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Head-on collision of viscous vortex rings 

By S. STANAWAY', K. SHARIFF', AND F. HUSSAIN3 

The head-on collision of two identical &symmetric viscous vortex rings is stud- 
ied through direct simulations of the incompressible Navier-Stokes equations. The 
initial vorticity distributions considered are those of Hill's spherical vortex and of 
rings with circular Gaussian cores, each at Reynolds numbers of about 350 and 
1000. The Reynolds number is defined by r/v, the ratio of circulation to viscosity. 
As the vortices approach each other by self-induction, the radii increase by mutual 
induction, and vorticity cancels through viscous cross-diffusion across the collision 
plane. Following contact, the vorticity distribution in the core forms a head-tail 
structure (for the cases considered here), a behavior which has also been observed 
in inviscid calculations (Shariff et al. 1988), 3D viscous calculations (Melander & 
Hussain 1988, MH), and experiments (Oshima 1978). The characteristic time of 
vorticity annihilation is compared with that of a 3D collision experiment (Schatzle 
1987) and 3D numerical simulations (MH). It is found that the annihilation time 
is somewhat longer in our axisymmetric case than it is in the symmetry plane of 
the experiment and 3D numerical simulation. Furthermore, by comparing the an- 
nihilation time with a viscous timescale and a circulation timescale, we deduce that 
both the strain-rate due to local effects and that due to 3D vorticity realignment 
are important. The flow is computed to the large time Stokes flow limit where the 
circulation decays as t -3 /2  and the vorticity distribution agrees with the self-similar 
solution of the Stokes equations. In this limit, the self-annihilation is exactly twice 
the mutual annihilation. For one of the cases computed, the far-field quadrupole 
sound is compared with the experimental results of Kambe & Minota (1983). The 
agreement is quite good even though the two Re's are very different. 

1. Introduction 

Organized vortex structures are seen in many turbulent flows (Cantwell 1981). 
Their interactions may involve a change in topology through reconnection. For ex- 
ample, trailing vortices of an aircraft cross link to form vortex rings (Crow 1970), or 
an elliptic jet may bifurcate by splitting of elliptic rings thus significantly enhancing 
mixing (Hussain & Husain 1987). This is an important process in turbulence since 
reconnection is likely to involve significant mixing, cascade of energy, dissipation, 
and helicity generation (Hussain 1986). Studying annihilation and reconnection 
may also benefit vortex filament methods which currently model such processes 
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with ad hoc approaches (Leonard 1975). Another motivation for the study of re- 
connection is to determine its role in jet noise (Hussain 1983; Bridges & Hussain 
1987). 

Many vortex reconnection situations have been studied experimentally and nu- 
merically: two rings colliding at an angle (Schatzle 1987; Ashurst & Meiron 1987), 
two or more rings initially in the same plane (Oshima & Asaka 1977), hairpin vortex 
evolving into a vortex ring (Moin et al. 1986), and two sinusoidal vortex tubes of 
opposite circulations (MH, in this volume). For clarity of discussion, consider the 
case of MH shown in figure 1. As in all of the 3D situations, portions of the two vor- 
tices approach each another (figure la) and upon "contact" (figure lb), vorticity is 
annihilated across the collision plane (plane yz). In 3D flow, annihilation is accom- 
panied by vorticity realignment or reconnection (in the 2 direction). In contrast, 
an axisymmetric vortex ring collision (shown schematically in figure 2) contains 
only annihilation. It is useful, however, to consider annihilation alone since this 
process is kinematically related to reconnection. A cartoon of figure 1, shown by 
figure 3a, illustrates that because circulation is constant along vortex tubes, the 
rate-of-decrease of circulation in the annihilating region (plane zy) is equal to the 
rate-of-increase of circulation in the connecting region (plane yz). One objective of 
this work is to compute the annihilation time for the axisymmetric collision and 
compare this to experiments of rings colliding at an angle (Schatzle 1987) and to 
a numerical simulation of cross linking vortex tubes (MH) to determine the role of 
the three dimensionality of the vorticity field in annihilation. 

