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1. Introduction 
For some considerable time the author has been involved in the development of commer- 
cial finite element software, and this paper is written from that perspective. One of the 
remarkable features of the finite element method is its generality, and there is no better 
reflection of this than the observation that our company and several of our competitors 
each market one product only-a single, “general purpose” finite element code (our par- 
ticular code is called Abaqus). These codes provide practical tools that  are used in an 
astonishingly wide range of engineering applications that include critical aspects of the 
safety evaluation of nuclear power plants or of heavily loaded offshore structures in the 
hostile environments of the Korth Sea or the Arctic, major design activities associated with 
the development of airframes for high strength and minimum weight, thermal analysis of 
electronic components, and the design of sports equipment. For various reasons, the code 
that my company develops and markets is generally used in the area of more advanced 
applications. These applications almost always involve nonlinear effects. There is little 
doubt in my mind that the need for such analysis will continue to grow-it is very easy to 
identify problems which should be reachable in the next generation or two of computers 
and software and which have substantial economic importance. 

The development, maintenance and support of production software involves many ac- 
tivities, but-at least in the more advanced application areas where we try to contribute- 
the effectiveness of our product depends critically on the quality of the mechanics and 
mechanics related algorithms that we implement. It is generally true that the end users 
are not sophisticated with respect to what is now being called “computational mechanics.” 
They have other interests and motivations. not the least of which is the need to complete 
work successfully and to a schedule. Thus. ”algorithmic robustness” is of primary con- 
cern to  us: we should choose those methods that we believe will maximize reliability with 
minimal understanding on the part of the user. Computational efficiencj- is important 
because there are always limited resources. and hence problems that we would like to do 
but which are too time consuming or costly. In reality. we compromise: for example. we 
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knowingly commit what Strang and Fix (1973) call “variational crimes’‘ because we get 
awa\ Mith therri often enough for it to be worthwhile. But robustness implies a need for 
thorough understanding of the algorithms: we should at  least know where the limitations 
of an algorithm are likely to be. This is not a simple task: for example, we still do not 
have practical ways or assessing local error, even in a linear numerical solution. 

It is easy to identify important practical problems that. presently, are computationally 
rather difficult. but which will become relatively routine in the not too distance future. 
Two that are taking up much of our time just now are the problem of simulating vehicle 
(especially automobile) crashes. and the simulation of rather complicated contact situa- 
tions, such as the analysis of threaded connectors in drill pipe or casing which is subjected 
to  very large axial forces, causing possible thread jump and quite substantial strains in the 
pipe. Both problems are modeled today on current generation computers (the Cray-1 and 
X-MP) with Abaqus and other codes. They challenge the limits of the algorithms in our 
code. and are computationally intensive-typical run times are several hours per case. The 
observations made in this paper are based on our experience to date with such problems. 

Large scale general purpose codes have a rather long life span: two codes that are 
widely used a t  this time (Ansys and Kastran) were begun in the mid 1960’s. Thus, in 
designing such a code, it is important to try to anticipate what sort of computers will be 
in general use for such applications in 10-15 years. Based on past history, this is a difficult 
extrapolation-computers are still developing at a rapid rate. We can make some guesses. 
For example, a t  Cray Research’s Science and Engineering Symposium held in Minneapolis 
in 1985 Seymore Cray discussed the specification of the Cray-3. which he expects will be 
available in three years. The most relevant parts of that  specification from our point of 
view are the size of the high-speed, directly addressable, memory (10” words), and the 
machine‘s parallelism. Consider a problem of order 50000 unknowns: many important 
cases of the types mentioned above are of this size or smaller. The rms half-bandwidth in 
such a case would be about 5000, so that  the assembled symmetric part of the Jacobian 
(stiffness) matrix will occupy 250 x loG words-a quarter of the available memory; the 
complete matrix will occupy half the memory. (More and more problems are likely to need 
the full Jacobian matrix in the context of Newton methods, because of the use of more 
realistic constitutive models, such as damage mechanics models for brittle or composite 
materials, which have a non-symmetric Jacobian). Element matrices, state variables for 
constitutive calculations, etc. are unlikely to  occupy more than 5 x 10‘ words in such 
a case. Thus, it would seem that,  for such applications. we need not worry about “I/O” 
problems-we can assume the model can run “in-core.” This means that,  for our purposes, 
the practical computational limitation will be the time taken to do the arithmetic. Cray 
Research and others seem to  be moving rapidly toward parallelism to provide arithmetic 
speed. This should fit well with that part of our finite element codes that perform element 
and constitutive calculations: there we process a large number of such calculation points 
(perhaps 4000 elements, 30000 integration points in the 50000 degree-of-freedom case) so 
that,  provided the code is designed to allow inner loops to spread over the processors, load 
balancing should not be much of a problem. I t  is interesting to note that. in this part 
of the code. typical vectors are of order 10-100, so that any vector processor with a long 
start-up time (like the Cyber 205) is not very suitable. The solution of the linear equations 
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is not such a natural fit into parallel architecture. but the problem is such an important 
one that it is likely that very effective modules will become available (such as Floating 
Point Systems now provide for their processors). Since we in fact are solving a nonlinear 
system, it may be that non-fiewton methods. not requiring the resolution of a Jacobian 
matrix, may be preferable in such an environment. I assume that load balancing is the 
critical issue in a multi-processor machine. and that the most effective approach to that 
issue is a t  the inner loop level, rather than the macro (finite element) level. 

