. Using the direct stiffness method, the stiffness, forces, and dis-
placements of all the elements are combined into a total stiffness matrix [S], a force
matrix [G], and a displacement matrix {y}. The resulting equation is

[S1{y} = {G}]. (33)

This is the equation for the unrestrained shell. Rigid edge constraints are
incorporated by deleting from the stiffness matrix of equation (33) those rows and
columns which correspond to displacements and rotations that must vanish to satisfy
the constraints, and deleting the same rows only from the force matrix. This may be
demonstrated by partitioning the matrices of equation (33) in the following manner:

11 1 P12 yl} %GI% |
_____ Lo o _——- = —_——— (34)
2 %yz Gy

so that ¥y contains all the unrestrained coordinates of the structure and ¥y is null.

Then equation (34) can be separated into two equations:

[S;,1{y } + [84,] vy} = {G} (35a)

10



Equation (35a) is of interest because all quantities except y, are known. Eliminating
the zero terms gives

[S,,1{y;} = G} . (36)

Since the form of equations (33) and (36) is identical and both the free and fixed
conditions may be of interest, the notation of equation (33) will be used hereafter,
but the fixity conditions will be applied as required.

The stiffness matrix is a banded matrix. The solution of equation (33) was
obtained using a standard band matrix solution routine.

D. Volume Integral

The solution vector {y} gives the displacements and slopes at the nodes, the
points where the elements meet. To obtain the volume change due to the applied
pressure, these nodal displacements must be transformed to find w as a function of
x, and then integrated. This can be done considering one segment at a time. The

portion of the {y} vector applying to one segment is {Ek}. Substituting equation
(17) into (8) gives

{y } = [XIT g} . (37)
The change of volume then is

sk/2
AV = 2n f wx)r(x) dx . | (38)

-ek/2
The numerical integration is performed using 100 stations and the trapezoidal rule.

E. Geometry of Typical Bellows Elements

Five parameters describing the radius as a function of the meridional coordinate
are required for the calculations:

r(x) shell radius in-plane perpendicular to axis
r'(x) derivative of r(x) with respect to x
Rl(x) shell radius in meridional plane

Ri(x) derivative of Rl(x) with respect to x

11



R2(x) shell radius in-plane perpendicular to both meridional and tangential
planes.

The four types of shell segment which occur for the bellows are cylinder, cone,
and the internal and external constant radii. These are shown in Figure 3 along with
the coordinate system and nomenclature.

For the cylindrical segment:

r(x) = r (a constant) (39a)
r'(x) =0 (39b)
Rl(s) = (I/R1 is used as computér program variable) (39¢c)
Ri(x) =0 (39d)
Rz(x) =r . (39e)

For the conical segment:

r(x) = r(-ek/Z) + x sin 6 (40a)
r'(x) = sin 8 (40b)
Rl(x) = ® (40c)
Rl'(x) =0 : (40d)
Rz(x) = r(x)/cos 6 . | (40e)

For the internal radius segment:

r(x) =h - R cos x/R (41a)
r'(x) = sin x/R - (41b)
Rl(x) = -R (41c)
Ri(x) =0 (414d)
R2(x) = r(x)/cos x/R . (41e)

For the external radius element:

r(x) =h + R cos x/R (42a)

r'(x) = -sin x/R (42b)

12
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Rl(x) =R (42¢)
(424d)

1}
(==

R1(x)
Rz(x) = r(x)/cos x/R . (42¢e)

F. Example Problem

The bellows was obtained from the Marshall Space Flight Center Test Division
to be used for experimental verification of the analytical calculations. This bellows,
after removal of the cover and liner, is shown in Figure 4. The bellows was manu-
factured by Flexicraft Industries, Chicago, Illinois, who furnished the blueprint upon
request. It is a nominal 4-in. (ID) bellows intended for long term, low stress service
in a cryogenic test facility. The material is 0.037 in. Type 304 stainless steel.
Since the radii of the corrugations were not dimensioned in the blueprint, these were
measured with a radius gauge and found to be:

Outer corrugation - 11/32 OD

Inner corrugation - 9/32°OD

End radius - 0.780 ID.

The distance across four whole corrugations was measured to be 5-9/32 in. A
clearance of about 0.002 in. was measured between the bellows stock and the flange,
so the 0.037 in. thickness was used from the corrugation to weld in the calculations.

From the given and measured dimensions, the geometry of the shell middle
surface was constructed. The geometry of the center and end corrugations is given

in Figure 5, and the results of the initial modeling attempt are shown in Figure 6.

The bellows is formed by expanding the tube stock to form the corrugations.
Kervick [10] predicts thinning of the wall proportional to radius for this method of
forming, so this was assumed.

G. Computer Program

The computer program furnished by Adelman [9] was modified to accept a static
case by inserting the following changes:

1) Provision for symmetrical half-end conditions. The shell is constrained to
zero motion in u and 8 at the symmetry plane and w, u, and g at the clamped end.

2) Provision for "floating radial” end conditions with u and B fixed at each end.
3) Force matrix generated.
4) Band matrix solution routine added.

5) Deflection introduced into mode shape routine and print changes made to
identify it.

14
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6) Volume change calculated and printed.

7) Geometry defined for each segment rather than total shell.
8) Subroutine for ring effects and plotting were removed.

9) Circumferential variation removed.

A list of the subroutines and a description of their primary functions are given in
Appendix C, while a complete listing with a sample output is given in Appendix D.

III. EXPERIMENT

A hydrostatic test was run to verify the results of the analysis. The apparatus,
shown schematically in Figure 7, was set up in the University of Alabama in Hunts-
ville shock tube laboratory where high pressure air and vacuum sources were avail-
able. First, the ends of the bellows ‘were fixed relative to each other and heavy
closure flanges attached to each end by eight 3/4-in. threaded rods. A chemical
pipette, graduated in milliliters, was used as a sight gauge. It was bonded at its
bottom end into a hole in the top closure flange and at its top end into a block
supported by two of the extended threaded rods. Three valves permitted the intro-
duction of either air pressure, vacuum, or water into the interior of the bellows by
way of the pipette. Furthermore, the water was restricted to flow only into the
bellows by gravity.

The vacuum was used to remove any entrapped air bubbles from the system and
also t6 draw small amounts of water into the system so that the level at zero pressure
(gauge) was slightly below the top of the sight gauge. Only one valve would nor-
mally be open at any time. A pressure regulator was used to reduce the source
pressure to the exact values needed.

Data from the experiment are tabulated in Table 1 and plotted in Figure 8.
Points were taken during both the initial pressure build-up and release and a slight
hysteresis loop was formed. Subsequent cycles lay on the upper curve. The data

is exhibiting some nonlinearity above 20 lb/in.z, so a tangent was drawn to provide
the low-level, linear characteristics compatible with the theory. The volume change

from the graph then is 2.96 ml (0.181 in.3) per 50 lb/in.z.
No accurate measurement of the deflections appeared to be practical. A check

with a dial indicator produced no deflections of more than 0.001 in. at any point in
any direction.

Since the test apparatus is not truly rigid, three corrections must be made to
the raw data, one experimental and the other two analytical.

The effect of the end flanges and gaskets was determined experimentally by
removing the bellows and bolting the two closure flanges directly together. Applica-
tion of 60—1b/in.2 pressure produced 0.3 ml volume change. This is equal to 0.25 ml

(0.015 in.3) per 50 psi rated load.
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Figure 7. Bellows and equipment schematic.
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TABLE 1.

Volume (ML)

DATA FROM EXPERIMENT

Pressure Level
(psig) (ml)
0 0.2
9.5 0.85
20.0 1.5
32.0 2.05
40.0 2.45
52.2 3.0
40.0 2.50
30.0 2.00
20.0 1.55
10.0 0.95
0 0.35

4.0

OT 1 T
0 10 20

1 I 1 1
30 40 50 60
Pressure {Ib/in2)

Figure 8. Experimental data.



The internal pressure causes a length change in the threaded rods used to
restrain the bellows. Assuming that the bellows carries no axial load and that the

rod effective area is the mean cross-sectional area, the length change is 2.34 x 1074
in. Further assuming that the effective area of the bellows is the mean cross-sectional
area in the convolutions, the net volume change is 0.0052 in.3.

3

The bellows internal volume was calculated to be 309.8 in.“ by numerical inte-

gration. The volume change due to liquid compression under 50 lb/in.2 pressure is

0.0515 in.S.

IV. COMPARISON AND CONCLUSIONS

The summary results of the experiment and the analysis are listed below:

Experiment
Measured volume change 0.1810 in.3
Measured tare 0.0153
Calculated effect of length change 0.0052
Net change in bellows volume 0.1605
Theory
Symmetric half ' 0.0440
Total bellows 0.0880
Liquid compressibility 0.0515
Total predicted volume change 0.1395
Error

0.1605 - 0.1395

100 x 0.1605

= 13.1 percent .

An error of this magnitude, since it does not strictly represent a difference
between theory and experiment because several errors are possible in intermediate
steps, indicates that the method is probably accurate enough for many applications.
It might be desirable to obtain cross sections of the formed convolutions to measure
thickness also, since the stiffness terms Dll’ D12, and D22 are proportional to the

thickness cubed. The error in velocity will be only half the error in stiffness.

