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Chaos in a Spatially-Developing 
Plane Mixing Layer 

By J. G. Broze', F. Hussain' and J. C. Buel12 

A spatially-developing plane mixing layer has been analyzed for chaotic behavior. 
A direct numerical simulation of the Navier-Stokes equations in a two-dimensional 
domain infinite in y and having inflow-outflow boundary conditions in z was used for 
data. Spectra, correlation dimension and the largest Lyapunov exponent have been 
computed as functions of downstream distance 2, over the range 0 5 z/&, 5 250, 
from velocity time series in an Eulerian reference frame. When forced at a single 
(fundamental) frequency with maximum amplitude v : / A U  = 0.01, the flow is peri- 
odic at the inflow but becomes aperiodic with increasing z. The aperiodic behavior 
is caused by the presence of a "noisy" subharmonic caused by the feedback between 
the necessarily nonphysical inflow and outflow boundary conditions. In order to 
overshadow this noise the flow was also studied with the same fundamental forcing 
and added random forcing of amplitude vk/AU = 0.01 at the inlet. Results were 
qualitatively the same in both cases: for small 2, spectral peaks were sharp and di- 
mension was nearly 1, but as z increased a narrowband spectral peak grew, spectra 
decayed exponentially at high frequencies and dimension increased to greater than 
3. Based on these results, the flow appears to exhibit deterministic chaos. How- 
ever, at no location was the largest Lyapunov exponent found to be significantly 
greater than zero. Moderate forcing with both fundamental at v : / A U  = 0.01 and 
subharmonic at v: /AU = 0.01 and 0.002 caused the flow to be periodic throughout 
the computational domain. 

1. Introduction 
The discovery of deterministic chaos in dynamical systems has opened the possi- 

bility of understanding and modelling transitional and turbulent flows, which pre- 
viously could only be described statistically. Complementary to this concept, the 
discovery and measurement in these flows of large-scale organized vortical motions, 
called "coherent structures", add evidence that there is order underlying the appar- 
ent randomness of turbulence. To couple these two concepts - chaos and coherent 
structures - might yield working models of turbulence which do not require solution 
of the full Navier-Stokes equations but which may predict flow statistics and dy- 
namics with useful accuracy. In order to do this, it must be established that chaos 
and coherent structures are present in flows of interest and relevant measurements 
must be made. It is the existence of deterministic chaos in a mixing layer which is 
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the object of this study; coherent structures in mixing layers have been studied in 
detail previously. 

Prior studies of flow chaos have been almost exclusively in closed flows, in par- 
ticular, Rayleigh-Binard convection and Taylor-Couette flow. However, most flows 
of interest are open flows: jets, wakes, mixing layers and boundary layers. Finding 
deterministic chaos in open flows is complicated by a number of factors. Most open 
flows, including jets, plane Poiseuille flow and spatially developing mixing layers, 
are convectively unstable (Bechert 1985), i.e., perturbation wave packets do not 
remain at the point of their origin but move downstream as they grow. It might be 
relevant to make measurements in a reference frame moving with the disturbance; 
for example, Deissler & Kaneko (1987) found that solutions of the time-dependent 
generalized Ginzburg-Landau equation gave the appearance of being chaotic, but 
had no positive Lyapunov exponents until they were measured in a moving frame. 
However, measurements in a moving frame are quite difficult to make; laboratory 
techniques such as hot-wire, hot-film, or laser-Doppler anemometry are best suited 
to collecting time series at a single location, or in a few locations simultaneously. 
New techniques, such as particle displacement velocimetry, can give more spatial 
detail but have reduced accuracy. Numerical simulations have both spatial detail 
and accuracy, but an advecting probe would leave the computational domain after 
only about a thousand time steps, compared to tens of thousands needed for stan- 
dard analysis techniques. It might also be useful to analyze instantaneous spatial 
data for spatial chaos. Methods for analysis of spatial data are not well estab- 
lished, although it is possible to apply techniques to a “space series” rather than 
a time series, if those data are available (Sauliere & Huerre 1988). Even so, the 
same obstacles to data collection apply in the spatial case as they do to the moving 
probe. 