The remainder of the paper discusses three principal areas. First, the paper discusses 
our experiences with the approaches we use to the two initial value problems of primary 
interest here-static and dynamic nonlinear response of structures. It then has a brief 
section on shell modeling. Then it discusses our current approach to  the constitutive 
integration problem, in the context of conventional plasticity models. Finally, the paper 
lists some areas where we hope that  research work will provide us with new methods, or 
with improvements to  our present approaches. 

2. Experience with initial value problems 

2.1 Structural dynamics 

The nonlinear dynamic problems that we most often see involve globally nonlinear 
response-most of the structure yields and undergoes finite rotations and, possibly. finite 
strains. However. locally nonlinear dynamic problems are not uncommon: in fact they 
represent a sufficiently important application area that we have found it worthwhile to 
provide methods to model them with some efficiency. A good example of such a case is 
the flow induced vibration of a steam generator tube in a nuclear plant. The tube rattles 
in its support plates due to vibration excited by instabilities in the coolant flow, and this 
intermittent contact causes wear and, eventually, may lead to leakage. The tube itself may 
be ”sprung”-that is, the initial stress in the tube may be large enough that it forms a 
significant contribution to the tube’s stiffness-but the vibration amplitude is not large 
enough that  the stiffness of the tube changes significantly during the motion. The nonlin- 
earities are therefore confined to  the support interaction, where they involve intermittent, 
“chattering” contact and friction. Our approach to such problems has been through con- 
ventional Guyan reduction. retaining the transverse displacements at  the support points 
and enough other degrees of freedom in the tube to  model its response accurately in the 
frequency range of interest (up to  about 150 Hz in this case). The Guyan method has 
two drawbacks-it is based on guesswork, and the reduced model may be much bigger 
than necessary. Since the majority of the applications that have come to our attention 
involve relatively small models (typically less than 1000 degrees of freedom, with 30-80 
degrees of freedom directly involved in local nonlinearities). these limitations are not very 
critical: it is not much effort to extract the modes of interest on the full model and then 
to experiment with reduced models until a reasonably small one is found that provides 
adequate matching. 

Nonlinear dynamic problems are integrated explicitly or implicitly. The explicit ap- 
proach brings with it several advantages because it is always used with a lumped mass 
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matrix and so no equations need be solved: this leads to  great simplification in the com- 
puter code. But conditional stability is a serious limitation, especially in structural models 
where the thickness of the shell is usually the determining factor with respect to the time 
step. Many of the problems that  we see are ”event and response” cases, in which an initial 
input of energy is mostly dissipated as inelastic response in the structure. In these cases 
the response usually damps out fairly quickly into a pattern of plastic hinges, until some 
later disturbance-perhaps a secondary impact, or a sudden effect associated with geome- 
try changes-causes this pattern to  undergo a redistribution. Indeed, this phenomenon of 
plastic hinge formation is so much a part of such problems that it has given rise to  the suc- 
cessful mode form solution approach of P. S. Symonds, J. B. Martin, and others (Symonds, 
1967). I t  is difficult to  accept that  a conditionally stable integration method which can 
never expand the time step beyond some fraction of the shortest period exhibited by the 
model provides the optimal approach for such an application. My own experience with 
explicit methods is limited, so that  I do not know how one deals with constraints (such as 
arise in mixed element formulations) within these methods. But if the methods are only 
useful when we do not solve equations, it seems that the generality of their application is 
limited. 