The axial sonic velocity for water within a line composed of typical segments of
the example bellows can be calculated approximating equation (la) and using data

from the previous page. Values are p = 0.935 x 1074 1b seczlin.4, ¢ = 0.294 x 108

21



b/in.2, V = 26.36 in.3, AV = 0.0079 in.>, and Ap = 50 Ib/in.2. This gives a velo-
city in the bellows of 33,760 in./sec compared to a velocity of 56,080 in./sec in rigid
line.
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APPENDIX A

ELEMENTS OF MATRICES A, AND T

k
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APPENDIX B
ELEMENTS OF MATRIX [R]

[See equation (19)]

The elements of matrix [r] are as follows:

_Cyrr Cior  Cypr
== *Igywst T3
R, i®2 R,
R UL ol
21 R, R,
R ) Kur _ K12r
31 R, R,
CR.. - Cyor' , C2”  KyRyr , Kot KpprRy Koo
=Ry =R R 3 ) 3 KR
1 2 R, R, RZR, 12
. ) Cn'r . C12r . Kllr . K12r
517 R 'R, R12 R R,
_ Dzz("")2
-2
= Rgg + Dypr'
D,.R'r' D, ()2 K, (r')2
_p o DiRiT Dy _ Kgp
42 ~ 2 rR r
R 1
1
D, r
—_ = - 12 -
=R52 = - R, " Ko
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34

35

45

55

30

44 "

Dllr
R _ D11R'1r K- D12r'
43 = 2 12 R
R 1
1
D,,r
Rgg = R, Kqr
C (r')2 D (R')2r 2D R'r'. D (r')2 2K, ,r'R! 2K (r')2
22 + 111 _ 1271 + 22 _ 127 ™1 + 22
r 4 3 2 2 rR
R1 R1 rR1 R1 1
B =G - DllR'lr . D12r' ] KuR'lr 2K12r'
54 © 12 R 3 R 2 R 2 R
1 1 1
D, .r 2K, ,r
Cit * S+ Ru
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MAIN PROGRAM
SHELL

SHELLS

TRAN
SUMAT

FORC
PEST
ELIMB

CASE

BOUN
VECTOR
BACK

MODE

BANDED

BOUNF

APPENDIX C

COMPUTER PROGRAM SUBROUTINES

Parameter values set, calls subroutines
SHELLS, BANDED, VECTOR, MODE.

Reads input; calls subroutines CASE, TRAN, FORC,
SUMAT, BOUND, and BOUNF, and calculates constant
coefficients of Tka and X matrices.

Calculates element transformation matrices Tk;
calls PEST.

Calculates element stiffness matrices Sy i calls
PEST.

Calculates element force matrices Gk; calls PEST.
Calculates all functions of radius.

Deletes a row and a column from a matrix.
Determines rows and columns to be deleted from
mass, force, and stiffness matrices to satisfy
boundary conditions.

Calls ELIMB.

Puts boundary zeros in vector, calls BACK.

Zeros inserted into wvector.

Calculates displacements, stresses, and strains
along meridian from vector and volume change.

Calculates displacement vector.

Deletes rows from force matrix column to satisfy
boundary conditions.

The bellows model consists of toroidal segments (ITP=1) and

conical segments (ITP=2).

Each segment can have an arbitrary

number of elements.
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FORTRAN PARAMETER values set are:

NSEG - Number of segments

MEL - Total number of elements.

NMAX - Number of equations = 5*MEL + 5
N300 - Total number of output points

= ININ*MEL + 1

where ININ is an integer number of integration
points per element.

Input is quite simple and is listed below.

CARD FORMAT QUANTITIES AND DEFINITION
1 2074 Identification
2 714 ICASE, identifies boundary conditions.

IPRINT, selects items to be printed (0 or 1
for delections only. 2 for above, plus
mass and stiffness matrices)

ISTRN, set to 1 for strain calculations.
ISTRES, set to 1 for stress calculations.

3 5E14.8 SO, coordinate of initial shell edge.
RO, reference radius for thickness.

NSEG

Cards 215 ,4E15.8 ITP, segment type, 1 for toroidal, 2 for
cone, NEL, number of elements in segment
For ITP=1, entries are segment length,
major radius, minor radius, and starting X.
For ITP = 2, entries are segment length.
Starting radius, cos 6, and sin 8.

Next 5E14.8 Material properties and load E E

. %' 2 Ull
Hooe pressure, reference thickness

' G12.
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PROGRAM SHELL

FINITE-ELEMENT METHOD FOR COMPUTING STATIC DEFLECTIONS
LARRY KIEFLING, MARSHALL SPACE FLIGHT CENTER

ADAPTED FROM NASA TMX-2138,''USER'S MANUAL FOR A
DIGITAL COMPUTER PROGRAM FOR COMPUTING THE VIBRATION
CHARACTERISTICS OF RING-STIFFENED ORTHOTROPIC SHELLS
OF REVOLUTION ''

C****SET PARAMETERS IN SUBROUTINE SHELLS

C***NSEG= NO. OF SEGMENTS, MEL = NO. OF ELEMENTS

C*** SET NMAX ' 5 * MEL + 5

C***SET PARAMETER N300 = ININ*MEL + 1 IN SUBROUTINE MODE
C*%* SET PARAMETER NSEG IN SUBROUTINE PEST ALSO

160
61

53

66
1015

1020
1064

99

1

3
c
C
C

PARAMETER (MEL=79, NMAX=400)

COMMON /BLK/YOUNG1,XMU1,TH, YOUNG2,XMU2,G12,R0
COMMON/LIN/ISTRN, ISTRES, ININ,S,E, TRANS, SO,K,KN, NUM,LN,NELIM
DIMENSION D(9),aM(9),A(55),B(NMAX) ,EVEC (NMAX) ,NELIM(8),
1S (MEL) ,E(MEL)

DIMENSION TRANS (10,10)

DOUBLE PRECISION D,AM,A,B

CALL SHELLS

CALL BANDED(9,55,10,KN,19,1,11,12,13,14,D,AM,A,B)

REWIND 13

DO 160 I=1,KN

READ (13) B(I)

J=KN-1+1

EVEC(J)= SNGL(B(I))

CALL VECTOR (NUM,KN,NMAX,LN,NELIM,EVEC)

WRITE (6,1020) :

CONTINUE

WRITE (6,1015)

WRITE (6,1064) (EVEC(J ),J=1,LN)

WRITE (6,1020)

CALL MODE(  ISTRN,ISTRES,ININ,S,E,EVEC,TRANS,SO,K)

FORMAT (///1X,6HVECTOR, 7X, 1HW, 19X, 1HU, 18X, 4HBETA, 15X, 7HU PRIME,
111X, 10HBETA PRIME)

FORMAT (1H1/////)

FORMAT (1X,5E20.8)

END

SUBROUTINE SHELLS

PARAMETER (NSEG=11, MEL=79, NMAX=400 ,N300=791)

COMMON/SEG/ ITP,NEL,PARL,PAR2,PAR3,PARYG
COMMON/LIN/ISTRN, ISTRES, ININ, S,E, TRANS, SO,K,KN,NUM, LN,NELIN
COMMON /BLK/YOUNG1,XMUl,TH, YOUNG2 ,XMU2,G12,R0

DIMENSION TRANS (10,10),X(5,10),R(10,10),TEP(10,10),SUMS(10,10),
1IDEN (20) ,NELIM(8) ,DST(10),
2S (MEL) ,E (MEL) , ST (NMAX, 10) , FORCE (NMAX) ,
3ITP (NSEG) ,NEL (NSEG) , PAR1 (NSEG) ,PAR2 (NSEG) , PAR3 (NSEG) , PAR4 (NSEG)
* SUMX (10)

DOUBLE PRECISION FOR,DST

ININ=(N300-1) /MEL

DO 99 I=1,NMAX

FORCE (I)=0.