More precisely, we are comparing the axisymmetric case to a plane in the 3D 
collision, specifically, to symmetry plane zy in figure 3. The vorticity contours in 
this plane, given by figures 4a-4d, correspond to figures la-ld. In the 3D problem 
the characteristics of the vorticity distribution affecting annihilation such as core 
size and shape, and the local radius of curvature of vortex filaments, referred to as 
local efects, are supplemented by non-local influences from the bridges which arise 
from vorticity realignment (for a discussion of bridging, see MH). The objective of 
this work is to quantify these local effects, which entirely compose the axisymmetric 
case, and determine their relevance to three dimensional reconnection. 

I 

2. Problem Description 

I The time-dependent annihilation of axisymmetric vortex rings is entirely governed 
by the local character of the vorticity (i.e. core shape, size, strength and curvature). 
General trends of this process can be understood by considering the velocity induced 
by these local effects, referred to as the local induction approximation (Batchelor 
1973, p.510). 

Because the domain is unbounded and does not contain any bodies, the only 
mechanism permitting the circulation of a vortex ring (i.e. defined by the circuit of 

I figure 5) to change, is diffusion of vorticity across the axis of symmetry and the col- 
lision plane. We refer to diffusion across the symmetry axis as self annihilation, and , 
across the collision plane as mutual annihilation. The rate-of-change of circulation 
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about a material circuit is given by 

- dl? = - ,g,V x w )  . dl. 
dt 

Applying equation (1) to a quarter plane shown in figure 5 gives 

with the terms on the right hand side giving the contributions from segments 1 and 
3 of figure 5; the contribution from segment 2 is zero. From this, we see that larger 
normal derivatives of vorticity along the z and u axes result in greater rate-of-loss 
of circulation. 

The effects that influence the gradients can be seen by the local induction ap- 
proximation (Batchelor, p.519). Consider the induced velocity field resulting from 
line elements (length = 2L) of two curved filaments (radius of curvature = R) which 
are in close proximity (separation distance = b) (figure 6). The induced velocity 
from a line element is resolved into its circumferential and binormal components. 
The circumferential component, 

upon integration, represents the limit of a 2D vortex pair (Le. dipole). Here, A is 
the distance between z, y and z', y', the point where the line element intersects the 
zy plane. The binormal component, 

w(z',y')dz'dy'log (i) + O(1) 
1 

dub(z, y) = 4 q z ' ,  y') (4) 

gives the self-induction which presses the cores against each other and increases the 
gradients, and hence the circulation decay. Note that this analysis is valid only 
when b and the core size are much smaller than R and 2L. The velocity field found 
from the integral of equation (3) causes the cores to translate and to subject each 
other to a strain rate that scales as e - I ' / L 2 .  As the cores approach, e increases. 

Now for each instantaneous form of the velocity induced by one vortex on the 
other (characterized by e ) ,  there will be an equilibrium configuration in which the 
motion induced by one vortex on itself, is balanced by the flow induced by the 
other vortex. In other words if the self-induced motion were suppressed (thus fixing 
e )  the locally two-dimensional flow would be steadily translating in the absence 
of viscosity. Such equilibrium shapes are well known and include a family of 2D 
translating pairs for uniform vorticity (Pierrehumbert 1980, among others) and the 
single solution for peaked vorticity (Batchelor 1973, p.535). If e changes slowly 
compared with the vorticity, adiabatic invariance will hold (Neu 1984, p.2400) and 
the cores will migrate through the equilibrium shapes as they approach each other. 



290 S. Stanaway, K. Shariff, and F. Hussain 

I In this case, core deformation will be modest. In the cases considered here, the cores 
flatten considerably more indicating a loss of adiabatic invariance. The parameter 
governing this, a, is the ratio of how fast e changes compared to the time scale of 
internal rotation: 

d z (E) a--, 
1/Trot 

h3 6 
b3R a - --log (+) . 