Implicit methods are chosen for their numerical stability. Stability is usually discussed 
in the context of linear systems, and 1 am not sure of what stability proofs exist for 
the nonlinear problems we are trying to  model. My own practical experience has been 
that numerical stability of the  operator has never been a limitation: except for accuracy 
considerations, the time step is most usually limited by our ability to solve the equations. 
I will return to the equation solving problem later, because it is. in our experience, a 
key issue. lmplicit methods have the great advantage of generality-the time step can be 
chosen for modeling reasons. And since we have to  solve equations anyway, we are a t  liberty 
to introduce whatever additional equations we care to, including, for example, Lagrange 
multipliers to  impose constraints. In Abaqus we have for some time been using the Hilber- 
Hughes-Taylor (1978) operator (an extension of the trapezoidal rule that  provides the 
ability to introduce some numerical damping) with a simple “automatic” time step selection 
scheme, and this approach has been of great practical benefit. Again, consider the car 
crashworthiness problem. A front end collision test case for a car design usually involves 
about 10-15 milliseconds of response. With the shell elements in Abaqus and a mesh 
that  is adequate to  model the response usefully, the stability limit of the central difference 
operator is in the microsecond range. Using the implicit method, the analysis is usually 
completed in 150-300 time increments, which range from a few microseconds just after a 
major impact up t,o a significant fraction of a millisecond during the fixed plastic hinge 
rkgime. The utility of the method then depends on whether we can solve the nonlinear 
equations 150-300 times in an acceptable amount of computer time. 

2.2 Statics 

Smoot.hly nonlinear static problems are not uncommon, but it seems that many impor- 
tant applications involve abrupt changes in the response. which is often unstable as well. 
The car crash problem again serves to provide an example. During a front end crash, most 
conventional designs of front rails in cars are responding unstably during about 80% of 



their usable deformation, and the switch into this collapsing response occurs quite sharply, 
as a buckling of the structure (which is a shell), after it has undergone considerable plastic 
deformation. Most shell buckling cases involve relatively thin shells, so that  the equilib- 
rium equations are not well conditioned. Elastic-plastic buckling often involves sudden 
“localization” of the plastic deformation into narrow regions, while major parts of the 
structure, which were yielding in the pre-collapse phase, unload elastically. Such problems 
make demands on the solution strategy-it must be able to detect, and to switch into, 
the alternate equilibrium path,  and the instability of the collapse phase of the response 
must be handled. For the latter purpose we have found that our version of a “Riks” algo- 
rithm (Riks, 1979) has been most valuable. We use it with an L‘automati”’ incrementation 
scheme, and find tha t  it can often march right through into the collapse as far as we want 
to go, without too much stuttering. The most common complaint that  we receive is that 
the solution sometimes turns back on itself. When this occurs it is at critical points where, 
presumably, the equilibrium path has very high curvature. For the present we ascribe this 
to  a weakness in our implementation only: the method finds an equilibrium path, but it 
is not the path of interest. We have nothing in our code that  can detect the possibility of 
alternative equilibrium paths: for example, we know we cannot obtain sensible results for 
a round bar in compression (Euler buckling) or tension (necking), without knowing that 
the switch may occur and seeding the problem definition with a suitable imperfection. A 
robust algorithm would not need this. 

Rate form constitutive models (such as conventional plasticity or visco-plasticity theo- 
ries) still must be integrated, even though the overall problem is quasi-static. There seems 
to  be relatively little motivation for choosing explicit methods in general for this aspect of 
the problem, although there are some particular cases where an explicit approach makes 
sense: for example, many high temperature creep problems associated with metal struc- 
tures can be treated efficiently with explicit integration of the creep model, because in these 
cases the response times of interest are usually not very long compared to  characteristic 
relaxation times for the material subjected to  the stresses that arise in the structure- 
otherwise the design would be unacceptable anyway. In Abaqus, except for this particular 
case, we use implicit integration for rate plasticity models, as discussed below. 

3. Equation solving 
Almost all of the procedures we use in Abaqus are based on a “full” Newton method. 

We have tried a few alternatives (modified Newton and quasi-Newton methods), but so 
many problems of interest are not very well conditioned and exhibit such knotty response 
that  we have not looked a t  many of our standard test cases before we have rejected the 
alternatives that  we have tried, and returned to the quadratic convergence of the full 
Newton method. However. our work is hardly rigorous or complete. 

A significant part of the usage of our code involves systems for which the Jacobian 
matrix of the Newton method is not symmetric. Examples are the non-associated flow 
plasticity models that  are often used in soil mechanics applications, and loading cases with 
“follower forces”, like Morison drag on offshore pipes and risers. In these cases we usually 
form and solve the non-symmetric system. There are some problems where we offer the 
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possibility of approximating the Jacobian with its symmetric part because our experience 
has suggested that many typical cases of that  class are analysed with less computational 
expense in that way. An  example is mentioned later in this paper in connection with 
integration of plasticity models. But we always provide the possibility of invoking the 
non-symmetric capability if needed, typically by restarting the simulation at  soTle point, 
because it  often happens that the symmetric approximation becomes less effective as the 
solution develops. 

