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Inflow/Outflow Boundary Conditions and 
Global Dynamics of Spatial Mixing Layers 

By J. C. Buell’ AND P. Huerre2 

1. Introduction 
The numerical simulation of incompressible spatially-developing shear flows poses 

a special challenge to computational fluid dynamicists. The Navier-Stokes equations 
are elliptic and boundary equations need to be specified at the inflow and outflow 
boundaries in order to compute the fluid properties within the region of interest. 
It is, however, difficult to choose inflow and outflow conditions corresponding to a 
given experimental situation. Furthermore the effects that changes in the boundary 
conditions or in the size of the computational domain may induce on the global 
dynamics of the flow are presently unknown. The purpose of this study is to exam- 
ine these issues in light of recent developments in hydrodynamic stability theory. 
The particular flow to be considered is the spatial mixing layer but it is expected 
that similar phenomena are bound to occur in other cases such as channel flow, 
the boundary layer, etc. A short summary of local/global and absolute/convective 
instability concepts is given in section 2. In section 3 we present the results of nu- 
merical simulations which strongly suggest that global resonances may be triggered 
in domains of finite streamwise extent although the evolution of the perturbation 
vorticity field is everywhere locally convective. In the last section, we discuss a rela- 
tionship between finite domains and pressure sources which might help in devising 
a scheme to eliminate these difficulties. 

2. Local/Global, Absolute/Convective Instabilities 
Rigorous definitions of absolute and convective instability have been given in 

the context of plasma physics by Briggs (1964) and Bers (1983). Similar ideas 
have recently been applied to inviscid instabilities in free shear layers by Huerre 
& Monkewitz (1985), Koch (1985) and Monkewitz (1988), among others. For a 
review, the reader is referred to Huerre (1987). 

A parallel flow (Le., independent of the streamwise coordinate z) is said to be 
convectively unstable if its linear response to a delta function impulse in space 
and time decays to zero everywhere as time increases to infinity, but increases 
along certain rays in the downstream direction (Figure lb). Conversely, a parallel 
flow is absolutely unstable if its impulse response becomes unbounded everywhere 
for infinite time (Figure la). These notions are particularly relevant in spatially- 
evolving flows, as long as the streamwise variations of the basic velocity profile are 
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FIGURE 1. Sketch of a typical impulse response: (a)  absolutely unstable flow; (a) 
convectively unstable flow. 

X 

small over a characteristic instability wavelength. One then says that the flow is 
locally absolutely unstable or locally convectively unstable at a given streamwise 
station. For instance, it has been demonstrated (Huerre & Monkewitz 1985) that 
the hyperbolic tangent mixing layer is convectively unstable for values of the velocity 
ratio R = (Ul - U2)/(UI + U2) smaller than one (Le . ,  for coflowing streams), 
171 and U2 being the respective velocities of each stream. Since this model is a 
good approximation to experimentally measured local mean velocity profiles, one 
may safely conclude that spatially-developing shear layers are locally convectively 
unstable everywhere: any initial vortical disturbance is advected downstream as it 
is amplified and the flow is extremely sensitive to external forcing (Ho & Huerre 
1984). It is important to note that this locally convective behavior strictly pertains 
to vortical fluctuations in the shear zone and not to pressure fluctuations in the 
outer potential flow. 

Since there is no region of absolute instability, one cannot have a self-sustained 
global response (Le. ,  a finely tuned oscillation with the streamwise coordinate as an 
eigenfunction direction) involving temporally amplified upstream and downstream 
propagating vorticity waves (Chomaz et al. 1988). In the absence of a splitter plate, 
a downstream body, or a "non-transparent" outflow or inflow boundary, one there- 
fore does not expect a self-sustained fluctuation field unless the flow is continuously 
forced from the outside. 