MSEG=NSEG

PI1=3,14159265358979

PRINT 1020

READ (5, 1000) IDEN

WRITE (6, 1000) IDEN

IF IPRINT.EQ.1, STIFFNES MATRIX NOT PRINTED AND MODAL COLUMN
PRINTED

IF PRINT.EQ.2, STIFFNESS MATRIX PRINTED AND MODAL COLUMN PRINTED
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34

sNsNeNesNeNaNaNeNsNaNesNeRe Ry Nyl

500

501

504
503

200

READ (5,1001) ICASE,IPRINT,ISTRN, ISTRES
WRITE(6,1010)
WRITE(6,1009) ININ,ICASE,IPRINT,ISTRN,ISTRES
READ (5,1002) SO,RO
DO 501 I=1,NSEG
READ (5,1011) ITP(I),NEL(I),PAR1(I),PAR2(I),PAR3(I),PAR4(T)
CONTINUE
K=0
KK=0
DO 503 I=1,NSEG
K = K+NEL(I)
I1T=NEL(I)
DO 504 J=1,II
KK=KK+1
E(KK) =PAR1(I) /FLOAT (NEL(I))
CONTINUE
S(1) =80+, 5%€(1)
IF(K.EQ.1) GO TO 200
po 7 1=2,K
SUM=80
1I=1-1
DO 8 J=1,I1
SUM=SUM+E(J)
S (I)=SuM+.5*E(I)
WRITE(6,1003)
DO & I=1,K
WRITE(6,1004)I,E(I),S(1)
READ (5, 1002) YOUNG1, YOUNG2,XMU1, XMU2,PRES, TH,G12
WRITE(6,1019)S0,R0, YOUNG1, YOUNG2,XMU1, XMU2,PRES, TH,G12
BOUNDARY CONDITION CODE (SEE TN FOR DETAILS)
ICASE=4 - FREE-SIMPLY SUPPORTED
ICASE=5 - SIMPLY SUPPORTED-FREE
ICASE=6 - FREE-CLAMPED
ICASE=7 - CLAMPED-FREE
ICASE=9 - SIMPLY SUPPORTED-SIMPLY SUPPORTED
ICASE=10 - CLAMPED-CLAMPED
ICASE=11 - FREELY SUPPORTED-SIMPLY SUPPORTED
ICASE=12 - FREELY SUPPORTED-CLAMPED
ICASE=13 - SIMPLY SUPPORTED-FREELY SUPPORTED
ICASE=14 - SIMPLY SUPPORTED-CLAMPED
ICASE=15 - CLAMPED-FREELY SUPPORTED
ICASE=16 - CLAMPED-SIMPLY SUPPORTED
ICASE=17 - SYMMETRIC HALF - CLAMPED
ICASE=18 - FLOATING RADIAL SUPPORTS (FRS-FRS)
IF(ICASE.EQ.4) PRINT 1024
IF(ICASE.EQ.5) PRINT 1025
IF(ICASE.EQ.6) PRINT 1026
IF(ICASE.EQ.7) PRINT 1027
IF(ICASE.EQ.9) PRINT 1029
IF(ICASE.EQ.10) PRINT 1030
IF(ICASE.EQ.11) PRINT 1031
IF(ICASE.EQ.12) PRINT 1032
IF(ICASE.EQ.13) PRINT 1033
IF(ICASE.EQ.14) PRINT 1034
IF(ICASE.EQ.15) PRINT 1035
IF(ICASE.EQ.16) PRINT 1036
IF(ICASE.EQ.17) PRINT 1060
IF(ICASE.EQ.18) PRINT 1063
CALL CASE (ICASE,K,NELIM,NUNM)
REWIND 9

TRANSFORMATION MATRIX FOR EACH ELEMENT COMPUTED AND WRITTEN ON



13

14

16

28

30

31

101
29

11

23

FILE 9

DO 13 I=1,10

DO 13 I=1,10

TRANS (I, J)=0.

TRANS(1,1)=.5

TRANS(1,6)=.5

TRANS (2,3)=-7./16.

TRANS (2,8)=-7./16.

TRANS (3,5)=-1./8.

TRANS (3,10)=-1./8.
TRANS(7,2)=.5

TRANS(7,7)=.5

TRANS (8,4)=-.25

TRANS (8,9)=-.25

DO 14 KK=1,K

El=E (KK)

CALL TRAN(E1l, TRANS,KK)
WRITE(9) ((TRANS(1,J),J=1,10),1=1,10)
CONTINUE

REWIND 9

DO 16 I=1,2

DO 16 J=1,10

X(1,J)=0.

DO 29 KK=1,K

El=E (KK)

DO 28 1=1,10

SUMX(I )=0.

CALL FORC (ININ,El,PRES,SUMX,KK)
READ(9) ((TRANS(1,J),J=1,10),1=1,10)
po 31 I=1,10

TEP(I,1)=0.

DO 31 I1J=1,10
TEP(I,1)=TEP(I,1)+TRANS (IJ,I)*SUMX(IJ)
DO 101 1=1,10

II1=(KK-1)*5 +I

FORCE (I1)=FORCE(II)+TEP(I,1)
CONTINUE

REWIND 9

A STIFFNESS MATRIX COMPUTED
KN=5* (R+1)

DO 5 I=1,KN

po 5 J=1,10

ST(1,1)=0.

DO 11 I=1,5

DO 11 J=1,10

X(1,1=0.

X(1,1)=1.

X(2,2)=1.

X(3,3)=2.

X(4,7)=1.

X(5,8)=1.

DO 10 KK = 1,K

E1=E (KK)

DO 23 I=1,10

DO 23 J=1,10

SUMS(I1,3)=0.

CALL SUMAT(ININ,E1, X,R,TEP,SUMS,KK)
READ(9) ((TRANS(1,J),J=1,10),1=1,10)
Do 17 1=1,10

DO 17 J=1,10

TEP(1,J)) = 0.
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36

17

18

19
10

151

150

44

36
80

1000
1001
1002
1003
1004
1005
1007
1008
1009
1010
1011
1019

po 17 1J=1,10

TEP(I,J)=TEP(I,J) + TRANS(IJ,I) * SUMS(IJ, D)

po 18 1I=1,10

Do 18 J=1,10
SUMS (1, 3)=0.

po 18 1J=1,10

SUMS (I, J)=SUMS(I, D)+
DO 19 I=1,10

11 = (RR-1)*5 + 1

po 19 J=1,10

JI= J-1+1
ST(II,JD=ST(11,JI)+
CONTINUE

CON=PI*2,

DO 6 I=1,KN

FORCE (I) ~CON*FORCE (1
po 6 J=1,10

TEP (I,I1J)*TRANS(1J,J)

suMs(1,7J)

)

ST(1,)) = CON*ST(1,J)

ROWS AND COLUMNS DEL

ETED FROM STIFFNESS MATRIX TO

SATISFY BOUNDARY CONDITION
CALL BOUN (NUM,KN,NMAX,NELIM,ST)

CALL BOUNF (NUM,NMAX,
REWIND 11

KNM=KN-9

DO 150 I=1,RN

FOR =DBLE (FORCE(I))
JJ= 10

IF(I.GT.KNM) JJ=KN-1
DO 151 JI=1,JJ

DST(J) =DBLE(ST(1,J)
WRITE (11) (DST(D),J
WRITE (11) FOR
CONTINUE

WRITE (6,1020)
WRITE(6,1061)

WRITE (6,1064) (FORCE(
CONTINUE

IF (IPRINT.LT.2) GO T
WRITE (6,1005)

DO 36 I=1,KN
WRITE(6,1007)1

1J=10 .

IF(1.GT.KNM) JJ=KN-1I
WRITE(6,1008) (ST(1,J
CONTINUE

REWIND 11

REWIND: 12

REWIND 13

REWIND 14

FORMAT (20A4)

FORMAT (1014)
FORMAT(S5E14.8)
FORMAT(///14X,11HEPS
FORMAT (4X,I4,2(2X,E1
FORMAT (//4X%, 16HSTIFF
FORMAT (2X, 3HROW, I3)
FORMAT (8E16.8)
FORMAT (10110)

FORMAT (50H ININ
FORMAT (215,4E15.8)
FORMAT (//11X,9HS0,

NELIM, FORCE)

+1

)
=1,11)

I),1=1,KN)

0 80

+1
),J=1,11)

ILON (K),10X,5HS (K))
6.8))
NESS MATRIX/)

ICASE IPRINT ISTRN ISTRES )

RO =,2E16.8/2X, 18HYOUNGS MODULUS 1 =,



1 ' E16.8/2X,18HY Y

20UNGS MODULUS 2 =,E16.8/2X,18HPOISSONS RATIO 1 =,

3 E16.8/2X%, 18HPOISSON
4S RATIO 2 =,E16.8/15X,5HPRES=,E16.8/9X, 11HTHICKNESS =,
5 E16.8/10X, 10HG

6SUB 12 =,E16.8)

1020 FORMAT(1H1/////)

1024 FORMAT(//2X,'FREE-SIMPLY SUPPORTED BOUNDARY CONDITION - (5K+1),
1 (5K+2) ROWS AND COLUMNS DELETED')

1025 FORMAT(//2X,'SIMPLY SUPPORTED-FREE BOUNDARY CONDITION - 1,2,
1 ROWS AND COLUMNS DELETED')

1026 FORMAT(//2X,'FREE-CLAMPED BOUNDARY CONDITION - (5K+1), (5K+2), (5K+
1 3), ROWS AND COLUMNS DELETED')

1027 FORMAT(//2X, 'CLAMPED-FREE BOUNDARY CONDITION - FIRST3 ROWS AND C
10LUMNS DELETED') ‘

1029 FORMAT(//2X,'SIMPLY SUPPORTED-SIMPLY SUPPORTED BOUNDARY CONDITION
1 - 1,2, (5K+1), (5K+2) ROWS AND COLUMNS DELETED')

1030 FORMAT(//2X, 'CLAMPED-CLAMPED BOUNDARY CONDITION - FIRST 3 AND (5

1K+1), (5K+2) , (5K+3) ROWS AND COLUMNS DELETED')
1031 FORMAT(//2X, 'FREELY SUPPORTED-SIMPLY SUPPORTED BOUNDARY CONDITIO
IN - 1, (5K+1), (5K+2) ROWS AND COLUMNS DELETED')

1032 FORMAT(//2X,'FREELY SUPPORTED-CLAMPED BOUNDARY CONDITION - 1,
1 AND (5K+1), (5K+2), (5K+3) ROWS AND COLUMNS DELETED')