Newton’s method introduces difficulties of its own. The most expensive is the need to 
form and solve a system of linear equations at each iteration, and the most awkward is the 
need to define the Jacobian matrix. The algebraic manipulations involved in defining this 
matrix can be formidable-and there are obviously cases when it cannot be defined, except 
perhaps numerically. For example, a recent paper on numerical methods in plasticity (Simo 
and Ortiz, 1984) contains the remark: 

“In general, however, the task of evaluating the consistent tangent 
moduli in closed form may prove exceedingly laborious. It would appear, 
therefore, that  a general purpose implementation of the physically more 
compelling algorithm..  . may require the use of quasi-Newton or secant- 
Newton methods . . .” 

This difficulty should not be underestimated. 

The straightforward approach we have been using for conventional plasticity models is 
discussed in Section 5 .  One further comment concerning that  method is appropriate 
here: even in cases when the rate plasticity model exhibits the usual symmetry property 
obtained from assuming associated flow and a smooth yield surface, the exact Jacobian of 
the integrated model-using the integration operator that  we have chosen-is not always 
symmetric. 

The full Newton method is expensive computationally. We can provide some numbers 
to quantify this on computers that  are available today. Abaqus is a general purpose code 
and is used on many different computer systems, presently ranging from the Apollo 300 
to  the Cray X-MP. The code is not particularly “tuned” to  any system, and therefore 
should be representative of typical straightforward finite element codes (we know from 
benchmarks that  this is generally true).  We use some standard benchmark problems to 
estimate performance of our  code on various computers: experience has shown that these 
benchmarks are reliable. One of these is a shell model. with 1000 eight-node elements. 
It has about 17000 degrees of freedom and an rms wavefront of 400 degrees of freedom. 
Such a mesh would be adequate for the typical front-end collision analysis that  I used 
as a n  example above. On a CrayX-MP this problem takes 48 cp seconds per iteration: 
60% of that  time is in the linear equation solver. and most of the rest is associated with 
element and constitutive calculations. A typical dynamic analysis of a front end collision 
needs 150-300 time increments wi th  the implicit operator that we use, and between three 
and four iterations per increment with the “almost ful l  Newton’‘ implementation of the 
shell in Abaqus (the initial stress terms associated with bending are not defined exactly 
in the Jacobian--there is no basic problem, we have simply not completed some lengthy 
manipulations. I do not think the terms we omit are very significant). Thus, such a crash 
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simulation can be expected to  pass through the basic loop about 500-1200 times if our 
algorithms for time stepping, impact, etc. all are working well. This implies about 6; to 
16 hours on the Cray for the job. 

4. Shells 
A substantial part  of the modeling for which Abaqus is used involves shells, much of it 
in cases where geometric and material nonlinearities dominate the response. We have 
tried to  provide useful capabilities for shell modeling, but we know that  there are serious 
deficiencies in what we offer. Irons wrote often about shells: his definitive account of 
SemiLoof (Irons, 1976) and his textbook (Irons and Ahmad, 1980) both contain succinct 
statements of the difficulties. My impression is that  things are improving rapidly. I hope 
so: I think we are all aware of the need. 

In Abaqus we always treat shells as shells-we do not have any numerically degener- 
ated solid elements acting as shells. The elements are formulated in terms of forces and 
moments a t  integration points. The behavior of the cross section is defined in closed form, 
or by numerical integration through the thickness. In most cases we use shear deformable 
elements, but  the transverse shears are not considered in the constitutive calculations-we 
assume the shell is thin enough that  transverse shear is not very important: it is simply 
a numerical technique that  allows us to  manage with low order interpolation. Low order 
elements are often desirable in practical cases. 

Abaqus includes three types of shell model: axi-symmetric shells with axi-symmetric 
deformations. general shells. and pipes and elbows with deforming sections (ovalization and 
warping). These last elements are a rather special case which turns out to be important 
in certain piping applications tha t  arise in the nuclear power industry and in the offshore 
oil industry. We often see problems where a mixture of shell and solid modeling is needed 
(li-joints in offshore platforms; Tees in pressure vessels). We have a standard technique for 
joining the shells to the solids, based on kinematic assumptions introduced as constraints. 
The  approach appears to be satisfactory for the small strain cases where we have seen 
results. 

The purely axi-symmetric case is rather simple because the problem is one dimen- 
sional. For this case we use a linear interpolation element with one integration point and a 
quadratic interpolation element with two. Our impression is that  these elements are quite 
effective. Our implementation of these elements is based on a simplified finite membrane 
strain theory. The  theory is similar in concept to Rodal’s thesis (Rodal and Witmer, 1979), 
except that  we use somewhat different strain measures because our applications involve 
material models for which logarithmic strain seems to  be appropriate, and,  in a case like 
this where the principal directions do not rotate. it is easy to work directly in terms of 
this strain. The  main simplifying assumptions in the theory are that the thinning of the 
shell is uniform through the thickness and is defined by an incompressibility assumption 
on the reference surface of the shell. and that the thinning occurs smoothly, so that we 
can neglect gradients of thickness change with respect to position. 