The flow investigated was a two-dimensional, two-stream mixing layer with Re = 
(U1 - U2)6,/v = 100 and velocity ratio U2/U1 = 0.2. U1 and Uz are the ve- 
locities of the two streams, 6, is the inflow vorticity thickness and v is the kine- 
matic viscosity. All lengths and coordinates are normalized by &,, and velocities 
by (VI - Uz). In order to minimize the streamwise pressure gradient, entrainment 
velocities v(y= -w) = 0.0115 and v(y = a) = -0.0044 were imposed. The inflow 
profile for the streamwise velocity u was calculated from the Blasius self-similarity 
equation. The corresponding vertical velocity v could not be used since the self- 
similarity solution has vorticity at infinity. Instead, a somewhat arbitrary profile 
consistent with the entrainment velocities and containing a small amount of down- 
wash was imposed at the inflow. Both velocity components were required to satisfy 
a “convective” outflow boundary condition of the form &$/at = -ca$/i3x, where 
c = (U1 +U2)/2. See figure 2 of Buell & Huerre (1988) for a schematic of the 
geometry. 

Data for analysis were obtained from direct numerical simulations using a re- 
cently developed code. The two-dimensional Navier-Stokes equations are solved on 
a domain that is infinite in the vertical (y) direction and finite in the streamwise 
(z) direction. Pressure is eliminated by taking the curl of the momentum equations 
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FIGURE 1. Contours of vorticity for a = 0.01, b = 0.01, c = 0. 

twice and retaining only the x-component of the result. This yields a fourth-order 
equation for the streamwise velocity u which is advanced in time explicitly using a 
compact third-order Runge-Kutta scheme (Wray 1988). Since the Laplacian is con- 
tained in the time-derivative term, a Poisson equation must be solved during each 
substep. The vertical velocity v is recovered directly from the continuity equation. 
The numerical algorithm is based on a Fourier method with a cotangent mapping in 
the y direction (a modification of the method of Cain e t  al. 1984), and high-order 
accurate Pad6 approximations in the z direction. The first 2-derivatives in the con- 
tinuity equation and in the advection terms are approximated with modified Pad6 
finite differencing (S. Lele, private communication). The particular approximation 
used here yields sixth-order accuracy for the low to moderate wavenumber compo- 
nents of the solution, and significantly lower dispersion errors for high wavenumbers. 
The second and fourt h-order x-derivatives are approximated with classical fourth- 
order accurate Pad6 formulas. In order to avoid the inversion of very large sparse 
matrices for the solution of the Poisson equation for u, the effective wavenumber 
concept (Kim & Moin 1985) is applied in the x-direction so that the y-direction 
matrices are decoupled. The mesh used here was 384 x 192 in (2, y), and the do- 
main length in the z-direction was 250. Perturbations were introduced in v at the 
inflow; the perturbation amplitude was tapered by a Gaussian shape over a small 
region near y = 0. 

The primary instability in mixing layers is a fundamental wave which grows ex- 
ponentially from its initial (linear) amplitude at the inflow, becomes nonlinear and 
saturates at some x, forming a rolled-up vortex. The secondary instability is the 
subharmonic of the fundamental which grows and saturates, resulting in vortex 
pairing. Both the fundamental and subharmonic are receptive to disturbances over 
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a band of frequencies; the initial amplitudes and phase difference control the evolu- 
tion of the mixing layer. For more details, see Monkewitz (1988). The frequencies, 
amplitudes and phases from which these grow depend on extrinsic perturbations: 
controlled excitation, feedback and ambient noise. A sample vorticity plot is shown 
in figure 1 for a simulation with both fundamental and subharmonic perturbations. 
This plot shows all stages of 2-D mixing layer dynamics up through pairing. The 
vortex entering at z = 60 has not yet fully rolled up; the structure at z = 80 is 
fully formed and will eventually pair with the one at z = 60. Two structures near 
z = 120 are in the process of pairing, while the structures at 2 = 180 and 2 = 230 
are fully paired structures. 

Coflowing two stream mixing layers have been shown theoretically to be convec- 
tively unstable. However, the upstream flow can be perturbed by feedback from 
somewhere downstream. In experiments, this feedback may be provided by im- 
pingement on a solid body, causing pressure fluctuations which propagate upstream 
to the inflow, or perhaps by velocity fluctuations at the splitter plate induced by 
downstream vortex rollup. In numerical experiments with solid surfaces absent, 
this cannot occur except as boundary condition reflections. In the present numeri- 
cal simulation, it was established that boundary condition reflection did exist (Buell 
& Huerre 1988), causing vortex rollup to occur in a nontransient manner for the 
conditions being simulated. 

