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Theoretical model for VITA-educed 
coherent structures in the wall 

region of a turbulent boundary layer 

By Marten T. Landahl’ 

1 Introduction 
Experiments on wall-bounded shear flows (channel flows and boundary layers) 

have indicated that the turbulence in the region close to the wall exhibits a charac- 
teristic pattern of intermittently formed coherent structures. This was first clearly 
demonstrated in the visualization experiments of Kline et al.(1967), in which it was 
seen that most of the turbulence generation takes place during randomly recurring, 
comparatively short-time, bursting events in the near-wall region (in the viscous 
and buffer layers) separated by periods of unsteady, but basically inactive, quasi- 
laminar motion. The coherent structures have been found to carry a major portion 
of the turbulent stress. 

For a quantitative study of coherent structures it is necessary to make use of 
conditional sampling. One particularly successful sampling technique is the Vari- 
able Integration Time Averaging technique (VITA) first explored by Blackwelder 
and Kaplan (1976). In this, an event is assumed to occur when the short-time 
variance exceeds a certain threshold multiple of the mean square signal. This sam- 
pling technique has been found to bring out structures characterized by a low-speed 
(downstream) region and a high-speed (upstream) one separated by a thin, inclined 
shear layer. The measurements by Johansson and Alfredsson (1982) showed that the 
rate of occurrence of such structures (“bursting rate”) varies with the integration 
time and threshold parameter selected. The most frequently found structures have 
streamwise lengths of the order of a few hundred viscous wall units. In the original 
work on the modelling of the VITA structures (Landahl, 1984a; 1984b) the struc- 
ture was assumed to be initiated by a local inflectional type instability producing a 
transient disturbance, localized in space and time, the evolution of which was then 
followed by application of an approximate linear theory in which the effects due to 
viscosity and streamwise pressure gradient were neglected. This theory was found 
to give results for the sampled velocity signatures in good qualitative agreement 
with the experiments. 

The analysis presented here removes some of the assumptions in the earlier models 
in that the effects of pressure and viscosity are taken into account in an approxima- 
tion based on the assumption that the near- wall structures are highly elongated in 
the streamwise direction. The appropriateness of this is suggested by the observa- 
tions but is also self consistent with the results of the model which show that the 
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I FIGURE 1. Coordinate system and definitions. 

streamwise dimension of the structure grows with time, so that the approximation 
should improve with the age of the structure. 

2. Analysis 
Basic assumptions in the analysis are that the mean flow is parallel and that 

the nonlinearity is intermittent. Denoting by U(z2)(22 = y) the mean .velocity, 
by ui(z j , t )  the fluctuating velocity, and by p the fluctuating part of the pressure 
(see Figure 1). Navier-Stokes equations give the following set of equations for the 
fluctuating velocity field 

where 
. a T i j  Tt = - 

a2j 

and where 
Tij = - p ( U i U j  --) 

are the "fluctuating Reynolds stresses", overbar denoting average. 
Elimination of the pressure with the aid of the continuity equation, 

(3) 

gives the following equation for the vertical velocity component: 

( 5 )  
I av 

D(V2v) /Dt  - -U" - VV'V = q a2 
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For infinitesimal fluctuating velocity amplitudes the right-hand side of (7) may be 
neglected, and one recovers the Orr-Sommerfeld equation (in physical space) for the 
v-component . 

On the anticipation that the structures to be analyzed have a boundary layer 
character in the sense that their vertical dimensions are much smaller than their 
horizontal ones, the dominating terms in the expression for g would be those having 
the highest-order y- derivatives, namely 

az 8 ( U V )  8(vw) -1 + higher order horiz. derivatives (8) .e 9 >% -(@I[= - 82 
For such eddies, we will determine an approximate inviscid solution valid for small 
y (Le., small compared to the largest horizontal dimensions of the eddy). We write 
the equation as follows: 

where 
4 = vzv 

av 
q1 = g + U " -  82 

In the inviscid limit (v = 0) the formal solution of (9) is given by 

4 = Jt ql(tl;Y;z,tl)dtl 
-00 

where 
€1 = 2 - U(y)(t - t l )  

