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Preface 

A research activi ty named Computational Structural  Mechanics, or CSM, a t  the NASA 

Langley Research Center is described. This  activi ty is developing advanced structural analy- 

sis and computatiopal methods tha t  exploit high-performance computers. New methods are 

developed in the  framework of the CSM Testbed software system and applied to representa- 

t ive complex structural analysis problems from the aerospace industry. An overview of the  

CSM Testbed methods development environment is presented. Selected application studies 

performed on the NAS CRAY-2 computer system are also summarized. 
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LARGE-SCALE STRUCTURAL ANALYSIS: 
T h e  S t r u c t u r a l  Analyst, T h e  CSM Testbed,  a n d  T h e  NAS S y s t e m  

Norman F. Knight, Jr.t, Susan L. McClearyS, 
Steven C. Macy$, and Mohammad A. Aminpour' 

NASA Langley Research Center 
H a m  pton , Virginia 

I n t r o d u c t i o n  

Over the  past decade, the  structural analyst has had to adapt to a changing comput ing en- 

vironment. T h e  comput ing environment includes software as well as hardware. Research in 

computational methods for structural analysis has been severely hampered by the complexity 

and cost of the  software development process. Although usually interested in only a small 

aspect of the  overall analysis problem, each researcher is often forced to construct much of 

the  support ing software. This  time-consuming and expensive approach is frequently required 

because existing software tha t  the researcher could potentially exploit is not documented in 

sufficient detail internally, may not be suitable because of software architecture design, or both. 

Af ter  enduring this time-consuming software development effort, the researcher may find tha t  

a thorough evaluation of the  new method is st i l l  impossible due to l imitat ions of the  supporting 

software. This  scenario is true for many "research-oriented" f in i te element codes which have 

a l imi ted element l ibrary or have a problem-size limit because of the use of a memory-resident 

equation solver. In addition, new computer architectures w i th  vector and multiprocessor capa- 

bilities are being manufactured for increased computational power. Analysis and computational 

algorithms tha t  can exploit these new computer architectures need to be developed. For cred- 

ibility, these new algorithms should be developed and evaluated in a standard, general-purpose 

f ini te element structural analysis software system rather than in an isolated research software 

system. 

A t  the  NASA Langley Research Center, an intense effort is being directed towards develop- 

ing advanced structural analysis methods and identifying the requirements of the next genera- 

tion structural analysis software system which wi l l  exploit mult iple vector processor computers 

t Aerospace Engineer, Structural Mechanics Branch, Structural Mechanics Division. 
3 Structural Engineers, Planning Research Corporation. 
* Research Scientist, Analytical Services and Materials, Inc. 
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(Blankenship and Haydukl ) .  Th is  activity, called Computational Structural Mechanics or CSM 

(Knight and Stroud2), has developed the  CSM Testbed software system (Lotts e t  and 

S t e ~ a r t ~ ~ ~ , ~ )  to aid in the  definit ion of these requirements and to serve as a “proving ground” 

for new methods on large-scale structural application problems. A t  the  NASA Ames Research 

Center, the Numerical Aerodynamic Simulation (or NAS) Program ( Bailey7) has developed 

the  NAS System to provide a national computational capability and to serve as a pathfinder in 

advanced, large-scale computer systems. 

This  paper describes the evolving role of the structural analyst amidst a rapidly changing 

comput ing environment. T h e  distributed nature of the  comput ing hardware environment is 

described and i t s  use demonstrated. T h e  integrated nature of the  comput ing software environ- 

ment using the  CSM Testbed is described and i ts use demonstrated. T h e  flexibil i ty of the  CSM 

Testbed coupled with the computational facilities available through the NAS System make it 

possible for numerical analysts, methods developers, structural analysts, and computer scien- 

t ists to integrate their research in a common, shared comput ing environment. T h e  powerful 

problem-solving capabil ity of th is comput ing environment is demonstrated by solving several 

structural application problems involving linear and nonlinear stress analysis, buckl ing analysis, 

and transient dynamics analysis. 

Computing Environments 

During the  1970’s and early 1980’s, large-scale scientific comput ing was typically performed 

using stand-alone comput ing systems tha t  were characterized by a single computer. Individ- 

ual jobs were processed serially in a “batch” mode. During the  mid-l980’s, the  concept of 

distributed comput ing was introduced. Distr ibuted comput ing is characterized as several in- 

dependent computers transparently l inked together by  network systems. Currently, the  trend 

in comput ing environments is moving towards an integrated comput ing environment of shared 

resources (disks, networks, CPU’s). The evolving computational hardware environment is de- 

scribed in the  following sections. 

Stand-Alone Systems 

T h e  stand-alone comput ing environment included three types of computer hardware sys- 

tems. The f irst type was the minicomputer such as a DEC VAX 11/785 computer system 

using the  VMS operating system. T h e  second type was the  mainframe computer such as a 
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CDC CYBER 175 computer system using the NOS operating system. The third type was 

the supercomputer such as a CDC VPS/32 supercomputer using the VSOS operating system. 

