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Sampling inhomogeneous turbulent fields 

By R. J. Adrian1, P. Moin2p3, & R. D. Moser2 

1. Background 
Consider a real random process U(y) whose statistical properties vary inhomoge- 

neously in the y-direction on an interval I. The Karhunen-Loeve expansion of the 
process is 

W 

m= 1 

where the expansion coefficients are 

and the expansion functions q5rn are eigen-solutions of 

In (3), R(y,y') is the two-point correlation of of the process V(y). The eigenfunc- 
tions are orthogonal on the interval I, that is 

Also, the expansion coefficients are related to the eigenvalues (A) by 

thus they are statistically orthogonal. 
The KL functions provide the "best" orthonormal set of functions in the sense 

that the expansion converges faster than expansions in terms of any other orthonor- 
mal set, as measured in the Lz norm. These eigenfunctions reduce to the trigono- 
metric functions if U(y) is statistically homogeneous, so the primary significance of 
the KL expansion lies in its ability to efficiently represent statistically inhomoge- 
neous processes. 
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Shannon’s Sampling Theorem provides a method for representing a homogeneous 
(i.e. stationary) band-limited continuous random process in terms of its samples 
at a finite number of points whose spacing is determined by the Nyquist criterion. 
In this case, the best representation of the process is an expansion in terms of a 
finite s u m  of trigonometric functions, and the samples must be taken periodically 
at a rate exceeding two times the maximum frequency in the signal spectrum. The 
question arises as to whether a similar result pertains to inhomogeneous random 
process and how such a result might be related to the KL expansion. 

An inhomogeneous process that is band limited in the generalized sense that it 
can be represented by a KL expansion with M modes with zero mean square error, 
can also be represented by a s u m  of the form 

where y u , ( a  = 1, ..., M) are a set of M sample points, and the interpolating 
functions are solutions of 

By analogy to Shannon’s sampling theorem, we are particularly interested in the 
zeros of 4 ( i .e .  q5(yQ) = 0) as sample points. 

2. Computations for turbulent channel flow 
The relevance of the foregoing to numerical computation of turbulence was ex- 

plored by examining the spectrum of eigenvalues and the eigenfunctions of the 
one-dimensional process U(y) in the turbulent channel flow data base. Inspection 
of the eigenvalue spectrum for the case of K L  expansion over the wall layer domain 
0 5 y+ 5 40 shows that the first eigenmode contains 73% of the total energy, and 
the first two eigenmodes contain 92% of the total (Moin and Moser 1989). Clearly 
the eigenfunction spectrum is rapidly decreasing, and there is some order M be- 
yond which it is not necessary to include additional terms. The selection of M is 
somewhat arbitrary, but by M = 10, we find that the energy of the tenth mode 
relative to that of the first mode is 0.6 x 

Figure 1 shows &(y) and 410(y) for K L  expansion on 0 _< y+ _< 40. It should 
be possible to reconstruct U(y) from its samples taken at the zeros of 410. There 
are nine zeroes (the zero at the wall is not counted because U(y) = 0 is a boundary 
condition). For comparison, the Chebychev polynomial grid points used in the 
direct numerical simulation are indicated by the squares. There are twenty-nine of 
these points. It is interesting to note that the spacings of K L  sampling points are 
nearly equal (see Figure lb. It appears that for sampling in the direction of flow 
inhomogeneity in boundary layers one does not have to use numerous points in the 
vicinity of the walls. This is because the K L  eigenfunctions carry with them much 

so M = 10 is a reasonable cutoff. 
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FIGURE 1. Eigenfunctions of the Karhunen-Loeve expansion for u over the interval 
0 5 y+ 5 40. The sample points yQ are at the intersection of the solid lines and the 
horizontal line through zero. The open symbols are chebychev points. (a) 4l(y), 
(bMlO(Y)- 
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of the rapidly varying parts of U(y). Note, for example, the rapid variation of &(y) 

Computations for K L  expansion on the full domain 0 5 y+ 5 180 reveals some 
interesting consequences of varying the domain (see Moin & Moser 1989). The 
eigenvalue spectrum is wider than that of the wall layer expansion. The bandwidth 

M = 11 for the wall layers. However, the extent of the domain is over four times as 
large as the wall layer, so many of the additional modes are actually slowly varying 
functions needed to represent the longer fluctuations that occur in the wider layer. 

The first and thirtieth eigenfunctions for the full channel width are shown in 
Figure 2. There are 64 Chebychev points on this interval (not counting y = 0) and 
29 K L  points 

In contrast to the wall layer the spacing of sample points for expansion over the 
full layer increases by more than a factor of 2.5 from the wall to the centerline. This 
is presumably due to milder variation of the eigenfunctions in the vicinity of the 
walls. The spacing of the sample points may be related to the variation of turbulent 

~ close to the wall. 

I required to reach 0.27 x lo-' of the energy in the first mode is M = 30, compared to 

I 

I length scale as one moves away from the wall. 

3. Conclusions 
The reconstruction of an inhomogeneous random process from a finite number 

of discrete samples can be performed in terms of the Karhunen- Loeve expansion 
for that process. The nth eigenfunction has n - 1 zero crossings which are the 
sampling points for the inhomogeneous process. The rapid variation of the K L  
eigenfunctions makes it unnecessary to have a high density of sampling (or grid 
points) near the wall. However, this result should not be construed as to indicate 
that with spectral simulations significantly fewer grid points are required with the 
KL expansion as compared to other orthogonal expansions. Moin & Moser (1989) 
have shown that the the advantage of the K L  expansion over Chebychev expansion 
rapidly diminishes when high percentage (say 90%) energy recovery is demanded. 
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FIGURE 2. Eigenfunctions of the Karhunen-Loeve expansion for U over the interval 
0 5 y/6 5 1. The sample points ya are at the intersetion of the solid lines and the 
horizontal line through zero. The open symbols are Chebychev points. (a) &(y), 
( b ) h 3  (Y). 