On the anticipation that most of the structures of special interest are highly elon- 
gated in the streamwise direction and thus vary slowly in the 2-direction, we will, 
for simplicity in the analysis, include only the terms originating from the lowest- 
order z-derivatives. Hence, the term on the right-hand side of (11) proportional to 
U" will be neglected in the following. Of course, this is only allowed if U" does not 
change sign anywhere, because then an inflectional-type instability may produce an 
exponentially growing wave for which the term is essential. The inviscid solution 
(12) then simplifies to 

t 

4 = J q(t1; y; 2, tl  )dti (14) 
-00 

The solution for v is obtained by solving the Poisson equation (10). Application of 
Fourier transform in the 2, z-plane gives, with 'tilde' denoting transformed quanti- 
ties, IC = a' + p2, a and @ being the transform variables in t and 2, respectively, 
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where the second term under the integral sign is selected so as to give 3 = 0 on the 
wing. For values of y that are smal l  compared to the horizontal dimensions of the 
structure, and for a structure with a smal l  vertical extent compared to its horizontal 
dimensions ("flat eddy"), (14) may be expanded to yield, to lowest order in y, 

or, in the physical plane, 

It follows from (17) that the streamwise size of the disturbed region from an initial 
disturbance grows linearly in time at a rate U,, - U-, where U,, and U& are, 
respectively, the maximum and the minimum velocities of the mean flow. 

For a structure with vertical and spanwise dimensions both small compared to 
the streamwise dimension ("sausage eddy") the appropriate approximation is found 
by replacing k by IpI in (15). Upon inversion this yields 

If q is intermittent so that it is zero for t > to, say, then for the flat-eddy approxi- 
mation (17) for t > to, 

"f = - (IY - y11 - y - yl)&(&y1;%)dy1 :: 1- 

where ( I  = ( + U(y)(t 1 - to).  Similarly, for the "sausage" approximation (18) 

It follows from (19)-(21) that, for any smooth function do, the vertical velocity will 
decay like t-' as t -, 00 when q is intermittent. 

The streamwise component u satisfies 

- ap vu' - uv2u + qu 
Du ----- 

l Dt a x  
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where gu stands for the nonlinear terms. In accordance with the intermittency 
assumption of the nonlinear terms, we assume that g,, is negligible for t > to . At 
large times the coherent structure becomes highly elongated so that &/ax, as well, 
becomes negligible. With the additional assumptions that u = 0 for t = to ,  the 
inviscid solution for u then becomes 

u = -U’(y)lrn (23) 

where 

is the vertical displacement (in linearized approximation) of the fluid element from 
its initial undisturbed position at t = -m. This result is equivalent to that proposed 
Prandtl(l925) in his mixing- length theory, see Landahl (1984b). 

After application of conditional sampling to the above equations they may then 
be used for the study of coherent structures. For this purpose it is necessary to 
select a suitable model for the the nonlinear driving terms represented by q. 

3. Statistical model for the nonlinear driving term 
Since the coherent structures are intermittent, and hence well separated in time 

and space, they may be regarded as statistically independent. Upon application of 
conditional sampling to the nonlinear terms one could therefore expect the sampled 
stress term < g > (angular brackets denoting conditionally sampled quantities) 
to give results varying with time and horizontal distances like a Gaussian “hat”. 
For a coherent structure which is symmetrical in the z-direction, one would expect 
< vw > to be zero. Thus, the term involving < vw > may be neglected and from 
(7) it follows that an expression of the form 

where 11 ,13, and tb are, respectively, the streamwise, spanwise, and time scales of 
the burst, and where 7 = t - to ,  would give an appropriate representation of the 
nonlinear driving term. The function of z multiplying the exponential is selected 
so as to make 

since otherwise the resulting disturbance will not vanish for large 121, i.e., will not 
be a localized one. 

The dependence on y cannot be found by such simple reasoning; therefore, we 
make use here of the model proposed by Bark (1975), 
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C being a constant (not needed, see below), which, with the vertical scale 22 chosen 
to be 15 in viscous wall units, gives a good fit to the Reynolds stress distribution 
during bursting found in the measurements by Kim et al. (1972). In the following 
treatment we shall adopt the simple model that the nonlinear terms are highly 
intermittent so that we set t b  M 0. Thus, upon insertion in (20) we find 

where K is a numerical constant measuring the integrated strength of the nonlinear 
driving term. 