(5) 

Thus, given the same core size to separation ratio ( 6 / b ) ,  cores that are thin compared 
to the radius of curvature are more resistant to distortion. Equations (3) and (4) 
give the qualitative behavior of the core approach and flattening in the limiting case 
of thin cores. 
For the head-on collision the combined circulation of the two rings is zero (I’ = 0), 

and the term proportional to log L from self-induction vanishes upon integration. 
Furthermore, since logA is the Green’s function for the streamfunction (say @ZD) 
of the locally 2D flow, one obtains upon integration 

I 

Now, given an equilibrium 2D flow at each instant, on each streamline of the vortex 

where q0( t )  is the value of the streamfunction on the streamline in a reference frame 
translating with the dipole at velocity V ( t ) .  Since \E0(t) is a function that decreases 
as the cores come together, the first term in equation (8) provides a rigid motion 
of the cores towards each other with an ever decreasing velocity while the second 
term provides a linear flattening in t (Shariff 1988). 

3. Review of Earlier Work in Axisymmetric Vortex Ring Collisions 
The problem of the collision of two axisymmetric vortex rings is classical and is 

described in the very first paper dealing with vortex motion (Helmholtz 1858) where 
it is assumed that the fluid is inviscid, and the cores sufficiently thin that they do 
not deform. In 1893 Dyson considered the case of a constant vorticity distribution 
in a circular core, rotating as a solid body and assumed large separations compared 
to core size. He found that the cores unphysically overlap when the rings have 
stretched by an amount I 

- R = 1.06 [log (F) - :] . 
RO (9) 

Shariff et al. (1988) numerically solved a 1D evolution equation for the shape of the 
core boundary to investigate deviations from Dyson’s solution for small separations. 
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They found that until the time when the radius has stretched approximately twice 
as far as indicated in equation (9) (2.49 instead of 1.06) the cores deform very 
little and instead follow the shapes of the steady 2D translating pairs computed by 
Pierrehumbert (1980). 

Oshima (1978) conducted a smoke visualization study with R e o  ranging be- 
tween 133 and 1865, based on initial propagation speed and exit diameter. Her 
photographs will be presented for comparison. Kambe & Minota (1983) studied 
the acoustic wave radiated when two shock-tube generated rings ( R e o  = 42,000) 
collide. We shall provide comparison with the quadrupole part of the measured 
acoustic far-field signal. Considering the widely different Reynolds numbers of the 
experiment and simulation, the agreement is surprising. Kambe & Minota also de- 
velop a simple model for the trajectory of the vortices and decay of circulation. The 
model is based on an exact 1D solution of the Navier-Stokes equations for two lay- 
ers of vorticity of opposite signs that are pressed together by an externally imposed 
plane strain. 

After the present work was completed it came to our attention that Kambe & Mya 
00 (1984) have studied the axisymmetric collision with a finite difference method in 
a bounded domain at Reynolds numbers (I'/v) from 140-1400 which are comparable 
to those of the present study. Liu & Ting (1982) employed a finite-difference scheme 
with boundary conditions specified using far-field expansions. They consider a 
vortex ring collision with r / v  = 201, a very small initial separation equal to 0.20 
of the toroidal radius and a core radius of 0.05 times the toroidal radius. Results 
are presented for a short time during which the the rings have stretched to only 
RIR, = 1.6. 

4. Methods 

The Navier-Stokes equations are solved in an unbounded domain using a spec- 
tral code developed by Stanaway, Cantwell & Spalart (1988). The method relies 
on divergence-free basis functions, with the result that continuity is inherently sat- 
isfied and the pressure does not appear in the working equations. In particular, 
the basis functions are composed of Legendre polynomials in the polar direction 
and Jacobi polynomials matched to an algebraic mapping of the radial coordinate. 
Time advancement is second order accurate, implicit for the linear terms (Adams 
Bashforth), and explicit for the nonlinear term (Crank-Nicolson). The code has 
been tested using a comprehensive set of diagnostics (rate of convergence, stability 
at high Reynolds numbers, conservation of impulse, rate of energy decay etc.). 