2. Approach 

It is not clear whether the flow in question, a two-stream transitional mixing 
layer, is temporally or spatially chaotic. The flow develops in z and is obviously not 
spatially periodic, but it is not possible to examine the exact nature of its spatial 
behavior in the current framework. The flow looks somewhat more periodic in time, 
but closer examination reveals definite aperiodicity. It is entirely possible that the 
flow is both temporally and spatially chaotic. Given the inability to follow distur- 
bances spatially for great distances, we wanted to focus more closely on temporal 
aspects of the flow and to exclude possible spatial dynamics. To do this, we chose 
to analyze time series collected in an Eulerian frame at selected flow locations and 
to treat streamwise distance z as a flow parameter. Since the disturbance at a given 
z originates upstream and convects past our "probe", we perturbed the flow by im- 
posing a sinusoidal fluctuation (with a fundamental and/or subharmonic frequency) 
at the inflow boundary. This way, we imposed a periodicity on the dynamics and 
observed how it deviated from periodicity with increasing z. We still must rely on 
the presence of other disturbances to initiate this deviation, but what is of interest 
is how the flow organizes itself in the presence of these disturbances. 

3. Excitation Case Studies 

The inlet profile of the mixing layer had the form U(y)i + [V(y) + ue(y , t ) l j ,  
where U(y) is the Blasius similarity solution for a 2-D mixing layer and ue(y,t) 
is the perturbation. The inlet was excited with fundamental and subharmonic 
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perturbations and random noise with several combinations of amplitudes: 

where f(y) has a Gaussian shape centered at y = 0 and is zero elsewhere and r ( t )  
is a uniform random variable distributed on the interval (-1,l). We isolated a few 
key cases: 

Case (i): no forcing (u = b = c = 0), 
Case (ii): (a) fundamental only (a = 0.01; b = c = 0), 

(b) fundamental plus random forcing (u = 0.01; b = 0; c = 0.01), 
Case (iii): fundamental and subharmonic (a = 0.01; b = 0.01, 0.002, 0.0005; 

In case (i), fundamental and subharmonic waves grow due to unknown perturba- 
tions arising from boundary condition reflections; low-dimensional behavior is not 
expected in general. In case (ii(a)), the fundamental is driven by periodic forcing, 
but the subharmonic is subject to background perturbation by reflections. Case 
(ii(b)) was used to study the difference between the subharmonic driven by back- 
ground perturbation and by a random inlet forcing. In case (iii), both fundamental 
and subharmonic are driven by the imposed periodic perturbation. The phase angle 
4 was chosen to be 100 degrees, in the range where subharmonic enhancement is 
expected (Monkewitz 1988, Husain & Hussain 1988). 

c = 0). 

4. Analysis Techniques 

4.1. Time Series Analysis 
Power spectra, correlation dimension and largest Lyapunov exponent were calcu- 

lated from time series collected at selected locations in the flow domain. To establish 
the existence of chaos from (numerical or laboratory) experimental data is tricky, 
at best; several pieces of supporting evidence must be assembled and analyzed for 
trends as parameters are varied. Taken together, continuous spectra, noninteger 
correlation dimension and positive Lyapunov exponent are strong indicators of de- 
terministic chaos. 

4.1.1. Power spectra 
Spectra can provide insight into flow dynamics. There are two obvious extremes: 

a discrete spectrum indicates periodicity or quasi-periodicity, whereas a continu- 
ous spectrum with no peaks suggests nonperiodic, random behavior. In contrast, 
other spectra which are intermediate cases, such as sharp peaks on broadband back- 
ground noise or a combination of sharp and narrowband peaks, indicate possible 
low-dimensional, chaotic dynamics. The behavior of spectra at high frequencies can 
be used to separate deterministic chaos from randomness. In particular, the idea 
that exponential decay of spectra is indicative of deterministic chaos, while power- 
law behavior is indicative of randomness, is argued by Sigeti & Horsthemke (1987) 
and utilized in several studies, e.g., Brandstater & Swinney (1987). 
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FIGURE 2. (a) Correlation integral for case (ii(a)), a = 0.01, b = c = 0, rn = 
I 1,. . . ,7 from top; (b) Slope of correlation integral, rn = 1,. . . , 7  from bottom. 