Each of these systems were used for a variety of structural analysis application studies and for 

the development of new structural analysis methods. However, the inter-machine communi- 

cation link was limited to exchanging magnetic tapes between computer types. A knowledge 

of several computer operating systems was required for the user to work effectively on several 

computer types. The limitations of these stand-alone systems with vendor-specific operating 

systems and communication protocols (e.g., VAX/VMS, CDC/NOS) were soon realized, and 

distributed computing environments were developed. 

Distributed Systems 

Distributed environments involve several types of computer systems; namely, personal com- 

puters ( PC's), graphics workstations, minicomputers, mainframes, and supercomputers linked 

together through networks. An example of a distributed system is the coupling of a DEC 

VAX/VMS minicomputer through DECnet and a CRAY-station software system with a CRAY 

X-MP/48 supercomputer running the COS operating system. The changes occurring in the 

field of computer networking represent probably the most dramatic changes affecting structural 

analysts. Networking removed the constraint of physical distance. Working remotely from a 

supercomputer presented a new set of problems that, once solved, resulted in a unique new 

capability for the structural analysts. 

The network a t  the NASA Langley Research Center uses Ethernet within buildings and a 

fiber optic Pronet 10 token-passing ring network called LARCnet between buildings. Initially 

the gateways between buildings would route only a Xerox XNS-based protocol developed a t  

Langley. Connecting to one of the Ethernets was a Vitalink Bridge that routed both TCP/IP 

and DECnet to the NAS facility a t  Ames over a 256 kilobits per second satellite link. The 

evolution of this network has followed the networks developing in industry. Workstations in 

many buildings are supported with routing gateways through the LARCnet fiber optic system, 

through a Pronet P4200 gateway connected to the Vitalink directly. The communication link 

with Ames has been upgraded to a one megabit per second transfer rate (;.e., T1 link), and it 

was discovered that a land line is preferable to a satellite link for interactive use. The result 

is that the miles between Ames and Langley are no longer a problem; Langley researchers 

can use the NAS system a t  Ames as easily as if it were located a t  Langley. The NAS CRAY-2 
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supercomputer appears to the structural analyst as if it were embedded in the  local workstation. 

T h e  NAS CRAY-2 supercomputer uses the UNlCOSt operating system, has four proces- 

sors (each w i th  a clock-cycle t ime  of 4.1 nanoseconds), and has a to ta l  memory size of 256 

mil l ion 64-bit words. The  CRAY-2 supercomputer is capable of over one hundred times the  

computational capability of a VAX 11/785 minicomputer. In addition, t he  CRAY-2 computer 

system is a native 64-bit wordsize machine, and roundoff problems tha t  can be a problem on 

32-bit machines are usually eliminated. Even w i t h  256 mi l l ion words of main memory, f in i te 

element system matrices for  large-scale structural analysis may no t  fit in memory. Auxiliary 

data storage requirements for these analyses is another concern. Single temporary files may 

require in excess of 500 megabytes of storage. Hence, coordination or scheduling of these runs 

by the analyst is necessary to avoid exceeding the available auxiliary storage. 

Distr ibuted computer environments are made up of stand-alone computers of different sizes, 

architectures, and vendors, w i t h  a common network protocol offering the user easy file transfer 

and remote login functions. Structural analysts require the diverse computer capabilities offered 

by a distr ibuted environment (workstation-mainframe-supercomputer), but cannot afford the 

“overhead” of learning the operating system commands for  each system they use. Software 

developers have a similar problem, but a t  a lower level. They cannot afford the  “overhead” 

of learning a new set of system calls fo r  each computer on which they wish to implement 

their application software. To alleviate th is “overhead”, integrated comput ing environments 

are evolving which exhibit a common operating system. 

t T h e  UNICOS operating system is derived from the A T & T  UNlX System V operating system. 
UNICOS is also based in part on the Fourth Berkeley Software Distribution under license f rom 
T h e  Regents of the University of California. 
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Fig. 1 Integrated comput ing environment. 

Integrated Systems 

Integrated comput ing environments are a natural step in the  evolution of computer hard- 

ware systems. This  step represents an environment dominated by an open-system architecture 

(;.e., UNlX and TCP/IP). Integrated systems may involve several types of computer systems: 

namely, graphics workstations, mini-supercomputers, and supercomputers. In addition, in- 

tegrated systems will also incorporate a tightly-coupled auxiliary storage subsystem (;.e., disk 

farm) and high-speed wide-area and local-area networks. An integrated computing environment 

is shown schematically in figure 1. This integrated comput ing environment is a distributed, 

networked system with a common operating system (UNIX), a shared local f i le system (through 

NFS), and a high-speed wide-area network (NASnet). 

Overview of CSM Testbed 

T h e  field of computerized structural analysis is dominated by  t w o  types of computer programs. 