Given the dynamic solution, the quadrupole part of the acoustic signal is com- 
puted using the theory of vortex sound developed by MGhring (1978). It assumes 
that the sound source is compact. This means that if u and 1 are characteristic 
velocity and lengths of a vortical region and c,  is the speed of sound of the undis- 
turbed medium, then the wavelength c, l /u of the radiation should be much larger 
than I, or, the eddy Mach number M = u/co  << 1. The final working expression for 
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the far-field acoustic pressure p is 

t ,  = t - IxI/co. 

The novelty and usefulness of this expression lies in the fact that it relates the far- 
field acoustic pressure directly to the unsteadiness of the incompressible vorticity 
field via the third derivative of its second moment. Equation (10) represents the 
quadrupole part of the signal; a more complete theory by Kambe & Minota (1983) 
shows that in the presence of viscosity there is also a monopole whose time behavior 
is proportional to the second time derivative of the kinetic energy. We restrict 
attention here to just the quadrupole. For the axisymmetric case, equation (10) 
becomes 

Q"'(r) G za'w(z, a )  dzda. J 
5. Results 

Results are presented in figures 7-10 for initial conditions of thin and thick core 
rings at low and high Reynolds numbers. The parameters for each case are as 
follows: 

CASE N ~ .  (ryV), DESCRIPTION PARAMETERS 
(FIGURE No.) 

350 Thin core ao/Ro = 0.35 X , / R ,  = 3 
1000 n 9, 9, 

357 Smoothed Hill's vortex r; = 0.8, r,  = 1.3 X , / R ,  = 2 
1073 

1 (7) 
2 (8) 
3 (9) 
4 (10) 9, n $9 

I For all of the cases shown, the resolution was fixed at 65 x 65 modes. For the 
thin core cases (1 & 2) the initial vorticity distributions in the cores are Gaussian 
(centered at X,, R,) with an "image" at (X,, -Ro)  in order to ensure zero vorticity 
along the axis. The core radius, a,, is defined as as the distance from the center of 
the core to where the maximum velocity occurs in two-dimensions. 

The initial vorticity profile for the thick core cases (3 & 4) is that of Hill's spherical 
vortex (Batchelor 1973 p.526). The abrupt jump in vorticity is replaced by a smooth 
transition between a specified inner radius, r; ,  and an outer radius, r,: 
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where 

r - r; 
(=- ro - r; 

K = 1/2(exp 2)(log 2). 

following Melander et al. (1987). 
For each of the cases presented, vorticity contours are shown at several instants 

(figures 7a-d, 8a-d, 9a-d, loa-d), followed by time-dependent diagnostics. These 
instants (Le. t l ,  t 2 ,  t 3 , .  . .) are marked on the curve, I'(t), by solid dots. Let us first 
consider the thin ring cases (figures 7 and 8). Driven by self-induction, the two 
vortex rings propagate toward each other. The core shapes begin to immediately 
adjust from the initial profile to a characteristic oblong shape shown by the vorticity 
contours of figures 7b and 8b. The peak vorticity, up, initially decreases due to 
viscous diffusion (figures 7g, 8g) while the circulation remains constant (since a 
significant amount of vorticity has not yet reached either the collision plane or the 
axis of symmetry). The curve of wp is ragged because it is the maximum value 
of the vorticity on the grid points instead of the maximum value of the smooth 
function. As the rings get closer, the ring radii increase due to mutual induction, and 
neglecting viscosity this means that the vorticity of a vortex filament will increases 
like u. These two effects are opposing each other, and their relative importance 
determines whether the peak vorticity will increase or decrease. For the high Re 
case (figure 8 ) ,  stretching is more dominant as seen by the larger percentage increase 
of peak vorticity throughout the calculation. As the interaction proceeds, vorticity 
gradients steepen along the collision plane, and vorticity annihilation is enhanced. 
The cores do not continue to flatten uniformly but clump at the top forming a head- 
tail structure. Note that this head-tail structure is remarkably similar to figure 4 
of the 3D collision. As the circulation decreases, mutual induction and stretching 
decrease and at some point, viscous diffusion dominates. 