1033 FORMAT(//2X,'SIMPLY SUPPORTED-FREELY SUPPORTED BOUNDARY CONDITION
1 - FIRST 2, (5K+1) ROWS AND COLUMNS DELETED')

1034 FORMAT(//2X, 'SIMPLY SUPPORTED-CLAMPED BOUNDARY CONDITION - FIRST
1 2 AND (5K+1), (5K+2), (5K+3) ROWS AND COLUMNS DELETED')
1035 FORMAT(//2X,'CLAMPED-FREELY SUPPORTED BOUNDARY CONDITION - FIRST

1 3 AND (5K+1) ROWS AND COLUMNS DELETED')
1036 FORMAT(//2X, 'CLAMPED-SIMPLY SUPPORTED BOUNDARY CONDITION - FIRST
1 3 AND(5K+1), (5K+2) ROWS AND COLUMNS DELETED')
1060 FORMAT(//2X,'SYMMETRIC HALF-CLAMPED - 2,3, (5K+1), (5K+2),
1 AND (5K+3) ROWS AND COLUMNS DELETED')
1061 FORMAT (///15H FORCE MATRIX ) :
1063 FORMAT(//2X,'FLOATING RADIAL SUPPORTS - 2,3, (5K+2), AND
1 (5K+3) ROWS AND COLUMNS DELETED')
1064 FORMAT (1X,5E20.8)
GO TO 2000
2001 FORMAT (13H ERROR IN ROW,IS5,11H OF INVERSE)
2000 CONTINUE
RETURN
END
SUBROUTINE TRAN(El, TRANS,KK)
COMPUTATION OF TRANSFORMATION MATRIX
DIMENSION TRANS(10,10)
E2=E1*El
E3=E1*E2
E4=E1*E3
ES5=E1*E4
TRANS (1,3)=5.*E1/32.
TRANS (1,5)=E2/64.
TRANS(1,8)=-5.*E1/32.
TRANS (1,10)=E2/64.
TRANS (2,1)=-15./(8.%El)
TRANS (2,5)=-E1/32.
TRANS (2,6)=15./(8.*El)
TRANS (2,10)=El1/32.
TRANS (3,3)=-.75/E1
TRANS (3,8)=.75/E1
TRANS (4,1)=5./E3
TRANS (4,3)=2.5/E2
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TRANS (4,5)=.25/E1

TRANS (4,6)=-5./E3

TRANS (4,8)=2.5/E2

TRANS (4,10)=-.25/E1

TRANS (5,3)=.5/E3

TRANS (5,5)=.25/E2

TRANS (5,8)=-.5/E3

TRANS (5,10)=.25/E2
TRANS(6,1)=—-6./ES
TRANS(6,3)=-3./E4

TRANS (6,5)=-.5/E3

TRANS(6,6) =6../E5
TRANS.(6,8)=-3./E4
TRANS(6,10)=.5/E3

TRANS (7,4)=E1/8.

TRANS (7,9)=~E1/8.
TRANS(8,2)=-1.5/E1
TRANS(8,7)=1.5/E1
TRANS(9,4)=-,5/E1
TRANS(9,9)=.5/E1
TRANS(10,2)=2./E3
TRANS(10,4)=1./E2

TRANS (10,7)=-2./E3

TRANS (10,9)=1./E2

X1=,5*El

CALL PEST(3,0,-X1,FR1,RK)

CALL PEST(5,0,-X1,PR1,KK)

CALL PEST(3,0,X1,FR2,KK)

CALL PEST(5,0,X1,PR2,KK)
FFl=,5*El*PR1*FR]
FF2=,5*%E1*PR2*FR2
TRANS(1,2)=E1*FR1*(5.-FF1)/32.
TRANS (1,4)=E2*FR1/64.
TRANS(1,7)=-E1*FR2* (5.+FF2) /32.
TRANS(1,9)=E2%FR2/64.
TRANS(2,2)=FR1*(-7.+FF1) /16.
TRANS (2,4)=-E1*FR1/32.

TRANS (2,7)=-FR2*(7.+FF2) /16.
TRANS (2,9)=E1*FR2/32.
TRANS(3,2)=FR1*(-3.+FF1) / (4.*El)
TRANS (3, 4)=-FR1/8.

TRANS (3, 7) =FR2* (3.+FF2) / (4.*El)
TRANS(3,9)=-FR2/8.

TRANS (4,2) =FR1*(5.-FF1) / (2.*E2)
TRANS (4, 4)=FR1/(4.%*E1l)

TRANS (4, 7) =FR2*(5.+FF2) / (2*E2)
TRANS (4,9)=-FR2/ (4.*E1)

TRANS (5,2)=FR1*(1.-FF1)/(2.*E3)
TRANS (5,4)=FR1/ (4.*E2)

TRANS (5,7)=-FR2* (1.+FF2) /(2.*E3)
TRANS (5,9) =FR2/ (4. *E2)

TRANS (6,2) =FR1*(-3.+FF1) /E4
TRANS (6,4)=-FR1/(2.*E3)

TRANS (6, 7)=-FR2* (3.+FF2) /E4
TRANS (6,9)=FR2/(2.*E3)

RETURN

END

SUBROUTINE FORC (ININ,El,PRES, SUMN,KK)
ELEMENT MASS MATRIX COMPUTED BY NUMERICAL INTEGRATION USING THE
TRAPEZOIDAL RULE

DIMENSION Y( 10), TEP(10) ,SUMN(10)



FININ=FLOAT (ININ)
DEL=E1/FININ

NN=ININ+1

Y(1r ) = 1.

Do 2 I=7,10

Y (1)=0.

DO 1 IN=1,NN
X1=-,5*E1+DEL*FLOAT (IN-1)
Y( 2)=Xl

Y( 3)=X1*X1

Y( 4)=Xx1*Y( 3)

YO S)=X1*Y( &)

Y( 6)=X1*Y( 5)

CALL PEST(2,0,X1,FR1,KK)
R=PRES*FR1

po 3 1=1,10

TEP(I )= Y( I)*R
CON=DEL
IF((IN.EQ.1) .OR. (IN.EQ.NN)) CON=,5*DEL
po 8 I=1,10

SUMN(I )=SUMN(I )+CON*TEP(I )
CONTINUE

RETURN

END

SUBROUTINE SUMAT(ININ,El, X,R,TEP,SUNMS,KK)
ELEMENT STIFFNESS MATRIX COMPUTED BY NUMERICAL INTEGRATION USING
THE TRAPEZOIDAL RULE
DIMENSION X(5,10),R(10,10),TEP(10,10),SUMS(10,10)
INTG=ININ

FINTG=FLOAT (INTG)
DEL=E1/FINTG

NN=INTG+1

DO 6 IN=1,NN

X1=-_ 5*E1+DEL*FLOAT (IN-1)
X2=x1%*X1

X3=X1%*X2

X4=X1*X3

X5=X1*X4

X(1,2)=x1

X(1,3)=x2

X(1,4)=x3

X(1,5)=x4

X(1,6)=X5

X(2,3)=2.%x1

X(2,4) = 3. * X2
X(2,5)=4.%X3

X(2,6)=5.%*X4

X(3,4)=6.%*X1

X(3,5)=12.*x2

X(3,6)=20.*x3

X(4,8)=Xx1

X(4,9)=x2

X(4,10)=X3

X(5,9)=2.*X1

X(5,10)=3.*x2

INT=0

DO71=1,5

po7J=1,5

INT=INT+1

R(1,J)=0.

CALL PEST(1,INT,X1,R(I,J),KK)
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IF(I1.EQ.J) GO TO 7

R(J,I)=R(I,D

CONTINUE

DO 8 I=1,5

DO 8 J=1,10

TEP (J,I)=0.

DO 8 13=1,5
TEP(J,I)=TEP(J, ) +X(1J, D *R(1J,I)

DO 9 I=1,10

DO 9 J=1,10

R(1,J)=0.

DO 9 1J=1,5
R(I,3)=R(1,J)+TEP(I,1J)*X(1J,])
CON=DEL

IF((IN.EQ.1) .OR. (IN.EQ.NN)) CON=,5%*DEL
DO 12 I=1,10

DO 12 J=1,10

SUMS (I, 3)=SUMS (I, J)+CON*R(1,J)
CONTINUE

RETURN

END

SUBROUTINE BOUN(NUM,N,NMAX,NROW,ST)
ROWS AND COLUMNS DELETED TO SATISFY BOUNDARY CONDITION
DIMENSION NROW(8),ST(NMAX,10)

NN=0

DO 1 K=1,NUM

NE=NROW (K) -NN

CALL ELIMB(NE,N,NMAX,10,ST)

NN=NN+1

N=N-1

CONTINUE

RETURN

END

SUBROUTINE BOUNF (NUM,NMAX,NELIM, FORCE)
DIMENSION NELIM(8),FORCE (NMAX) ,NE(8)
DO 1 K=1,NUM

NE (K) =NELIM (K)

DO 2 K=1,NUM

DO 6 I=1,NMAX

IF(I.NE.NE(K)) GO TO 5

NNMAX=NMAX-1

DO 3 J=I,NNMAX

FORCE (J) =FORCE (J+1)

Kl1=K+1

DO 4 J=K1,NUM

NE(J)=NE(D)-1

GO TO 2

CONTINUE

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE PEST(ICODE, INT,S,RR,KK)
PARAMETER (NSEG=11)