There are many applications for which a finite membrane strain model should be 
useful-obvious examples arise in sheet metal forming processes. The axi-symmetric case 
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is particularly simple and our version of a finite membrane strain theory is quite basic. 
Nevertheless. it takes two pages of the Abaqus theory manual just to write out the definition 
of the initial stress matrix. and the manipulations involved in reaching that  definition are 
lengthy. The extension of the same formulation to  general shell deformations will involve 
substantial algebraic manipulation. 

The general shell elements that  we use are the Batoz triangle, and the four and eight 
node “Ahmad quadrilaterals” (shear flexible elements using reduced integration). Our 
implementation of the Batoz triangle uses Batoz’ interpolation functions in a co-rotational 
frame for bending, together with constant membrane strain. The element is in Abaqus 
because it is essential for us to offer a three-node triangular element for shell problems, 
and we have been advised that this element is among the better elements of this category. 
The element appears to  behave well in bending-it converges rapidly and is relatively 
insensitive to distortion. The shortcomings of our implementation of the element are the 
constant membrane strain assumption, the faceted geometric approximation, and the need 
to  use three integration points, this last because it makes the element more expensive than 
it should be, given the constant membrane strain assumption. 

The Ahmad quadrilaterals are very attractive for cases involving material nonlinearity 
because the use of reduced integration minimizes the constitutive evaluations needed to  
form the element. The basis functions are also very simple. The four node element is 
of limited value without hourglass control: we use the hourglass controls proposed by 
Belytschko (Belytschko and Tsay. 1983) for this element. This improves the situation, 
but it is still not entirely satisfactory-we still find it necessary to change the hourglass 
stiffnesses from time to time. without being too sure of the reasons for the values we choose. 
Abaqus includes a print option which summarizes the energy content of the solution. It 
is not uncommon to see relatively significant “artificial strain energy’‘ associated with the 
hourglass control: in typical high energy dynamic events this artificial strain energy may 
even exceed the residual “physical” energy (strain energy plus kinetic energy) at the end 
of the event. Yet the overall predictions of the significant aspects of the response are 
generally usable. 

As Irons pointed out in his last paper (Irons and Loikkanen, 1983), the eight node 
Ahmad element does not pass the patch test except as a rectangle. We offer this element 
for historical reasons-it seemed to  be a good choice at the time. In fact it does respectably 
well on shells that  are not too thin, even if it is somewhat distorted. But there is another 
practical objection to the eight node interpolation scheme: contact problems are awkward 
with such functions. Contact over the entire element does not present serious difficulties, 
but. with the contact algorithms that we use (which have Lagrange multipliers to represent 
the contact pressure), we do not know how to deal with partial contact over an element- 
that is. with the possibility that  contact or separation may occur over part of the surface 
represented b> an element. We plan to add the nine-node version of the same element to  
overcome this last objection, even though Irons has told us that this form of the element 
onl> passes the patch test when it is geometrically bilinear (which would soon not be the 
case in a large displacement analysis. even if it were true to start  with). 

Both of the A4hmad elements, as we have implemented them, perform poorly if they 
are distorted and the shell is thin. This is a serious objection, but it would appear that  



the element of K .  C. Park (Park and Stanley, 1 ~ 8 4 )  alleviates this problem. I think it 
is important. for practical cases, that  we retain the simplicity of the low order elements 
as well as the cost effectiveness of reduced integration, especially when relatively severe 
nonlinearities (requiring, for example, modeling of finite strain effects) are present. 

5. Integration of Conventional Plasticity Models 
Conventional plasticity models present an interesting integration problem: the mate- 

rial behavior changes drastically a t  yield; the plastic strain is defined only as a rate, and 
the stress measures usually used are defined on the current configuration, so that the rota- 
tion of the material must be accounted for in some way. The problem has been receiving 
attention recently (for example Ortiz and Popov, 1984), and new approaches have been 
suggested. I would like to describe the approach that we have been using in Abaqus: over- 
all: we are reasonably satisfied with it, but it raises some questions that  we have not been 
able to  answer, and which may also be relevant to the more recently proposed approaches. 