The stages are very similar for the Hill's vortex cases. One difference is that 
vorticity begins to annihilate across the axis of symmetry as the rings approach 
since the vorticity extends to the symmetry axis. From equation (2), we see the the 
vorticity will initially decay like 

(12) 
6 ~ I ' o  ($)o = --' 

where RH is the radius of the vortex boundary. This behavior persists through t 2  

in figure 9e and 10e. 
Dissipation and rate-of-change of energy are plotted in figures 7f, 8f, 9f, 10f 

as solid and dashed lines, respectively. The curves of these two independently 
evaluated measures agree within plotting error, indicating that the viscous term is 
well resolved. The minima and maxima of the dissipation show very similar trends 
to wp in all of the cases. 

The lower Re cases (figure 7, Re = 350 and figure 9, Re = 357) have essentially 
stopped stretching at the final time shown, while the higher Re cases (figure 8, Re = 
1000 and figure 10, Re = 1073) are still stretching when the computation is stopped. 
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, In the present version of the code, the rings are not able to be resolved for longer 
times than shown for figures 8 and 10. It is likely that the apparent oscillations in 
the tail in both cases are due to insufficient resolution. In future work, the code 
could either be tailored to compute this flow for longer times or run on a machine 
with more core memory than is allowed on the CRAY-XMP. 

To summarize our observations, we define four phases of the collision of axisym- 
metric vortex rings: phase I - approach, where the only means of annihilation is 
diffusion across the axis of symmetry; phase I1 - collision and annihilation, where a 
characteristic head-tail structure is observed; phase I11 - arresting of vortex radius 
increase, where viscous diffusion dominates; phase IV - self-similar solution of the 
axisymmetric Stokes equations (i.e. the Stokes quadrupole solution). 

The next issue is whether the annihilation time of the axisymmetric problem, tan,, 
is of the same order as the circulation timescale, T, f a:/(I'ov)1/2, or the viscous 
timescale, T, z a:/. (note that T, = (rO/v)lI2 Tc). It was found in the symmetry 
plane of 3D problems (i.e. Schatrle 1987, and MH 1988) that the annihilation time 
was nearly equal to the circulation timescale. Furthermore, Schatzle suggested 
that out-of-plane strain enhances the rate of annihilation. Since the axisymmetric 
collision removes the out-of-plane strain while retaining the strain rate induced by 
local effects, a comparison of time scales is a first step in deducing the relative 
importance of the local and nonlocal effects. 

The ratio of the annihilation time to circulation timescale in terms of the input 
parameters is 

I 

- 
where R, = 3.0, I'/v = 350, ao/Ro = 0.25, and from figure 7h, f, = 1.0 x 
tan, M 0.2 x lo-' (consult Stanaway (1988) for details of the normalization). Sub- 
stituting these numbers into equation 14, we get t ann /Tc  = 3.4 and t,,/T, = 0.18. 
Therefore, the annihilation timescale for the axisymmetric collision is faster than 
the viscous timescale and slower than the timescale set by the circulation. This in- 
dicates the local effects are important in enhancing annihilation, however, nonlocd 
effects such as vorticity realignment are also important in 3D. In a 3D situation, 
one might expect that during the initial stages of the the collision, local effects 
are dominant, and as the circulation in the symmetry plane weakens, the bridges 
strengthen and the out-of-plane stain becomes the more important effect. 
To understand 3D effects on annihilation, consider for example, the simulation of 