COMMON /BLK/YOUNG1,XMU},THO, YOUNG2,XMU2,G12,R0
COMMON /STR/R1,R2,RI1P,R,RP,C11,C12,C22,D11,D12,D22,K11,K12,K22
COMMON/SEG/ ITP,NEL,PAR]1,PAR2,PAR3,PARS
REAL K11,K12,K22

DIMENSION ITP(NSEG),NEL(NSEG),PAR1 (NSEG),PAR2(NSEG),
1PAR3 (NSEG) , PAR4 (NSEG)

FUNCTIONS DESCRIBING GEOMETRICALLY EXACT ELEMENT USED TO COMPUTE



OO0

500
501

101

102

150

30

32
29

MATRIX R

J=0

DO 500 I=1,NSEG

J=J+NEL (I)

IF(KK.LE.J) GO TO 501

CONTINUE

FN = FLOAT (KK-J+NEL(I)-1)

FNEL=NEL (I)

II=ITP(I)

GO TO (101,102),I1
ITP=1  TOROIDAL SEGMENT, PARAMETERS ARE
LENGTH, MAJOR RADIUS, MINOR RADIUS, STARTING X
MINOR RADIUS IS NEGATIVE FOR INNER PART

§8=S+ (FN+,5) *PAR1 (I) /FNEL+PAR4 (1)

CZ=C0S(SS/PAR3(I1))

R=PAR2 (I)+PAR3 (I) *C2z

RP=-SIN(S5/PAR3(I))

Rl=1./PAR3 (I)

R2=CZ/R

GO TO 150
ITP=2 CONICAL SEGMENT PARAMETERS ARE
LENGTH, STARTING RADIUS, COS THETA, SIN THETA

§S=S+ (FN+.5) *PAR] (1) /FNEL

R=PAR2 (1) +SS*PAR4 (1)

RP=PAR4 (I)

R1=0

R2=PAR3(I) /R

R1P =0.

TH=THO*RO/R

IF(ICODE.EQ.1) GO TO 29

IF(ICODE.EQ.2) GO TO 30

IF (ICODE.EQ.4) GO TO 29

IF(ICODE.EQ.5) GO TO 32

RR=R1

RETURN

RR=R

RETURN

RR = RIP

RETURN

CONTINUE

Cl11=YOUNGI*TH/ (1.~XMU1**2)

Cl2=XMUl*C1]

C22=C11

D11=YOUNG1*TH**3/ (12, %(1.-XMU1%*2))

D12=XMU1*D11

D22=D11

K11=0,

K12=0,

K22=0.

IF(ICODE.EQ.1) GO TO 31

RR=0.

RETURN

ELEMENTS OF R MATRIX ARE FUNCTIONS OF THE MERIDIONAL COORDINATE

Go 10 (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),INT

RR = Cl1*R*R1%%2+2,*C12*R*R]1*R2+C22*R*R2%**2

RETURN

RR = -K12*RP*R1-K22*RP*R2

RETURN

RR = -K11*R*R1-K12*R*R2

RETURN

RR = C12*RP*R1+C22*RP*R2 + K22*RP*R1*R2
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10
11
12

13

14

15
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RR = RR-K11*R1P*R*R1**3+K12*RP*R1**2-K12*R*R1P*R]1**2*R2
RETURN '

RR = Cl1*R*R1+C12*R*R2 +K11*R*R1**2+K12*R*R1*R2

RETURN

RR = D22*RP**2/R

RETURN

RR=D12*RP

RETURN

RR = D12*RIP*RP*R1**2-D22*RP**2%R1/R -K22*RP**2/R

RETURN

RR=-D12*RP*R1 -~K12*RP

RETURN

RR=D11*R

RETURN

RR=D11*R1P*R¥R1**2-D12*RP*R1 —~K12*RP

RETURN

RR=-D11*R*R1 —~K11%*R

RETURN

RR=C22*RP**2 /R+D11*R1P**2*R*R1**4-2, *D12*R1P*RP*R]1**]

RR = RR-K12*RP*RI1P*R1**2%2 +2, 6 *K22*RP**2%R1/R+D22*RP**2*R1**2/R
RETURN

RR=C12*RP-D11*R1P*R*R1**3+D]12*RP*R1%**2
RR=RR-K11*R*R1P*R1%*2+2, *K12*RP*R1

RETURN

RR=C11*R+D11*R*R1**2 +K11*R*R1%*2,

RETURN

END

SUBROUTINE ELIMB(NE,N,NMAX,NB,A)

ROW AND COLUMN DELETED FROM BANDED MATRIX A 26 JANUARY 1972

NE=ROW AND COLUMN ELIMINATED N=SIZE OF MATRIX A (ROWS)

NB=SEMI-BAND WIDTH (COLUMNS) NMAX=MAXIMUM SIZE OF MATRIX A

DIMENSION A(NMAX,NB)

M=N-1

IF (NE.GT.M) GO TO 2

DO 1 I=NE,M

DO 1 J=1,NB

AL, D=A(1+1,1)

L=NB-1

DO 4 K=2,L

I=NE-K+1

IF (I.LE.0) RETURN

DO 3 J=K,L

A(I,J)=A(1,J+1)

A(I,NB}=0

RETURN

END

SUBROUTINE BANDED (II11,I1I2,II3,NIN,M,NRHS,NNIT,NOT,NANST,NMT,D,AN,

14,B)

ARGUMENTS...

M=BANDWITH.
I111=(M-1)/2,DIMENSION OF D AND AM ARRAYS. (NDM)
112=(M+1)* (M+3)/8,DIMENSION OF A ARRAY. (NT)
I113=(M+1)/2, ROW DIMENSION OF B. (NDMP1)
NIN=NO. OF EQUATIONS.
NRHS=NO. OF RIGHT HAND SIDES.
NNIT=INPUT TAPE NO. EACH RECORD MUST BE A ROW OF COEFF. OF
THE EQ. THOSE COEFF. STARTING WITH THE DIAGONAL,OUT TO
THE END OF THE BAND ARE ENTERED. (M+1)/2 ELEMENTS ARE
ENTERED. A SEPARATE RECORD CONTAINING THE NRHS CONSTANT
S FOLLOWS EACH ROW. PREFIX WITH (-) FOR CHECKOUT OUTPUT
NOT=TAPE NO. ON WHICH THE TRIANGULARIZED MATRIX IS TO BE



STORED WITH THE MODIFIED R.H.S.,IF ANY
NANST=TAPE NO. ON WHICH THE SOLUTIONS ARE TO BE WRITTEN. EACH
RECORD WILL CONTAIN THE NRHS SOLUTIONS FOR THE VARIABLE
IN QUESTION.
NMT=TAPE NO. ON WHICH THE MULTIPLYING FACTORS MAY BE STORED
THE (M-1)/2 FACTORS ARE STORED AS A RECORD FOR EACH ROW
THE 1ST (M-1)/2 ROWS WILL HAVE ONLY I-1 FACTORS,WHERE I
IS THE ROW NUMBER. ITFOLLOWS THAT NONE ARE STORED FOR
THE 1ST ROW. _
D(I)=STORAGE FOR THOSE DIAG. ELEMENTS NEEDED IN TRIANGULAR-
IZATION OF A PARTICULAR ROW.
AM(I)=STORAGE FOR THE M(I,J) FOR THE ROW BEING OPERATED ON.
A(J)=STORAGE FOR THAT TRIANGULAR MATRIX NEEDED WHEN OPERAT-
ING ON A PARTICULAR ROW.
B(K,L)=STORAGE FOR THE L R.H.S. FOR THE K VARIABLES NEEDED AT
ONE TIME. THE R.H.S. ARE OPERATED ON AT THE SAME TIME
THE TRIANGULARIZATION TAKES PLACE
NOTE.....ALL TAPES MUST BE READY TO USE,I.E.,NO REWINDING WILL
BE DONE AT THE OUTSET. PROGRAM WILL RETURN WITH SOLUTIONS ON
TAPE NANST READY TO READ THE NRHS VALUES OF THE NTH UNKNOWN.
DIMENSION D(II1),AM(II1),A(II2),B(II3,NRHS)
DOUBLE PRECISION D,AM,A,B

OO0 OO0O0O0O0O0O0O0O0O00

NIT=IABS (NNIT)
N=IABS (NIN)

20 IF(NIT.NE.5.AND.NIT.NE.6.AND.NOT.NE.5.AND.NOT.NE.6.AND.NANST.NE. 5.
1AND.NANST.NE.6.AND.NMT.NE.5.AND.NMT.NE.6.AND.N.GT .M, AND.MOD(M,2) .N
2E.0) GO TO 40

30 WRITE (6,5000) IERR

CALL EXIT
STOP
40 NDM=(M-1)/2
NDMP 1=NDM+1
NT=(M+1) *(M+3) /8
NL1=NDM* (NDM+1) /2
NL=NL1+1
NDM1=NDM~1
NT1=NT-1
NL2=NT-N+1
LLM=M-3
LLT=LLM/2
NNDM=N-NDM1
NNN=N-2*NDM
C READ 1ST ROW FROM TAPE (NIT)
READ (NIT) D(1), (A(I),I=NL2,NL1)
CHECK IF DIAG. ELEMENT IS 0O
IERR=2
IF(D(1)) 50,30,50
50 KBIG=1
C WRITE OUT 1ST ROW IF REQUESTED
IERR=3
IF(NNIT) 60,30,70

60 WRITE (6,5010) KBIG,D(1), (A(I),I=NL2,NL1)

C READ R.H.S. FROM TAPE (NIT),WRITE R.H.S ON TAPE (NOT), IF NRHS NOT O.