3. Effects of Boundary Conditions on Spatially-developing Simulations 
A two-dimensional numerical code of the spatial mixing layer developed by the 

first author was used to conduct the present investigation. The boundary condi- 
tions applied to the perturbation quantities are indicated on Figure 2. The reference 
length and velocity scales are the inflow vorticity thickness and the velocity differ- 
ence, respectively. In all cases there was no external forcing at the inflow boundary 
and no splitter plate was inserted into the flow. At a velocity ratio R = 2/3 and 
for a computational domain of streamwise extent Lx = 250, one obtains through- 
out the flow a self-sustained noisy dynamical state characterized by a broad power 
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FIGURE 2. Geometry and boundary conditions. 
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FIGURE 3. Power spectrum of v velocity at 2 = 170, y = 0. 

spectrum, as shown in Figure 3. The spatial evolution of the vorticity field presents 
all the usual features of laboratory experiments, namely: spatial amplification of 
instability waves, roll-up, pairing of vortices, etc. The temporal behavior, however, 
appears to contradict the reasoning of the previous section: a convectively unstable 
flow should not be able to give rise to a "natural" self-excited state. 

Time series of the cross-stream perturbation velocity v taken at different stream- 
wise stations during the transient regime proved to be enlightening (see Figure 4). 
The discontinuity in slope generated at time t = 0 at the inflow boundary produces 
a wavepacket which propagates downstream. This discontinuity is induced by a 
mismatch between the initial conditions and the boundary condition at x = 0 (this 



FIGURE 4. Time traces of v-velocity at z = 1, 50, 85, 115, 140, 160, 180, 200, 220, 
249 (from bottom to top). Each trace is scaled with its maximum amplitude. 

40 1 

FIGURE 5. Contours of vorticity during the initial transient, showing the startup 
vortex pair. 
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appears to be unavoidable). The wavepacket is associated with the start-up vor- 
tex clearly seen in the downstream part of Figure 5. One can therefore conclude 
that the numerically generated velocity profile is indeed conuectiuely unstable, the 
start-up transient being effectively a convolution of the initial state and the im- 
pulse response. Furthermore, one notes that, as soon as the wavepacket hits the 
downstream boundary, a sharp variation instantaneously takes place in the signal 
measured at the inflow. This local inhomogeneity in turn generates, after suitable 
filtering by the mean flow, a second wavepacket which also propagates downstream. 
It appears that the self-excited noisy state is induced by multiple reflections at 
the inflow and outflow boundaries of the computational domain. But temporally 
amplified vorticity waves cannot propagate upstream since the flow is convectively 
urn t able! 

Such is not the case for the pressure fluctuations prevailing outside the shear 
layer: Figure 6 presents statistical averages of various fluctuating variables plotted 
as a function of the cross-stream coordinate y. Two distinct regions are clearly 
in evidence: an exponential decay (linear on the semi-log plot) region followed by 
a much slower decay rate in the farfield region. The transition between the two 
regions is well-defined. The velocity in the second region might be associated with 
algebraically decaying pressure fluctuations generated by spatial inhomogeneities of 
the vorticity field due to modulations (Crighton & Huerre 1984) or pairing events 
(Gutmark & Ho 1985). Another likely candidate is the pressure field generated by 
multiple reflections at the inflow and outflow boundaries (strictly speaking, such a 
terminology is not legitimate: the potential flow is governed by an elliptic Poisson 
equation and information is transmitted instantaneously everywhere). Levels of 
constant mean-square v velocity are displayed in Figure 7. Levels are equally dis- 
tributed on a log scale (two levels per decade). One observes a strong maximum at 
the outflow boundary, with equally separated contours in the downstream portion 
of the domain. Slower decay takes place in the upstream region, as indicated by 
increasing separation between neighboring contours. One may therefore infer that 
the v fluctuations in that region are due to pressure waves “radiating” towards the 
inflow boundary. 

The following scenario emerges: the flow is locally convectively unstable from 
the point of view of vorticity fluctuations, but the global dynamics of the flow is 
dominated by a feedback loop (Laufer & Monkewite 1980, Ho & Huerre 1984). The 
downstream branch consists of rotational instability waves rolling up into vortices. 
The interaction between the vortical structures and the downstream boundary then 
generates global irrotational pressure disturbances which are immediately trans- 
mitted to the inflow boundary. These are in turn converted into hydrodynamic 
instability waves by the inflow boundary condition. The noisy state is due to the 
relatively long streamwise extent of the computational domain which does not allow 
for stable periodic behavior. In a sense, the numerical experiment simulates a closed 
flow which, at this particular value of Lz, is in a highly chaotic dynamical state. 
This is consistent with a closer examination of Figure 3. The power spectrum is 
not just a continuous broadband one, but exhibits in addition closely spaced peaks. 
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FIGURE 6.  y-profiles of time-averaged statistics at x = 125: d2 (solid), d2 (dashed), 
/u'v'~ (dots). 