4. Correction for long-time viscous effects 

effects are negligible 
From (22) we have for long times when v + 0 and the nonlinear and viscous 

(29) 
Du 
Dt 

X O  - 

where f = z - (t - to)U(y). However, viscous diffusion will become important for 
large times when u must satisfy 

Du 
Dt uv2u = 0 -- 

By introducing the convected coordinate f by setting 

one finds that 

a 2 U  a 2 U  a4 
a€2 v 2 u  = t2[Uf(y)12- - 2tU'(y)q& - tUyy)% 

I Hence, as t becomes large, 

a4 a 2 U  
- - ~ t ~ [ U ' ( y ) ] ~ -  + (higher order terms in t- ')  = 0 
at at2 

(33) 

(34) 

I Upon neglecting the terms of higher order in t-' and introducing the new time 
variable T = ~t~[U' (y ) ] ' /~  we may cast (34) in the standard diffusion equation form 
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with the initial condition for T = 0 

which may be easily solved using standard methods. For a nonlinear source of the 
form (28) one obtains the simple result that the same functional behavior with ( 
remains, except that 11 is replaced by L1, everywhere, where 

and do is multiplied by 21/L1. Thus, the long-time effect of viscosity is to make the 
disturbed region extend even further in the streamwise direction and to weaken the 
disturbance. 

5. Vita-educed coherent structures 

In the VITA method one averages over events for which the short-time variance 

t.+T/f 
var(u,T) = - u f ( t ) d t  - [- J u(t)dt12 (38) 

t.-T/2 t.-T/2 

exceeds a pre-selected threshold value k ~ ; ~ , ,  where T is the integration time, k is 
the threshold level, selected to be typically k w 1, u;,,,, is the mean-square fluctu- 
ating velocity, and where t = t ,  is the centered time of the event. The conditionally 
sampled u velocity is then usually presented as a function of the time T = t - t ,  
relative to the event. The experiments show that, for a given integration time T, 
the normalized conditionally sampled value 

< u >+=< u > /JE (39) 

is approximately independent of the threshold parameter k and a function only of 
the time T relative to the event. On the assumption that the theoretical model for 
the "typical" sampled event represents most of the fluctuation energy, a procedure 
for the model VITA event may then be outlined as follows: First, the model for the 
typical event is used to find the streamwise length scale, 11,  and location z behind 
the initial onset point which gives the maximum of the variance, uarm,,,, for a given 
T. Then 

< u >+=< u > (40) 

where u ; ~ ,  =< u2 > for the structure. 

but for the present work only VITA results were worked out. 
An analogous procedure can be followed for space-averaged (VISA) structures, 
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FIGURE 2. Contours of streamwise perturbation velocities in the plane t = 0 for 
model VITA-educed coherent structure at 7 = 0 (t+ = 24) for a variance integration 
time of T+ = 20, with 11 = 95, 11 = 15, 13 = 35. a) Flat-eddy approximation. 
b)"Sausage" approximation. 

-300 -200 -100 0 100 200 300 
+ 

FIGURE 3. Contours of VISA-educed coherent structures with integration distance 
of X +  = 200 obtained from numerical simulations for channel flow (from Alfredsson 
et al., 1988) 

I 

6. Numerical results for VITA structures 
The procedure outlined above to find 11 and z producing the highest variance for 

the selected integration time could be accomplished in a small numbers of trials by 
first selecting an initial guess of 11 and determine for this the value of 2, and the 
corresponding value of the integration time T = T,, which yields the highest value 
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FIGURE 4. 
for VITA-educed eddy considered in Figure! 2. "Sausage" approximation. 

Contours of streamwise velocity perturbation at T+ = 12 (t+ = 36) 

of the variance for the velocity scaled according to (39). A close approximation to 
the value of 21 required to give the maximum for a particular desired integration 
time T, and the corresponding t, can then be determined simply by multiplying 
the original values of these quantities by T/T,,,. It follows from the theory that, if 
viscosity is neglected, this procedure should give the correct parameter combination 
yielding the greatest variance for that value of the chosen averaging time. For the 
viscous case some small additional adjustments of the parameter values were found 
to be required in order to arrive at the maximum. 
For the numerical evaluation of the integrals in (19) - (21), Simpson's rule was 

used with 20 points in the y-interval 0 - 312. The contribution from the region 
y > 312 was found to be negligible. For the mean velocity distribution Reichardt's 
(1951) expression was employed. 