MH. Those portions of the tubes that develop vorticity mainly in the z direction 
induce a strain that is out of the t y  symmetry plane. If this induced flow could be 
modeled as an axisymmetric strain (radially inward in the zy plane and outward 
along z) then the effect on the locally two-dimensional solution is merely a rescaling 
of time and spatial coordinates. See for example Lundgren (1982, p.2194) who shows 
how one can generate an axially strained solution from a two-dimensional one. We 
do not yet have quantitative information about the type of strain present in the 
MH database, however, examination of the diagonal components of the strain-rate 
tensor in the detailed experimental measurements of Schatzle (1987) does suggest 

- 
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axisymmetric strain in the symmetry plane at the location where the vorticity is 
the highest (From frame 16: pp. 114, 135, 142, 149 of his thesis). The non-locally 
induced flow can alter the sense of curvature of vortex lines through the zy section 
thus halting annihilation whereas in the axisymmetric case the curvature remains 
of one sign. 

Another issue addressed with case 1 (figure 7) is the local contributions to anni- 
hilation and the final period of decay. The rate of change of circulation is shown in 
figure 7h with inlays of the vorticity distributions at particular times. Figures 7i, 7j, 
and 7k then show a plot of the integrand contributing to along the collision axis 
at three instants. Note that the tail does contribute significantly, indicating that a 
model of this process cannot neglect this region. Figure 7h shows the circulation 
on a log-log plot until very late times where it is seen to asymptote to r N t -3 /2.  
This behavior can be understood from a solution obtained by Phillips (1956) for 
the final period of decay of an inhomogeneous patch of turbulence. Basically the 
idea is to consider the evolution of the Fourier transform of the velocity expanded 
in the powers of the wavenumber IC. We write the expansion cryptically as 

ii N I +  (Q + A ) .  + .... (15) 

Here I and A are the conserved linear and angular impulse, respectively, both of 
which are zero in the present situation, and, Q is the quadrupole moment. At late 
times the nonlinear terms in the Navier-Stokes equation will be small and the high 
wavenumber parts of the transform will decay. Phillips shows that, to the extent 
that the nonlinear terms can be neglected, Q is constant. Hence at large times 
the only relevant parameters are Q and v from which the behavior of I' follows 
dimensionally. The explicit form for the quadrupole solution (Cantwell, private 
communication) is 

where K = constant, 7 = &, 3 = and 0 is the polar angle (figure 2). The 
computed large time solution (figure 7k) is in agreement with this Stokes solution 
(equation 16). By substituting equation (16) into equation (2), it is found that for 
the asymptotic solution the contribution to circulation decay from the symmetry 
axis is exactly twice that from the collision line. In other words, in the asymptotic 
decay state, self-annihilation of the circulation is exactly twice mutual-annihilation. 

Another issue studied with this case is that of noise generation. Kambe & Minota 
(1983) have measured the quadrupole part of the acoustic signal when high-speed 
rings (Reo  = 42,000) collide. Figure 12 compares the computed time factor Q"'(t) 
(solid) with the measured value (dotted), the time origin being shifted to make the 
zero crossings coincide. The initial transient of the simulation is due to relaxation 
of the core shapes to equilibrium and may be remedied in the future by increasing 
the intial separation. The overall agreement at two widely different Re suggests 
that a certain integral measure of the two flows is insensitive to Re. Observing 
the relationship between the acoustic quadrupole, Q i j  , and Phillips' quadrupole 

( I l P ) '  
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moment (for which he provides an evolution equation) we obtain 

i.e. the strength and directivity of the quadrupole measures changes in the overall 
anisotropy of the velocity field and this appears to be insensitive to Re. 

Figure 11 shows a comparison of the viscous calculation (case 4) with results ob- 
tained using the inviscid code of Shariff et al. (1988). The solid line is the boundary 
of the vortex across which w / u  jumps from being constant to zero. The viscous vor- 
tices stretch less rapidly but in both cases the core shapes evolve similarly; they 
do not flatten uniformly but fill out and develop a tube-like head and a sheet-like 
tail similar to the 3D simulation of MH. The experimental photograph (figure 12a) 
from Oshima (1978) shows a similar structure. In the experiments the smoke in the 
head pinches and leaves the tail behind. This is shown in figure 12b which shows 
an oblique view at 30" from the plane of collision at a later instant. The inner disk 
is the tail and the outer circle is the head. The head-tail split is also clear in the 
MH simulation. 