70 IERR=4

IF (NRHS) 30,80,90
C WRITE ALTERED ROW ON TAPE (NOT) IF NRHS=0.

80 WRITE (NOT) D(1),(A(I),I=NL2,NL1)

GO TO 120

90 READ (NIT) (B(1,I),I=1,NRHS)

C WRITE ALTERED ROW AND R.H.S. ON TAPE (NOT) IF NRHS NOT ZERO
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WRITE (NOT) D(1), (a(1),I=NL2,NL1),(B(1,I),I=1,NRHS)
C SHIFT DOWN R.H.S. IF NRHS NOT ZERO
DO 100 J=1,NRHS
100 B(2,)=B(1,])
C WRITE OUT INPUT R.H.S. IF REQUESTED AND IF NRHS NOT ZERO
IF(NNIT) 110,30,120
110 WRITE (6,5020) KBIG, (B(1,J),J=1,NRHS)

C*****ALTER ROWS 2 TO (H‘l) /2 IF M GREATER THAN 3 Fek ki kR dehhkdekk
120 IF(NDM1) 30,380,130
130 JO=NL2

LO=NL1-NL2
‘ DO 370 K=1,NDM1
KBIG=KBIG+1
C READ ROW K+1 FROM TAPE (NIT)
READ (NIT) (a(I),I=NL,NT)
CHECK IF DIAG. IS ZERO
IERR=5
IF(a(NL)) 140,30,140

C WRITE OUT INPUT ROW IF REQUESTED
140 IF(NNIT) 150,30,160
150 WRITE (6,5010) KBIG, (A(I),I=NL,NT)

COMPUTE THE M(I,J)

160 L=LO+1

J=J0

DO 170 I=1,K

AM(1)=-A(J) /D(T)

J=J+L
170 L=L+1

JO=JO-LO

LO=LO-1

IF(NNIT) 180,30,190

180 WRITE (6,5030) K,KBIG, (AM(I),I=1,K)

COMPUTE NEW ELEMENTS FOR THIS ROW

190 K1=NT1
M1=NL2
M2=LLM
L=K
DO 210 J=1,K
DO 200 I=NL,K1
A(D)=a(I)+aM (L) *A(M1)
200 M1=M1+1
K1=K1-1
Ml=M1-M2-1
M2=M2-2
210 L=L-1
C WRITE OUT ALTERED ROW IF REQUESTED
IF(NNIT) 220,330,230
220 WRITE (6,5040) KBIG, (A(I),I=NL,NT)

C ATTEND TO R.H.S. IF NRHS NOT ZERO.

230 IF(NRHS) 30,240,250

C WRITE ALTERED ROW ON TAPE (NOT) IF NRHS=0.

240 WRITE (NOT) (A(I),I=NL,NT)
GO TO 320

C READ R.H.S. FROM TAPE (NIT)

250 READ (NIT) (B(1,J),J=1,NRHS)
C WRITE OUT INPUT R.H.S. IF REQUESTED
IF(NNIT) 260,30,270
260 WRITE (6,5020) KBIG, (B(1,J),J=1,NRHS)

COMPUTE NEW R.H.S

270 DO 280 J=1,NRHS
DO 280 I=1,K



280 B(1,X)=B(1,)+aAM(I)*B (1+1,J)
C WRITE ALTERED ROW AND R.H.S. ON TAPE (NOT) IF NRHS NOT O.
WRITE (NOT) (A(I),I=NL,NT),(B(1,J),J=1,NRHS)
C WRITE OUT ALTERED R.H.S. IF REQUESTED
IF(NNIT) 290,30,300
290 WRITE (6,5050) KBIG, (B(1,J),J=1,NRHS)
C SHIFT R.H.S. DOWN
300 DO 310 J=1,NRHS
310 B(K+2,1)=B(1,J)
C WRITE M(1,J) ON TAPE (NMT) IF REQUESTED
IERR=6
320 IF (NMT) 30,340,330
330 WRITE (NMT) (AM(I),I=1,K)
C SHIFT ALTERED DIAGONAL ELEMENT
340 D(K+1)=A(NL)
C SHIFT ELEMENTS TOWARDS TOP OF TRIANGULAR ARRAY FOR NEXT ROW OPERATION

K1=NDMP1-K
11=NDM-K
M1=LLT-K
M2=M1
Ml=M1*(M1+1)/2+1
M2=M2+M1
DO 360 I=I1,NDM
DO 350 J=M1,M2
L=K1+]
350 A(J)=a(L)
Kl=Kl+1
M1=M2+1
360 M2=M1+1
370 CONTINUE
CHh¥**%*QPERATE ON ROWS (M-1)/2+1 TO N-(M-1)/2 (FULL BAND WIDTH) ¥*¥#kikikk
380 K=0 :
390 K=K+1
KBIG=KBIG+1

C READ ROW (M-1)/2+K FROM TAPE (NIT)
READ (NIT) (a(1),I=NL,NT)
CHECK IF DIAG. ELEMENT IS ZERO
IERR=7
IF(A(NL)) 400,30,400
C WRITE OUT INPUT ROW IF REQUESTED
400 IF(NNIT) 410,30,420
410 WRITE (6,5010) KBIG, (A(I),I=NL,NT)
COMPUTE THE M(I,J)
420 3=1
DO 430 I=1,NDNM
AM(I)=-A(3) /D(T)
430 J=J+1
C WRITE OUT THE M(I,J) IF REQUESTED
IF(NNIT) 440,30,450
440 WRITE (6,5030) NDM,KBIG, (AM(I),I=1,NDM)
COMPUTE NEW ELEMENTS FOR THIS ROW
450 M1=0
L=0
DO 460 I=NL,NT!
L=L+1
MIl=M1+L
M2=M1
DO 460 J=L,NDM
A(D)=A(1)+AM(J) *A (M2)
460 M2=M2+]
C WRITE OUT ALTERED ROW IF REQUESTED



46

IF(NNIT) 470,30,480
470 WRITE (6,5040) KBIG, (A(I),I=NL,NT)
C ATTEND TO R.H.S. IF NRHS NOT ZERO.
480 IF (NRHS) 30,490,500
C WRITE ALTERED ROW ON TAPE (NOT) IF NRHS=0.
490 WRITE (NOT) (A(I),I=NL,NT)
GO TO 580
C READ R.H.S. FROM TAPE (NIT)
500 READ (NIT) (B(1,J]),J=1,NRHS)
C WRITE OUT R.H.S. INPUT IF REQUESTED .
IF(NNIT) 510,30,520
510 WRITE (6,5020) KBIG, (B(1,J),J=1,NRHS)
COMPUTE NEW R.H.S.
520 DO 530 J=1,NRHS
DO 530 I=1,NDM
530 B(1,J)=B(1,D+aAM(I)*B(I+1,J)
C WRITE ALTERED ROW AND R.H.S. ON TAPE (NOT) IF NRHS NOT ZERO
WRITE (NOT) (A(I),I=NL,NT),(B(1,J),J=1,NRHS)
C WRITE OUT ALTERED R.H.S. IF REQUESTED
IF(NNIT) 540,30,550
540 WRITE (6,5050) KBIG, (B(1,J),J=1,NRHS)
C SHIFT R.H.S. UP
550 DO 570 J=1,NRHS
DO 560 I=1,NDM1
560 B(I+1,1)=B(1+2,71) '
570 B(NDMP1,D)=B(1,J)
C WRITE THE M(I,J) ON TAPE (NMT) IF REQUESTED
580 IF(NMT) 30,600,590
590 WRITE (NMT) (AM(I),I=1,NDM)
C SHIFT DIAG. ELEMENTS FOR NEXT ROW OPERATION
600 DO 610 I=1,NDM1
610 D(I)=D(1+1)
D(NDM) =A(NL)
C SHIFT ELEMENTS TOWARDS TOP OF TRIANGULAR ARRAY FOR NEXT ROW OPERATION
K1=2
Ml=1
M2=1
DO 630 I=1,NDM
DO 620 J=M1,M2
L=K1+J
620 A(D)=A(L)
K1=K1+1
M1=M2+1
630 M2=M1+1
IF (K-NNN) 390,640,30
C*x****QPERATE ON LAST (M~1)/2 ROWS (NOT FULL BANDWIDTH) ¥stdcidcsesodsodarsosont
640 LAST=NT .
ILA=NDMP1
DO 900 K=1,NDM
KBIG=KBIG+1
ILA=ILA-1
LAST=LAST-1
C READ ROW N-(M-1)/2+K FROM TAPE (NIT)
READ (NIT) (A(I),I=NL,LAST)
CHECK IF DIAGONAL ELEMENT IS ZERO :
IERR=8
IF(A(NL)) 650,30,650
C WRITE OUT INPUT ROW IF REQUESTED
650 IF (NNIT) 660,30,670
660 WRITE (6,5010) KBIG, (A(I),I=NL,LAST)
COMPUTE THE M(1,J)