Abaqus is primarily an implicit code, so that  it is desirable to  use an algorithm that 
is unconditionally stable. This is not strictly essential. In typical cases involving metals 
under ordinary conditions, our experience has been that we are unlikely to succeed in 
using increments in which the rotations exceed 10-15 degrees, or the strains exceed a 
few percent over important parts of the mesh (these limitations are associated with our 
Newton approach to solving the equations). Thus, any method that is stable for this size of 
increment should be satisfactory. However, I would be surprised to see conditionally stable 
algorithms that can handle such increments: typical yield strains in metals are about 
so that  the increment size is about ten times the size of the yield surface in strain space, 
and I assume that the stability limit of a conditionally stable operator would not be larger 
than the yield strain. Because we have found the full Newton method to be effective, we 
want an algorithm that is sufficiently simple so that  the Jacobian matrix, (dT/dE)t+nt, 
where T is the stress , E is the strain, and t i At is the time at  the end of the increment 
(where we write the equilibrium equations in an implicit code), can be obtained exactly 
for common plasticity models. It is desirable that  this matrix have an additional property: 
several plasticity models of practical importance are derived from a locally smooth potential 
which is also the yield surface, so that the rate equations of the model give a symmetric 
form dT/aE. We would like the integration operator to preserve th is  symmetry-this is of 
practical significance with respect to computational cost. The operator we use in Abaqus 
does not do so, except in a restricted class of plasticity models (which does not include 
some of those that  are available the code and which have a symmetric rate form). 

We first integrate the kinematic aspect of the model by using the algorithm of Hughes 
and Winget (1980) to define an increment of rotation. which we apply to all vector and 
tensor valued functions at  the material point; we also follow the Hughes-Winget suggestion 
and define the strain increment by the central difference approximation. Various authors 
have commented on the inadequacies of this class of method in the context of theories that  
involve tensor valued hardening variables, such as classical kinematic hardening theory. I 
do not see much utility in simple kinematic hardening with respect to  finite strain appli- 
cations. and the approach does not suffer the same obvious deficiency when it is used with 
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the isotropic yield models that  we generally use for metals and soils at finite strains. The 
algorithm leads to  a symmetric initial stress matrix. which is tedious to derive. 

We are left with the integration of the change of state associated with deforma- 
tion. The following discussion considers only isothermal, rate independent behavior with 
isotropic hardening. In Abaqus we use the same approach for rate dependent models (ex- 
cept where we integrate explicitly. as mentioned in Section 2.2 above), for non-isothermal 
cases (including fully coupled temperature-displacement calculations) and for more com- 
plicated hardening models. such as kinematic hardening. 

The isotropic hardening plasticity models in Abaqus all have the following structure. 
We assume a strain rate decomposition, 

d E  = dE"' + dEp' 

where d E  is a differential change in total mechanical strain, dE"' is a differential change 
in the elastic strain. and dE'" is a differential change in the inelastic (plastic) strain. We 
have introduced the Hughes- Winget approach to  account, in an approximate way, for the 
rigid-body rotation of the material during the increment, and to  define a finite increment of 
total strain during the increment. This allows us to  write this decomposition in integrated 
form as 

(1)  E ~ E" - E?'' 

where E. E"' and ET'' are defined as summations of the corresponding rotated values a t  
the start  of each increment and the incremental values associated with that increment. 
During the constitutive calculations E is known, except in the case of plane stress. 

We assume an elastic strain energy potential so that the stress. T. is defined as 

where II' = W(E"'.O) is the strain energy potential, and 8 is the temperature. 
Some of the plasticity models that  we use in Abaqus assume linear elasticity. while 

others (soils models) use a nonlinear elasticity in which the logarithm of the pressure 
stress is proportional to the volumetric strain. None of these elasticity models has internal 
constraints such as incompressibility, so that  (2) defines the stress completely. It can be 
differentiated to give 

which we write as 

d T  ' D  " : dE" 

A simple isotropic hardening model has the yield function 

f = O  

(3)  

(4) 
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where f = f ( T . O , H " ) ,  with H a  being a set of hardening parameters; f is defined such 
that .  whenever f < 0, the response is purely elastic. The models we use in Abaqus all 
have a smooth yield function. so that a j  I aT. a 2 j  aT 3T. and d f / d H "  are well defined 
everywhere on f. 

The flow rule is written 

dE"' = dX- 
d T  (5) 

where dX is a positive scalar and g(T,  8 ,  H " )  is the flow potential. Since the material 
models being discussed are rate independent, dX is determined only by the kinematic 
solution a t  the material point being considered. 

The  hardening parameters evolve with plastic strain: 

dH" = h"(dEP',  T ,  8 ,  H P )  

where h" defines the hardening: h" must be homogeneous of degree one in dEP" for the 
model t>o be rate independent. Therefore 

The  plasticity model is now defined. except for choosing particular forms for the elastic 
strain energy potential, K', the yield function, f, the flow potential. g ,  and the hardening 
rules, h". 