FIGURE 7. Contours of time-averaged d2. 

Between frequencies 0.1 and 0.2 (for example) these peaks are equally spaced with 
the separation equal to the "box frequency", (2n)+(Ui + U2) /Lx .  Thus the effect 
of the feedback appears directly in the spectrum. 

The above scenario is further supported by the observed behavior of the system 
as the domain length Lx is varied. As mentioned previously, one sees a chaotic 
state when Lx is sdciently large. For small Lx ( i e . ,  less than loo), the system 
approaches a steady state. For L x  not too much above 100, a periodic state is 
obtained (albeit after a long transient in some cases). Thus, one can think of Lx as a 
bifurcation parameter. Figure 8 shows the variation in amplitude of the fluctuation 
v velocity at two x locations as Lx increases from 100. The trend is consistent 
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FIGURE 8. Maximum amplitude (in y) of v'' as a function of Lx at x = 85 (circles) 
and x = 100 (squares). 

with a supercritical Hopf bifurcation from a steady state to a periodic orbit at 
approximately Lx = 100. A distinctive feature of all the periodic solutions obtained 
is that an exact integral number of instability wavelengths X fit in the domain. For 
102 5 Lx 5 125, we found X = f L x ,  and for Lx = 135, X = ~ L X .  Thus, the 
perturbations at the inflow and outflow boundaries are exactly in phase, indicating 
instantaneous communication through global pressure fluctuations. The decrease in 
amplitude for Lx > 115 is due to the largest fluctuations being associated with the 
outflow boundary (in these simulations, at most only one rollup is obtained). For 
sufficiently large Lx (in the chaotic regime), the fluctuation amplitudes at a given 
x become independent of Lx.  

4. Finite Domains and Pressure Sources 
The results of the previous section indicate that self-sustained oscillations are 

due to global pressure fluctuations being instantaneously transmitted between the 
inflow and outflow boundaries. In other words, the imposed boundary conditions 
do not correspond to those appropriate for an infinite (streamwise) domain. To cure 
this problem, one might try, in some way, to adapt the boundary conditions on the 
finite domain to simulate more accurately those of the infinite domain. We do not 
have an explicit scheme to suggest but only a very preliminary analysis. 

For instance, we may consider the boundary-value problem 

V 2 p  = Q,  p = 0 on S. 

for the pressure p within a finite volume V bounded by a surface S. (Nuemann 
instead of Dirichlet boundary conditions may be imposed with little change in the 
following analysis). The source distribution Q(x) is contained within V and takes 
the form 

a 2  (u;u j ) 
= axiaxj 
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Let G(xlx0) denote the fiee space Green's function such that 

V2G = 6(x - ~ 0 ) .  

The function G(xlx0) gives the pressure field generated by a point source located at 
xo and "radiating" in free space. From Green's theorem, one may show that p ( x ,  t )  
satisfies the integral equation 

The volume integral corresponds to the pressure field in f i e  space due to the source 
distribution Q within the field. The surface integral is associated with finite do- 
main effects. Since p = 0 on S, only the pressure gradient dpldno remains. The 
surface integral is then the pseudo-sound field generated by a source distribution 
of strength -dp/dno on the surface S. It is precisely this term that is responsible 
for the "reflections" observed in the numerical simulations. Whether active control 
methods can be used to cancel such surface integral terms remains to be deter- 
mined. It might also be possible to obtain approximate expressions for these terms 
in the case of large computational domains. One must also point out that similar 
source distributions can also be obtained for the Navier-Stokes equations as derived 
in Ffowcs Williams & Hawkins (1969). 

A possible use of equation (1) might involve minimizing the component of the 
pressure field at the inflow (z = 0) due to surface sources at the outflow ( 2 0  = Lz), 
by adjusting the outflow boundary conditions on u and v.  If dp/dno is known (from 
the u-momentum equation), then this will require an estimate of how p at the exit 
plane depends on the outflow velocity boundary conditions. Whether this can be 
done without actually solving the Poisson equation for pressure is not presently 
known. 
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