4.1.2. Correlation dimension 

The trajectories in phase space are reconstructed from a single dynamic variable 
using time-series-delay embedding (Takens 1980). Time delays were chosen using 
the first minimum of the mutual information (Fraser & Swinney 1986) and checked 
visually by making two-dimensional phase portraits. Correlation dimension was 
calculated using the algorithm of Grassberger & Procaccia (1983) (modified to use 
1000 randomly chosen reference points). The correlation integral C(s), where s 
is phase space distance, was computed for a range of embedding dimensions and 
fit with a cubic spline polynomial (figure 2a). Each line in the figure represents a 

I 

I 
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different embedding dimension m, increasing from top to bottom. Notice that, near 
the region where the log,s = -3, all curves have approximately the same slope. 
The slope of C versus 8 was computed analytically in log-log coordinates from the 
spline coefficients (figure 2b). The slope is typically quite high (possibly as high as 
m) at the smallest distances due to the presence of noise. At larger distances, the 
slope drops off sharply and may flatten out; this occurs near log, s = -3 in the 
example. The correlation integral is said to "scale" when the slope is constant over 
some range of distances and said to "saturate" when this constant slope converges 
as m increases. This saturated slope is called the correlation dimension v, and 
is an estimate of the Hausdorff dimension. The distances over which the slope is 
constant is called the scaling region, since it implies that the correlation integral 
scales exponentially, i.e., C - 8". The scaling region is computed by finding the 
scales over which the slope does not deviate more than a given bound, typically 
5%. In the example shown in figure (2b), for m = 3, v = 1.07 over a scaling region 
from 8 = 0.045 to s = 0.20, where s in this case is v.  The actual value computed 
from this algorithm cannot be used to determine n very accurately; e.g., it can not 
discriminate between 1.0 and 1.05 and therefore can not be used to "prove" that 
an object is fractal. It can be used to estimate dimension roughly and to measure 
increasing complexity as a parameter is varied. Unfortunately, data length required 
for the correlation dimension algorithm is large and increases roughly as I C r n ,  where 
IC is the some constant (Brandstater & Swinney 1987). Since higher embedding 
dimensions are required to reveal higher dimensional attractors, data requirements 
quickly get very large as dimension increases. 

4.1.3. Lyapunov ezponent 
The largest Lyapunov exponent is a measure of the maximum rate of exponential 

divergence of trajectories in phase space and is indicative of chaos when positive. 
We calculated it using the method of Wolf et aZ. (1985). The exact value of the 
exponent is not crucial and should not be expected from this algorithm, although it 
does give results within a few percent for time series from model systems of ordinary 
differential equations, such as the Lorenz system. It is an important indicator of 
chaotic behavior, and it is important to be sure whether or not it is positive. Since 
the calculated exponent can vary significantly depending on input parameters ( w i t . ,  
time delay, embedding dimension, maximum and minimum scales, evolution time), 
care was taken to select consistent values. The results of the correlation dimension 
calculation form natural choices for several of these parameters. In particular, the 
time delay was chosen from mutual information (the same delay was used for corre- 
lation dimension and Lyapunov exponent), embedding dimension was chosen to be 
the minimum rn for which saturation was observed in the correlation integral, the 
minimum and maximum scales were taken from the limits of the flat scaling region, 
and the evolution time was chosen as the time delay. Several tests of these param- 
eters were conducted. Small differences in time delay and embedding dimension 
had little effect on the computed exponent. However, since the algorithm follows 
the distance between nearby trajectories in the reconstructed phase space, mini- 
mum and maximum scales are quite important. These scale parameters sets the 
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range of distances between trajectories which will be considered. A distance which 
is too small would include the random noise at the smallest scales and might give 
a positive exponent even when the large-scale flow is not chaotic, while measuring 
at very large distances might yield a negative or zero exponent even for a chaotic 
attractor. The limits of the scaling region of the correlation exponent were chosen 
for these parameters since those are the scales over which the flow behaves as an 
attractor. Small variations about these values had little effect on the computed 
value. The choice of evolution time has some effect on the magnitude, but not on 
the sign, of the exponent. In summary, the exponents we calculated seem to give a 
good indication of the sign of the largest Lyapunov exponent. 