The only rate equations in the formal definition of the material model are the evo- 
lutionary rule for the hardening and the flow rule. The simplest operator which may at  
least fulfill the requirement of unconditional stability mentioned at  the beginning of this 
section is the backward Euler method, which can be introduced into (5) to  give 

while (6) is writt,en 

a g  
aT 

AH" = AX h"( -, T ,  8 ,  H')  

In these equations and in all of t,he following. all quantities are evaluated at the end 
of the time increment. 

Remark: Ortiz and Popov (1984) propose the midpoint rule as a more accurate oper- 
ator. based on an error analysis with small strain increments. Their analysis 
appears to  assume that  the material is yielding during the entire increment. 
This is often not the case-in most calculations there are always material 
points where yielding begins part way through the increment. At such points 
the mid-point rule requires solution for the initial intersection with the yield 
surface during the increment. and application of the rule only within the 
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yielding part of the increment. This creates some formidable algebra. espe- 
cially if one wishes to derive the Jacobian. O u r  analysis of this problem leads 
us to  the conclusion that,  even for a n  associated flow material, the Jacobian 
will, in this case. not be symmetric, and that its non-symmetric part may 
not be very small. We choose the backward Euler method partly because it 
does not introduce this difficulty, and so retains sufficient tractability that 
we can complete the algebra rather easily. It is interesting to  note that Ortiz 
and Popov confirm the conclusion of Schreyer et al. (1979):  that ,  for strain 
increments that  are not small compared to the size of the yield surface in 
strain space, the backward Euler method exhibits the highest accuracy of 
any of the simple methods that they tested. 

From a computational viewpoint the problem is now algebraic: we must solve the 
nonlinear equations ( l ) ,  (2), (4 ) ,  (7)  and (8) ,  and thus define the state of the material at  
the end of the increment. The "material stiffness matrix", 

must also be defined for the overall Newton scheme that we use for the equilibrium equa- 
tions. Simple manipulations lead to  the definition 

ID] = [II] + AA[H] : [L]]-'[H] 

where 11; is the fourth order identity tensor, and 

[HI = IDJe' : IZ] 

1 -  
d iZ; = [I] - - N M  : 

18 



and 

For a non-associated flow material, af/dT and N are not related, so that [D] cannot 
For an associated flow material, 13fjdT and N (and hence N) will be be symmetric. 

co-linear. Therefore ID] will be symmetric if 

which is the case, for example, for the simple Prandtl-Reuss model that  is commonly used 
for metals, but is not true for the modified Cam-clay model that  is sometimes used for 
clays. However, in associated flow cases when it is not true, the non-symmetric contri- 
butions to ID] appear only in the terms multiplied by (AA)2, so that they are of the 
order of (the plastic strain increment)2 compared to unity. This suggests that ,  for prac- 
tical purposes, the lack of symmetry should not degrade the convergence of the Newton 
iterations for equilibrium if we approximate ID] with its symmetric part, and our experi- 
ence to  date confirms this-at least, the performance of the algorithm with the symmetric 
approximation has been satisfactory, by our standards. 

There remains the problem of solving the algebraic equations for the state at  the end 
of the increment. In the general case, this is not a simple matter: whatever method is used 
should not be expensive on the computer. but it must work for the tightly curved yield 
functions that appear in some models of practical interest, even when the strain increment 
is many times the typical size of the yield surface in strain space. The problem is made 
more awkward in cases such as Cam-clay, where exponential terms appear in the elasticity 
and in the hardening. Our approach has been as follows. A Newton scheme should work, 
provided we choose suitable variables as a basis, and provided we start  with a good guess. 
The plastic strain increments, AEp', should be a suitable set of variables. Then Kewton's 
method for ( I ) ,  ( Z ) ,  (4),  (7)  and (8) is the linear equations 

[!I] t AA[Z] : [L] : [D]"'] : C p ' =  [Z]  : (AAN - 
- 1  

d 
AE"') t N -  f 

which are solved for CP' , the improvement to the solution for GEP': 

The elastic strain is then obtained from ( l) ,  the stress from (2) .  L A  from the projection 
of ( 7 )  onto N: 

and AH" from (8 ) .  
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This loop is repeated until the components of LE"' converge. A tight convergence 
criterion is necessar), so that the solution is accurately defined: this is essential for the 
overall Newton scheme for the equilibrium equations to converge quadratically. 