It is interesting that, in the inviscid calculation, while the head region at the final 
instant shown contains only 46% of the circulation, its self-energy is 88% of the 
total. 

5. Conclusion 
The head-tail structure has been observed in the viscous simulation of axisym- 

metric colliding vortex rings. Inviscid and viscous collision calculations show qual- 
itatively the same head-tail core structure with the major difference that annihi- 
lation causes the vortex to slow down and to travel a finite distance. Among the 
time-dependent diagnostics computed were circulation, rate-of-change of energy, 
dissipation, peak vorticity, and impulse. The peaks in dissipation and maximum 
vorticity occur concurrently for all of the cases. The large time behavior was shown 
to be the quadrupole solution of the Stokes equations with the character that the 
self-annihilation due to diffusion of vorticity across the centerline of the vortex gives 
twice the annihilation as that of the vorticity across the collision plane in this limit. 
The time scale associated with one case was compared to the time scale observed in 
a 3D experiment and 3D simulation. It indicated that in 3D, both the out-of-plane 
strain and the strain-rate due to local effects are important. 

Future work recommended includes increased resolution, further investigation of 
the noise generated at higher Reynolds numbers, and extension of these studies to 
three dimensions. 
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\ 'I-' 
Figure 1. Numerical simulation of cross linking vortex tubes (figure courtesy of Melander 

& Hussain 1988). Surfaces correspond to a constant level of vorticity magni- 
tude. 

I 
I 

Figure 2. Schematic of axisymmetric vortex ring configuration used to study collision 
and annihilation. 
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threads 

Figure 3. Schematic of cross linking vortex tubes (figure 1). (a) Showing bridges and 
threads. (b) Symmetry plane y r  showing reversal of thread curvature from one 
time to the next. 

Figure 4. Vorticity contours in symmetry plane z y  at times corresponding to figures la- ld 
(figure courtesy of Melander & Hussain 1988). 
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Figure 5. Schematic showing the definition of circulation in the collision of axisymmetric 
vortex rings of the same strength. 

Figure 6. Local induction approximation of two curved vortex filaments of infinitesimal 
cross section. 
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Figure 7. Axisymmetric collision, ( r / v ) o  = 350, ( a / &  = 0.35: (a)-(d) vorticity con- 
tours; (e) circulation; (f) rate-of-change of energy and dissipation (relative to 
initial value); (g) peak vorticity (h) rate-of-change of circulation; (i)-(k) local 
contribution of vorticity annihilation along the collision plane; (1) log-log plot 
of circulation versus time; (m) time factor of the acoustic pressure. 
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tours. (e) circulation (f)  rate-of-change of energy and dissipation (relative to 
initial value); (g) peak vorticity. 
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Figure 9. Axisymmetric collision, ( I ' / v )o  = 357, initial condition of Hill's spherical vor- 
tices. (a)-(d) vorticity contours. (e) circulation (f) rate-of-change of energy 
and dissipation (relative to initial value); (g) peak vorticity. 
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Figure 10. Axisymmetric collision, (I'/v)o = 1073, initial condition of Hill's spherical vor- 
tices. (a)-(d) vorticity contours. (e) circulation ( f )  rate-of-change of energy 
and dissipation (relative to initial value); (g) peak vorticity. 
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Figure 11. Comparison of viscous calculation of figure 10 (left half) and inviscid calculation 
using contour dynamics (right half). 
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Figure 12. Experiment (Oshima 1978) showing core shape of colliding axisymmetric vortex 
rings: (a) side view; (b) oblique view at 30" from the plane of collision at a 
slightly later time. 