Calculations were carried out for a VITA averaging time of T+ = 20, applied 
at y+ = 15, which should correspond approximately to VISA- structures obtained 
for an averaging streamwise distance of X+ = 200, the mean velocity U at that 
distance from the wall being approximately 10 in viscous units. This choice was 
made in order to compare the results with the VISA-educed structures obtained 
by Alfredsson et al. (1988) from the numerical simulations for a channel flow. 
The procedure outlined above gave that the maximum of the normalized variance 
occurred at t+ = 225 for 1; = 95 at the time t+ = 24 after the onset of the 
structure. In the calculations were used l$ = 15 and 1; = 30, the latter found to 
give a spanwise scale close to that found from the numerical simulations. 

In Figure 2 the contours of constant streamwise fluctuation velocity for the coher- 
ent structure thus found in the t,y-plane are shown, both for the flat-eddy (Figure 
2a) and the sausage (Figure 2b) approximations. The main qualitative difference 
between the two shows up for large values of y+, which is as expected, since both 
approximations should hold for y+ + 0. The comparison with the VISA-structure 
obtained by Johansson et al(1988), see Figure 3, demonstrates that the model cap- 
tures correctly the qualitative features seen in the numerical results. Thus, it shows 
the appearance of a high-speed upstream region separated from a low-speed down- 
stream region by a tilted shear layer. The results for a later time, for t+ = 36 (Figure 
4), demonstrates that the shear layer tilts over more and more in the streamwise di- 
rection as time advances, as would indeed be the expected effect of the deformation 
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FIGURE 5. 
according to theoretical model of Figure 2. 

Contours at y+ = 15 of streamwise velocity perturbations at T+ = 0 
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FIGURE 6. 
simulations (from Alfredsson et al., see Figure3). 

Contours at y+ = 15 for VISA-educed structure from numerical 

I by the mean shear. The u-velocity contours in the z, z-plane for y+ = 15 (Figure 5) 
show spanwise lobes of low velocity outside the high-velocity region and high-speed 
lobes outside the low-speed region, again in qualitative agreement with the results 
found from the numerical simulations (Figure 6). The streaky structure becomes 
more pronounced as time increases, as illustrated in Figure 7. 

The major shortcoming of the model appears to be that it underpredicts the 
length of the downstream low-speed region. This could be a consequence of the 
assumption of an instantaneous onset of the structure. The results from the numer- 
ical simulations indicate that the onset of the bursting motion is not as abrupt as 
was believed earlier from the results by Kline et al. (1967), but is instead a more 
gradual process. Such a process, extended in time, would indeed tend to lengthen 
the downstream region more than the upstream one, as can be seen from (17),(18). 

I 
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FIGURE 7. 
(see Figure 2) at T+ = 12. 

Contours of streamwise perturbation velocity for model VITA eddy 

7. Discussion and conclusions 
The characteristic behavior of the VITA-educed coherent structure may be partly 

explained on basis of the concept of algebraic instability. From linear inviscid the- 
ory one can show (Landahl, 1980) that the kinetic energy of a localized three- 
dimensional initial disturbances in a parallel shear flow without any inflection point 
(thus being stable to wave-like disturbances according to the Rayleigh criterion) 
will, for a broad class of disturbances, increase linearly in time indefinitely after 
the onset. In the long-time behavior of the disturbance, the streamwise perturba- 
tion velocity will eventually reach a finite value, but the streamwise extent of the 
disturbed region will grow linearly with time, thus making the total kinetic energy, 
integrated over the streamwise direction, continue to grow linearly for indefinite 
times. Viscosity will eventually make the disturbance decay, but will take a com- 
paratively long time to make itself felt, so that the early evolution period of the 
structure is likely to be dominated by inviscid mechanisms. 

Further work is needed to clarify the nature of the nonlinear excitation sources. 
A preliminary analysis of the NASA/Ames numerical simulation data indicates 
(Landahl, et al. 1987) that the nonlinearity is indeed strongest in the immediate 
neigborhood of the wall, but the low Reynolds numbers data available to date give 
information only for a small range of y+-values outside the near-wall region so that 
it is difficult to draw any conclusions about the behavior in the outside inviscid 
region. 
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