4.14. Flow variable 
The choice of flow variable, in principle, should make very little difference in the 

results using these methods. Three variables were tested: u, v,  and G = Jwzdy ,  
where w, is the vorticity. The v component had a smoother profile with a peak at 
y CY 0 while u had sharp peaks near y = 0. The variable G was generated as a means 
of tracking passage of vortex peaks for use in the analysis of discrete sequences (see 
next section). Results were in good agreement: dimension and Lyapunov exponent 
using v and G were quite similar, while u tended to give slightly higher values and 
smaller scaling regions. After these tests, v was chosen as the variable to be used. 

4.2. Analysis of Discrete Sequences 
Two goals of open-flow studies using nonlinear dynamics techniques are low- 

dimensional modeling and prediction. One way to do this is to extract from the data 
a discrete sequence of significant events, such as vortex passage periods T, vortex 
strengths or any other significant dynamic measure. From this sequence, first-return 
maps (T,, versus Tn+l) can be constructed which give information about what the 
next period will be based on the previous period. If these maps are highly ordered, 
a curve fit might give a useful predictive model. If the maps are less structured, 
it may still be possible to quantify how much information is "stored" by the flow 
system - about the future based on the past - by computing "stored information" 
(Shaw 1984). We constructed first-return maps from periods between zero-crossings 
of v and computed stored information: 

I 

I(Tn+llTn) = P(Tn) P(Tn+llTn)log(P(Tn+l ITn)/P(Tn))dTn+ldTn J J  
~ 

where I(Tn+l ITn) is the stored information, P(T,,) is the probability density function 
(pdf) of T,,, and P(T,,+llT,,) is the pdf of Tn+l conditional on T,,. Unfortunately, to 
construct a convergent pdf estimate requires a large number of points, particularly 
when one wishes to construct conditional pdfs from some subset of the data set. As 
a result, we were unable to get useful results from our data, which had less than 200 
structure passages (when we needed of the order of thousands). The pdfs and stored 
information were quite sensitive to number of bins used in the pdf estimate. The 
stored information fluctuated significantly as number of bins was changed. We were 
unable to establish reliably even an approximate value which could reveal trends in 
I(Tn+l IT,,) as location was changed. 
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FIGURE 3. Spectrum of v for case (i), a = b = c = 0; (a) z = 140, (b) z = 230. 

5. Results and Discussion 
Case (i): (u = b = c = 0) 

Velocity spectra in the unforced case showed no sharp peaks: a broadband fun- 
damental peak appeared at small z (figure 3a) and was replaced at larger z by a 
broadband subharmonic peak (figure 3b). Computation of the correlation integral 
revealed no scaling region. This is not unexpected; the instability is driven by am- 
bient perturbations only, which are almost entirely boundary condition reflections 
at the outflow. For the computational domain chosen, the reflection was weak and 
aperiodic (Buell & Huerre 1988). Since the reflections are not periodic, the fluc- 
tuations passing the “probe” are necessarily not. Due to the lack of scaling, no 
parameters could be extracted to compute Lyapunov exponent. 

Case (ii(a)): (u = 0.01; b = c = 0) 
The fundamental was forced at w = 0.18. Traces of v velocity at four different 

z locations (figure 4) show how the flow is periodic at z = 100 and becomes more 
disordered with increasing z. At z = 140, the emergence of the subharmonic 
component can be seen in the alternating higher and lower peaks at some times. A t  
z = 170 and 200, events can be seen with twice the period of the fundamental; this 
is the footprint of paired vortices. Spectra of v velocity (figures 5a-d) at the same 



I 12 J.  G. Broze, F. Hussain and J.  C. Buell 

P 

I I 

FIGURE 4. Time traces of o for case (ii(a)), u = b = 0.01, c = 0; from bottom to 
top, z = 100, 140, 170, 200. 

locations reveal sharp peaks at the fundamental frequency and its harmonics which 
slowly diminish with z. The peak of the subharmonic is not sharp, however; it 
forms a noisy narrowband peak at about o = 0.09. This peak is initially quite low: 
at z = 100 (figure 5a), the fundamental is almost 4 orders of magnitude higher; at 
z = 140 (figure 5b), the fundamental is 2 decades higher; at z = 170 (figure 5c), the 
peaks are only a decade apart; and at z = 200 (figure 5d), the noisy subharmonic 
clearly dominates the spectrum. At this point, the spectrum looks quite similar 

subharmonic was unforced in both cases. 
In contrast with case (i), correlation integral calculations worked quite well in 

this case. Results for cases (ii(a)) and (ii(b)) are shown in figure 6. For case (ii(a)), 
correlation dimension was near 1 for z < 100 and increased monotonically to a value 
between 3 and 4 by z = 170. For locations z > 170, the correlation integral did 
not truly scale. An oscillation in the slope sometimes appears at high embedding 

rises a few percent with each higher embedding dimension. In all cases, at large z, 
the scaling region is quite small, extending over a factor of two or less in distance. 
This is quite likely due to a lack of long time series, as discussed above in Analysis 
Techniques. Time series of only 9000 points (188 orbits) were used. The values 
shown in figure 6 for z > 170 are estimates from the time series available; the true 
dimension is likely to be higher. 