670 J=1
DO 680 I=1,NDM
AM(I)=-A(J) /D(D)
680 J=J+I
C WRITE OUT THE M(I,I) IF REQUESTED
1ERR=9

IF(NNIT) 690,30,700
690 WRITE (6,5030) NDM,KBIG, (AM(I),I=1,NDM)
COMPUTE NEW ELEMENTS FOR THIS ROW
700 M1=0
L=0
DO 710 I=NL,LAST
L=L+1
Mi=M1+L
M2=M1
DO 710 J=L,NDM
A(T)=A(I)+AM (J) *A(M2)
710 M2=M2+]
C WRITE OUT ALTERED ROW IF REQUESTED
IF(NNIT) 720,30,730
720 WRITE (6,5040) KBIG, (A(I),I=NL,LAST)
C ATTEND TO R.H.S. IF NRHS NOT ZERO
730 IF(NRHS) 30,740,750
C WRITE ALTERED ROW ON TAPE (NOT) IF NRHS=0.
740 WRITE (NOT) (A(I),I=NL,LAST)
GO TO 830
C READ R.H.S. FROM TAPE (NIT)
750 READ (NIT) (B(1,I),I=1,NRHS)
C WRITE OUT INPUT R.H.S. IF REQUESTED
IF(NNIT) 760,30,770
760 WRITE (6,5020) KBIG, (B(1,J),J=1,NRHS)
COMPUTE NEW R.H.S.
770 DO 780 J=1,NRHS
DO 780 I=1,NDM
780 B(1,))=B(1, ) +AM(I) *B(I+1,J)
C WRITE ALTERED ROW AND R.H.S. ON TAPE (NOT) IF NRHS NOT ZERO
WRITE (NOT) (A(I),I=NL,LAST), (B(1,JI),J=1,NRHS)
C WRITE OUT ALTERED R.H.S. IF REQUESTED
IF(NNIT) 790,30,800
. 790 WRITE (6,5050) KBIG, (B(1,J),J=1,NRHS)
C SHIFT UP R.H.S.
800 . DO B20 J=1,NRHS
DO 810 I=1,NDM1
810 B(I+1,J)-B(I+2,J)
820 B(NDMP1,J)=B(1,J)
C WRITE THE M(I,J) ON TAPE (NMT) IF REQUESTED
830 IF (NMT) 30,850,840
840 WRITE (NMT) (AM(I),I=1,NDM)
C SHIFT DIAGONAL ELEMENTS FOR NEXT ROW OPERATION (IF IT EXISTS)
850 IF (K-NDM) 860,900,30
860 DO 870 I=1,NDM1
870 D(I)=D(I+1)
D (NDM) =A (NL)
C SHIFT ELEMENTS TOWARDS TOP OF TRIANGULAR ARRAY FOR NEXT ROW OPERATION
Kl1=2
Ml=1
M2=1
DO 890 I=1,NDM
DO 880 J=M1,M2
L=K1+}
880 A(J)=a(L)
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K1=K1+1

M1=M2+1
890 M2=M1+1
900 CONTINUE
C**************** END OF TRIANGULARIZATION Fedededde ke kk
C Fkkkkhkkkkk BACK SUBSTITUTION Fedededkskskkhkk
920 IF (NRHS) 30,1070,925

925 KBIG=N+1
BACKSPACE NOT

K=0

930 K=K+1

KBIG=KBIG-1

IF(K-NDM) 934,934,935

934 M2=K

K2=K+1 :
935 IF (K-NDMP1) 940,940,950
940 LAST=K

K1=LAST-1
950 IF (NRHS) 30,955,960

955 READ (NOT) (A(I),I=1,LAST)
GO TO 970
960 READ (NOT) (a(I),I=1,LAST),(B(1,J),J=1,NRHS)
COMPUTE UNKNOWNS
970 BACKSPACE NOT
BACKSPACE NOT
DO 1000 J=1,NRHS
IF(K-1) 30,1000,980
980 DO 990 I=1,Kl
990 B(1,1)=B(1,J)~-B(I+1,J)*A(1+1)
1000 B(1,1=B(1,D) /A1)
IF(NNIT) 1010,30,1020
C WRITE OUT SOLUTIONS IF REQUESTED
1010 WRITE (6,5070) KBIG, (B(1,J),J=1,NRHS)
1020 DO 1030 J=1,NRHS
M1=K2
DC 1030 I=1,M2
B(M1,J)=B(M1-1,J)
1030 M1=M1-1 .
C WRITE SOLUTIONS ON TAPE (NANST)
WRITE (NANST) (B(1,J),J=1,NRHS)
IF(K-N) 930,1060,30 i
C**********#***** END OF BACK SUBSTTUTION Feoe etk vedk ek ek
1060 REWIND NANST
1070 RETURN
5000 FORMAT(//16H FAULTY DATA AT,114)
5010 FORMAT(//12H INPUT ROW ,115/(1P,4D25.15))
5020 FORMAT( 26H INPUT CONSTANTS FOR ROW ,1I5/(1P,4D25.15))
5030 FORMAT(6H THE ,1I5,' COMPUTED M(I,J) FOR ROW',1I5/(1P,4D25.15))
5040 FORMAT( 14H ALTERED ROW ,115/(1P,4D25.15))
5050 FORMAT( 28H ALTERED CONSTANTS FOR ROW ,1I5/(1P,&4D25.15))
5070 FORMAT(/ 19H COMPUTED UNKNOWN ,1I5/(1P,4D25.15))

END

SUBROUTINE VECTOR (NUM,N,NMAX,M,NROW,A)
C ROWS DELETED TO SATISFY BOUNDARY CONDITION REPLACED BY ZEROS IN
C VECTOR '

DIMENSION NROW(8),A(NMAX,1)

M=N

DO 1 K=1,NUM

CALL BACK (NROW(K) ,N,M,NMAX,A)

M=M+1

1 CONTINUE



31

40

50

10

70

200

RETURN

END

SUBROUTINE MODE(ISTRN, ISTRES, INR,SK,EPSIL,EVEC, TRANS,SO,K)
PARAMETER (N300=791)

DEFLECTIONS, STRAINS, AND STRESSES COMPUTED, PRINTED AND PLOTTED
COMMON /BLK/YOUNG1,XMUl,TH, YOUNG2,XMU2,G12,R0

COMMON /STR/R1,R2,R1P,R,RP,C11,C12,C22,D11,D12,D22,K11,K12,K22
DIMENSION X(N300),W(N300),WP(N300),wPP (N300),U(N300),UP(N300),
1E1 (N300) ,E2 (N300) ,X1 (N300) , X2 (N300) ,CE1(N300) ,CEIN(N300),
2CE2 (N300) , CE2N (N300) , T1 (N300) , T2 (N300) , XM1 (N300) , XM2 (N300) ,
3SI1G1(N300),SIGIN(N300),SIG2(N300),SIG2N(N300),
4TRANS (10,10) ,EVEC(1) ,A(10),SK(1) ,EPSIL(1)

REAL K11, K12, K22

CON1=YOUNG1/ (1.~XMU1*XMU2)

CON2=YOUNG2/ (1.~XMU1*XMU2)

Vi=0

1K=0

REWIND 9

EBEG=0.

ELAST=EPSIL(1)

I5=-1

IFIRST=1

IK IS LOOP ON ELEMENT (K TOTAL ELEMENTS)

IK=IK+1

IF(IK.GT.K) GO TO 90

IF(IK.EQ.1) GO TO 50

EBEG=EBEG+EPSIL (IK-1)

ELAST=EBEG+EPSIL (IK)

TRANSFORMATION MATRIX FOR ELEMENT 1K READ FROM FILE 9
READ(9) ((TRANS(I, ), J=1,10),1=1,10)

15=15+1

T6 = 5%15

DO 10 I1=1,10

A(11) = 0.

DO 10 I3=1,10

I4=16+13

TRANSFORMATION MATRIX * PROPER BLOCK OF NUMBERS OF VECTOR GIVES
THE COEFFICIENTS

A(I1) = A(I1) + TRANS(I1,I3) * EVEC(I&)

IF (IK.NE.1l) GO TO 70

S=0,

1I=1

GO TO 110

EINT=ELAST-EBEG

IFIRST=0

DEL=EINT/FLOAT (INR)

S=EBEG

STT=-EINT/2.