The Newton method requires solution of the linear system a t  each iteration. Although 
the system of equations is not large (at most six), these computations are done at  each 
integration point and at each iteration of the overall equilibrium solution, so that i t  is 
desirable to solve the problem more efficiently than by direct application of the Newton 
method. In addition, when the strain increment is large, a reasonable starting guess is 
necessary for the method to converge. For these reasons we have been using a projection 
of the problem onto a smaller number of variables to  start the solution. If this subspace 
is chosen appropriately, we should be able to develop a useful estimate of the solution a t  
low cost. The general idea is as follows. 

Let K O ,  (Y = I , .  . . . n, be a set of tensors that  are orthonormal: 

and choose n to  be less than the number of stress components in the actual problem. 

guess. 
The K u  are chosen for a particular guess and are fixed during the solution for that  

Assume that the plastic strain increment is 

,%-E"' = ne='Ka (9) 

The elasticity, (2) ,  and the strain rate decomposition. ( 1 ) .  then define the stress, 
which we require to satisfy yield, ( 4 ) .  The integrated flow equation, (7), is imposed in the 
sub-space: 

where 

Since the K a  are orthonormal, (9) and (10) then define 

Aep$ = AxNa 

where 

The Newton scheme described above for the full stress space projects directly: 
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where 

and 

These linear equations provide the c a ,  the improvements to  the Aeg': 

At each iteration the solution is updated as described for the full stress-space solution, 
except that  Ax is calculated by projecting (11) onto N a :  

The utility of this technique depends on the choice of the Ka, and on n. Clearly it is 
unlikely that  it would be worthwhile to  use n > 2. Most of the plasticity models in Abaqus 
are isotropic. in the sense t,hat the yield function, f, and the flow potential, g ,  are defined 
in terms of the stress invariants. An obvious choice for the K O  in these cases is n = 2, 
with 

(here I is the identity matrix), 
and 

where S" is the deviatoric part of To, the stress that  would occur at the end of the 
increment if there were no plasticity occurring in the increment. and 

If the only st,ress dependencies in f and g are the effective pressure stress, 

1 
p = - - I  : T 

3 

and the deviatoric stress magnitude, q; and the elasticity is isotropic, (and the hardening 
is isotropic, as has been assumed here), the subspace solution is the exact answer to the 
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problem, except for the plane stress case. For some simple yield surfaces and hardening 
definitions the subspace problem can be solved in cloyed form, without the need for iter- 
ation. For the simplest case of a Mises material. where q is the only stress term in f and 
g .  the one-dimensional sub-space defined by K2 above provides the exact solution. For 
perfect plasticity the method is then precisely Wilkins‘ “radial return” algorithm. 

Our experience with more general yield functions and flow potentials, where the third 
stress invariant is also used, is that  the two-dimensional sub-space provides a satisfactory 
guess, from which the solution can be completed usually with no more than two iterations 
of the full stress-space problem. 

6. Closure 
The paper has presented a brief review of our experience in the recent past in the 

general area of nonlinear structural analysis of metal shells. It is not difficult to  identify 
the most severe limitations in the methods we have used so far, to  write down a “wish 
list” of areas where we would like to be using better methods than those we have used to 
date. The list is as follows. 

0 We do not like the rapid deterioration in the accuracy of the isoparametric shell 
elements that  we currently use when they are not rectangles and the shell is thin. 

0 Reduced integration elements are attractive because they minimize constitutive calcu- 
lations, which are often a significant part of the computational cost when the material 
model is not simple. Numerical artifices, such as hourglass control, are not objection- 
able, when they are effective and are well understood. Our own understanding so far 
is lacking. 

0 The characteristic hinging of thin metal shells under compressive loads raises difficul- 
ties and opportunities. The difficulties are associated with concerns about capturing 
this behavior with smooth discretizations. The opportunities are indicated by the re- 
markable success of the rigid-plastic models of Wierzbicki. Perhaps it is true that,  in 
practical cases, load bearing members are too thick for this to be important, although 
movies of front-end collision experiments on cars shown very pronounced hinging. 

0 A straightforward finite membrane strain shell formulation would have wide applica- 
tion in several problem areas that we often encounter. The axi-symmetric formulation 
we have been using is based substantially on the assumptions introduced by Rodal in 
his thesis, although we have taken a rather different approach in detail. We do not 
have a good appreciation of the limitations of the formulation. 

0 We expect to continue to work with implicit methods in many problem areas, including 
a large part of the analysis work associated with structural design. If this is a correct 
assessment. it would be highly desirable to  have equation solution methods that  are 
more effective and less difficult to  use than Kewton’s method. This is, from our point 
of view. one of the most severe limitat,ions that  we face in practical applications. 

0 So much shell behavior involves branching on the solution path that  it would be very 
satisfying to have methods that  can handle this unassisted. 
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0 Finally, we have not mentioned rezoning, or the treatment of localization, but these 
are. becoming important issues in practical cases. 
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