Calculation of the largest Lyapunov exponent over the domain 100 5 z 5 200 did 

I to the spectrum in the unforced case (figure 3b). This is not surprising, since the 
I 

I dimensions which obscures any flat slope; in other cases the slope is flat but still 
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FIGURE 5. Spectra of v corresponding to figure 4; (a) z = 100, (b) z = 140, (c) 
2 = 170, (d) 2 = 200. 
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FIGURE 6.  Correlation dimension as a function of location for cases @(a)) and 
(ii( b)). 

not show an appreciable positive value at any location. Values ranged from -0.0083 
bits/orbit (-0.00023 bits/time unit) to 0.072 bits/orbit (0.002 bits/time unit), show- 
ing a general, though not monotonic, increase with 2. While the largest value found 
might indicate chaos, this possibility is not certain. These exponents can be inter- 
preted as the average rate at which information is lost or gained about the initial 
condition of a phase space trajectory; a positive value represents a loss of informa- 
tion and therefore sensitive dependence on initial condition. The largest calculated 
value can be compared loosely with values reported by Wolf et al. (1985) for the 
Lorenz attractor (2.16 bits/time unit, 1.08 bits/orbit) and the Rossler attractor 
(0.13 bits/time unit, 0.78 bits/orbit) for typical parameter values. 

Case (ii(b)): (u  = 0.01; b = 0; c = 0.01) 
Since the boundary condition reflection was difficult to quantify but was clearly 

not periodic, we imposed a random perturbation on the inlet in addition to the 
fundamental perturbation. This perturbation was designed to be of lower amplitude 
than the fundamental but higher than the background. At the first z station (z = 
0.7), the fundamental amplitude of the v spectrum was while the white noise 
amplitude was lo-’’ (figure 7). For the case with no random input, the background 
amplitude was less than lo-”. Spectral development is quite similar to that of the 
case with no random forcing, as was that of dimension (figure 6) and Lyapunov 
exponent. The two dimensions begin to deviate after z = 160; exact values at larger 
z are unreliable, but the trend seems to indicate that the system under random 
forcing may have higher dimension. The drop in dimension for the randomly forced 
case at z = 190 is clearly not physical; it is most likely due to the lack of data 
records of adequate length. 

Case (iii): (u  = 0.01; b = 0.01, ZI = 0.002, 0.0005; c = 0) 
This case yielded both expected and unusual results. Intuition suggests that the 
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FIGURE 7. Spectrum of v at first x station for case (ii(b)), a = 0.01, b = 0, c = 0.01. 
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FIGURE 8. Correlation dimension as a function of location for cases @(a)) and (iii). 

presence of sinusoidal fundamental and subharmonic should make the flow periodic 
for a larger streamwise distance. When the subharmonic amplitude was 1% and 
0.2%, this was the case; in fact, the flow was periodic and dimension was 1 through- 
out the domain (figure 8). When the subharmonic was very low (0.05%), however, 
the flow was not periodic, and had higher dimension than with no subharmonic 
forcing at all. This is contrary to intuition, since we expect that even a low ampli- 
tude subharmonic would organize the flow more than no subharmonic at all. As a 
check, spectra with and without this forcing were compared, and they revealed that 
the noisy subharmonic had higher amplitude with the forcing. Further investigation 
showed that the forcing amplitude was of the order of reflection noise. We speculate 
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that superposition of subharmonic forcing with the boundary condition reflections 
creates higher subharmonic amplitude which is still noisy. 