INRP=INR + 1

DO 200 I=1,INRP

S1=STT

§2=§1*s1

§3=82%S1

S4=53*S1

§5=54%S1

WW=A (1) +A(2) *S1+A(3) *S2+A (4) *S3+A (5) *S4+A(6) *S5

CON =6.28318

IF((I.EQ.1).OR. (1.EQ.INRP)) CON=3.14159

CALL PEST (2,0,S1,R,IK)

STT=STT+DEL

V1 = VI + CON*WW*R*DEL
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50

30

110

60
20

90

80

160

170

190

180

WRITE(6,1010) IK, VI

S=S+DEL

IF(S.GT.ELAST) GO TO 20

1I=11+1

S1=5- (SK (IK)-S0)

§2=51%*2

S3=51*S2

S4=51*S3

S$5=§1%S4

MODE SFAPES

WD =A(1)+A(2) *S1+A(3) *S2+A(4) *S3+A(5) *S4+A(6) *S5
WP(II)=A(2)+2.%A(3)*S1+3,*A(4)*S2+4 %A (5)*S3+5.%A(6)*S4
WPP(II)=2.%A(3)+6.%A(4) *S1+12.%A(5)*52+20.%A(6) *S3
U(II) =A(7)+A(8) *S1+A(9) *S2+A(10) *S3
UP(I1)=A(8)+2.%A(9)*S1+3.%*A(10) *S2

X(I1)=s

STRAINS

IF(ISTRN.EQ.0) GO TO 60

ARG=SK (IK)-EPSIL(IK)/2.+S

CALL PEST (4,0,S1,RR,IK)

E1(II)=UP(II)+W(II)*R]

E2(II) = RP*U(II)/R+W(II)*R2

X1 (I1)=—WPP(II)+UP(IT)*R1-U(II)*R1P*R1**2

X2(I1) = (-RP*WP(II)+RP*U(II)+R1)/R

CE1(ID=(E1 (II)+.5*TH*X1(11))/(1.+.5%TH*R1)
CEIN(ID =(E1(I1)-.5%TH*X1 (11))/(1.-.5%TH*R1)
CE2(ID)=(E2(II)+.5%TH*X2(I1))/(1.+.5%TH*R2)
CE2N(ID)=(E2(II)~-.5*TH*X2(11)) /(1.~.5%TH™R2)
STRESSES

IF (ISTRES.EQ.0) GO TO 60

SIG1 (I1I1)=CON1*(CEI (II)+XMU2*CE2(II))
STIGIN(IT)=CON1*(CEIN(II)+XMU2*CE2N(II))
S1G2(11)=CON2*(CE2(II)+XMU1*CE1(II))
SIG2N(I1)=CON2* (CE2N(II)+XMUI*CEIN(II))
T1(II)=C11*E1 (I1)+C12*E2(I1)+K11*X1(II)+K12*X2(II)
T2(II)=C12*E1 (II)+C22*E2 (11)+K12*X1 (11)+K22*X2(1I)
XM1(II)=D11*X1(II)+D12*X2(I1)+K11*E1(I1)+K12*E2(II)
XM2 (I1)=D12*X1(II)+D22*X2(I1)+K12*E1(I1)+K22*E2(II)
IF (IFIRST.EQ.1) GO TO 70

GO TO 30

CONTINUE

GO TO 40

CONTINUE

112 = 0

WRITE(6,1001)

DO 80 1=1,I1

WRITE (6,1002)X (1) ,W(I),U(I)

IF(ISTRN.EQ.0) GO TO 100

WRITE (6,1003)

DO 160 I=1,I1
WRITE(6,1004)X(I),E1(1),E2(1),X1(1),X2(1)

WRITE (6,1005)

DO 170 I=1,1I
WRITE(6,1004)X (1) ,CE1(I),CEIN(I),CE2(I),CE2N(I)
IF(ISTRES.EQ.0) GO TO 100

WRITE(6,1007)

DO 190 I=1,II

WRITE (6,1004)X(I),SI1G1(I),SIGIN(I),SIG2(1),SIG2N(I)
WRITE (6,1006) :

DO 180 I=1,II
WRITE(6,1004)X(1),T1(1),T2(1),XM1(1),XM2(1)



100 CONTINUE

1010 FORMAT (' CUMULATIVE VOLUME CHANGE THRU SEGMENT ', 12, 1H=,
1E16.8)

1001 FORMAT(1H1///22X,10HMODE SHAPE//12X,1HX, 19X, 1HW, 19X, 1HU)

1002 FORMAT (4 (4X,F16.8))

1003 FORMAT (1H1///25X, 'MIDDLE SURFACE STRAINS AND CHANGES IN CURVATURE'
1 //10X,1HX,17X,2HE]l,16X,2HE2, 15X, 2HX1, 16X, 2HX2)

1004 FORMAT(7(2X,E16.8))

1005 FORMAT(1H1///41X,'EXTREME FIBER STRAINS' //

1 10X, 1HX, 12X, 10HE1POSITIVE
2,7X,11HE1l NEGATIVE ,7X,11HE2 POSITIVE ,7X,11HE2 NEGATIVE)

1006 FORMAT(1H1///35X,28HSTRESS AND MOMENT RESULTANTS
1//10X,1HX, 16X, 2HT1,16X,2HT2, 12X, 2HM1, 16X, 2HM2)

1007 FORMAT(1H1///40X,22HEXTREME FIBER STRESSES
1//10X,1HX,12X,11HSIGMA SUB 1,7X,11HSIGMA SUB 1,7X,11HSIGMA SUB 2,
27X,11HSIGMA SUB 2/24X,10H(POSITIVE)

3 ,8X,10H(NEGATIVE),8X,10H(POSITIVE),8X, 10H(NEGATIVE))
RETURN
END
SUBROUTINE BACK(NE,N,M,NMAX,A)
ZERO INSERTED INTO PROPER ROW OF VECTOR
DIMENSION A(NMAX,1)
MP1=M+1
IF(NE.GT.1) GO TO 30
J=1
DO 10 I=2,MP1
I11=MP1+2~1
10 A(I1,1)=A(XI-1,))
20 a(1,1)=0.
RETURN
30 IF(NE.NE.MP1) GO TO 50
J =1
40 A(MP1,J)=0.
RETURN
50 NEP1=NE+1
J=1
DO 60 I=NEP1,MPl
I11=MP1+NEP1-1I
60 A(II,I)=a(11-1,D)
70 A(NE, J)=0.
RETURN
END
SUBROUTINE CASE (ICASE,K,NELIM,NUM)
ROW AND COLUMN NUMBERS TO BE DELETED TO SATISFY BOUNDARY CONDITION
STORED IN ARRAY NELIM (MAXIMUM OF 8 NUMBERS)
DIMENSION NELIM(8)
NUM=0
IF(ICASE.EQ.17) GO TO 40
IF (ICASE.EQ.18) GO TO 40
IF(ICASE.EQ.4) GO TO 20
IF(ICASE.EQ.6) GO TO 30
NELIM(1)=1
NUM=NUM+1
IF(ICASE.EQ.11) GO TO 20
IF(ICASE.EQ.12) GO TO 30
NELIM(2)=2
NUM=NUM+1
IF (ICASE.EQ.5) RETURN
IF(ICASE.EQ.9) GO TO 20
IF(ICASE.EQ.13) GO TO 10
IF(ICASE.EQ.14) GO TO 30
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40

50

52

NELIM(3)=3

NUM=NUM+1

IF(ICASE.EQ.7) RETURN
IF(ICASE.EQ.10) GO TO 30
IF (ICASE.EQ.15) GO TO 10
IF (ICASE.EQ.16) GO TO 20
NELIM(NUM+1) = 5%K+1

NUM = NUM+1

RETURN

DO 1 I=},2

NELIM (NUM+I)=5%K+1
NUM=NUM+2

RETURN

Do 2 I1=1,3

NELIM (NUM+I)=5%K+]
NUM=NUM+3

RETURN

NUM=2

NELIM(1)=2

NELIM(2)=3
IF(ICASE.EQ.18) GO TO 50
GO TO 30

NUM=4

NELIM(3)=5%*K+2
NELIM(4)=5%K+3

RETURN

END



APPENDIX D
SAMPLE INPUT

//HLAK196T JOE (4EDS53590034),CONVERSIDNS,CLASS=X,MSGLEVEL=(1,1),
/7 TIME=00Z5 '
//8PARD PROC P=F

// EXEC

FGM=&F, REGION=4000K, COND=(4,LT)

//STEFLIB DD DSNAME=HLAK19&6.5FPAR.LOAD.DISF=8HR

//FTOSFOO01
//FTO&6FO001
//FTO7F001
//FTO9F001
//FT11FO001
//FT12F001
//FT13F001
//FT14FC01
// PEND

DD DDNAME=5YSIN

DD SYSOUT=X
DD DUMMY
DD DSNAME=HLAK195.NAS9.DATA,DISF=5HR
DD DSNAME=HLAK196.NAS511.DATA,DISP=SHR
DD DSNAME=HLAK19&.NAS12.DATA,DISP=5HR
DD DSNAME=HLAK1%&6.NAS13.DATA,DISF=5HR
DD DSNAME=HLAK1956.NAS14.DATA,DISF=5HK

//STEPY EXEC SFPARD,F=SHELL

//SYSIN

DD #

BELLOWS RECOMPILATION CHECK 1/89

17 1 0

0. 2.0
1 S .470 2.843 .326 0.
2 4 . 608 2.884 125 -. 99216
1 10 . 760 2.312 -.263 -.380
a 4 . 608 2.279 -123 99216
H 10 . 940 2.843 .326 -.470 -
e 4 . 608 2.884 .12% -.99216
1 10 760 2.312 -.263 -.380
e 4 . 608 2.279 .125 .99216
1 10 .982 2.843 326 -.470C
1 8 1.253 2.843 -.798 -1.253
2 10 1.5 2.045 1. .0

«28E+08 .28E+0& .3 .3 5G.
.037 .1077E+08
/%
1/

(NOTE: FOR IBM, FORTRAN FILE 12 MUST BE SEQUENTIAL, OTHERS DIRECT ACCESS.)
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