The results of cases (ii(a)) and (ii(b)) seem to indicate chaotic behavior. The 
growth of narrowband noise in the spectrum, exponential falloff of spectra at high 
frequencies for large z and the increase from unity of correlation dimension all point 
to the presence of low dimensional chaos in this system. By comparing the devel- 
opment in z of the spectrum with correlation dimension, one sees the connection 
between dimension and the growth of the subharmonic. The fundamental excita- 
tion has caused the flow to be periodic for small 2, but the subharmonic does not 
grow from a pure sinusoid and its contribution to the dynamics is necessarily ape- 
riodic. As the subharmonic grows, the flow becomes less organized; however, this 
disorganization appears to be low dimensional chaos. 

The similarity between cases (ii(a)) and (ii(b)) is quite significant. The bound- 
ary condition reflection can not be entirely random; reflections will peak as large 
structures pass out of the computational window, yielding a broadband reflection 
centered at the subharmonic frequency, as there is only one pairing within the com- 
putational domain. The random forcing is white (figure 7). But the flow driven 
by weak internal reflections and the flow driven by white noise are similar: these 
perturbations are organized by the secondary instability into a low-dimensional 
chaotic flow rather than a random flow. However, this low-dimensional behavior is 
observed only in forced cases with periodic roll up; the unforced case showed no 
scaling at all. Why is this? Perhaps the answer lies with the subharmonic resonance 
phenomenon, which has been investigated both theoretically (Monkewitz 1988) and 
experimentally (Husain & Hussain 1986). Comparing spectra in cases (i) and (ii(a)), 
the bandwidth of the unforced flow (figure 3a) is significantly broader than that of 
the subharmonic component in the forced flow (e.g., figure 5b). Because we have 
supplied a single fundamental frequency w, it resonates most strongly with the fre- 
quency w/2 .  Other frequencies near w / 2  will resonate because of detuning, but 
their amplitudes will be lower. However, if the fundamental is narrowband rather 
than a sharp peak, resonance will occur over a wider range of frequencies, giving a 
wider subharmonic bandwidth. Thus, the flow with no forcing has a wider spectral 
band in both the fundamental and subharmonic. This lack of organization must 
result in higher dimension, too high to be measured with the record length avail- 
able. The linear falloff at high frequencies in case (i) and in cases (ii(a,b)) points 
to deterministic chaos in this flow (Sigeti & Horsthemke 1987), although we could 
not measure its dimension. 

6. Concluding Remarks 

A numerically generated, two-stream mixing layer has been studied as a function 
of position in an Eulerian frame for evidence of temporal chaos. The most interesting 
result was for cases in which a single, periodic perturbation was imposed at the inlet. 
With increasing 2, narrowband peaks developed in the spectra, dimension increased 
from 1, and spectra at high frequencies fall exponentially, indicating that the flow 
had become chaotic. 
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The absence of a positive Lyapunov exponent is puzzling in light of other indi- 
cators of chaos. The recent work of Deissler and Kaneko (1987) shows, using the 
Ginzburg-Landau equation and coupled logistic maps, that convectively unstable 
systems which appear chaotic may nonetheless have zero Lyapunov exponent when 
measured in a stationary frame. However, positive Lyapunov exponents were mea- 
sured in a frame moving with the disturbance. The mixing layer is a convectively 
unstable flow and may exhibit the same behavior. Additional study will be focused 
on this possibility. 

The development of chaos in the singly forced case can be seen as the result of 
resonance between the periodic fundamental and its subharmonic. Since the ambi- 
ent fluctuations are broadband, the subharmonic develops as a narrow band rather 
than a single frequency due to detuning. The layer shows qualitatively the same 
behavior when forced with fundamental alone as when forced with fundamental and 
random noise. This is quite interesting because the perturbation sources are quite 
different: in one case the source is reflections which are due to downstream flow 
conditions, whereas in the other case it is imposed random perturbations. More 
investigation is necessary to determine whether this similarity is superficial or there 
is some universality to the dynamics regardless of the extrinsic perturbation. 

Laboratory experiments will serve as an important test of these results. Will 
the flow evolve similarly in the laboratory, or will the low-dimensional dynamics 
be overcome by three-dimensional phenomena? Three-dimensional mixing layers 
should behave quite differently. The onset of the spanwise secondary instability, the 
development of ribs, the possibility of vortex cut-and-connect and the breakdown 
of the mixing layer are important dynamic events which are not possible in two 
dimensions. In addition, 3-D spatially developing simulations and simulations of 
temporally developing flows will be quite important to study these phenomena as 
low-dimensional dynamical systems under carefully controlled conditions. 
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