One type is the  huge, 2000 subroutine general purpose program (McLean8), t ha t  is the  result 

of over a hundred man years of effort spanning more than  a decade. T h e  other type is the 

relatively small, special-purpose code resulting from a research environment tha t  represents a 

one- to two-year effort for  a specific research application. This  dichotomy has resulted in long 

delays in making research technology available for crit ical structural analysis problems tha t  

NASA faces. To accelerate the introduction of successful research technology into large-scale 

5 



applications programs, a modular, public-domain, machine-independent, architecturally-simple, 

software development environment has been constructed. This system is denoted the CSM 

Testbed software system and its concept is depicted by a pyramid (see figure 2). The base 

of the pyramid is the computer and i t s  operating system. The computer operating system is 

provided by the computer vendor and may be different for each vendor. Currently, the CSM 

Testbed is primarily targetted for U NIX-based systems in order to minimize these differences. 

The Testbed architecture insulates both the engineer and the methods developer from those 

differences by providing a consistent interface across various computer systems. The Testbed 

command language CLAMP procedures and application processors may be accessed as part 

of a methods research activity or as part of an application study. The methods development 

environment of the CSM Testbed is further described by Gillian and Lottsg. One goal of the 

CSM Testbed is to provide a common structural analysis environment for three types of users 

- engineers solving complex structures problems, researchers developing advanced structural 

analysis methods, and developers designing the software architecture to exploit multiprocessor 

computers. 

Corn mand/database 

- 
Fig. 2 Concept of the CSM Testbed software system. 
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T h e  CSM Testbed software system is a highly modular and flexible structural analysis 

system for studying computat ional  methods and for exploring new multiprocessor and vector 

computers. T h e  CSM Testbed is used by a group of researchers from universities, industry, 

and government ageticies. Unrestricted access to al l  parts of t h e  code including t h e  data 

Research on these elements of software 

design is needed because deficiencies in the  data management strategy can have a devastating 

I 

! manager and the  command language is permitted. 
I 

I 
I 
I 

I impact on t h e  performance of a large structural analysis code, to ta l ly  masking t h e  relative 

meri ts of compet ing computational techniques. Furthermore, software designs t h a t  exploit 

multiprocessor computers must  b e  developed; in particular, techniques for handling parallel 

input/output (I/O) are required. 

I 

T h e  in i t ia l  CSM Testbed, called NICE/SPAR, began with t h e  integration of t h e  NICE 

system (FelippalO and Felippa and S t a n l e y l l )  and Level 13 of SPAR (Whetstonel*). Since 

then, new capabilities and improvements have been implemented in the  CSM Testbed. Each 

step of the  evolution of t h e  CSM Testbed provides improved structural  analysis capabilities 

to structural  analysts. Implementation of new capabilities is done using t h e  framework of the 

CSM Testbed as depicted in figure 3. A brief description of selected CSM Testbed processors 

is given in Table 1. 
& Command input stream 

I 
I 

I Super CLIP I 
Process0 r 
Envi ron ment 
Manager Stack 

Sym bo1 
Table 

I I 
GAL 
Library 
Status 

Independent 
Processors 

I I 
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0 0 e 

Fig. 3 Implementation of the  CSM Testbed Software System. 
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LAU 
E 
EKS 
TOP0 

RSEQ 
AUS 
K 
M 
I NV 
SSOL 
BAND 
ITER 
SPK 
KG 

EIG 
ES 
VEC 
IMP 
NVAL 
FPF 
T2PT 
PT2T 

Table 1. Selected CS M Test bed processors. 

Description 
Element definit ion (connectivity, material properties, etc) 
Laminate analysis utility for 2-D and 3-D elements 
Element-state in i t iat ion (build element informat ion packets) 
Compute the  SPAR element intrinsic stiffness matrices 
Analyze the f in i te element mesh topology and build tables 
to drive assembly and factorization of system matrices 
Reorder nodes for minimum fill or minimum bandwidth 
Ar i thmet ic uti I i t ies 
Assembles unconstrained system stiffness matr ix  
Assembles unconstrained system mass matr ix  
Applies constraints and factors assembled system mat r ix  
Performs forward reduction and back substitution 
Factor and solve using profile or banded solvers 
Factor and solve using i terat ive solvers 
Factor and solve using sparse solver 
Form and assemble unconstrained system geometric 
stiffness mat r ix  
Solves linear algebraic eigenproblems 
Generic element processor shell 
Performs variety of vector algebra operations 
Form ini t ia l  geometric imperfect ions 
Perform global smoothing of element results 
Perform first-ply failure analysis 
Test bed-to- PAT RA N transla tor 
PATRAN-to-Testbed translator 

1 
I 
I 

i 
I 

1 

I 
I 

I I 
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Fig. 4 Distributed computing environment of CSM. 

Computing Environment 

The computing environment of the CSM activity is currently a distributed environment as 

shown in figure 4. Typically, a structural analyst will develop a finite element model of the 

structure either by using a preprocessing software system such as PATRAN or by using the 

CSM Testbed command language for “parameterizing” the model. Runstreams are the vehicle 

used to perform structural analyses with the CSM Testbed. The term “runstream” most 

commonly refers to the file (or files) of input data and commands used to perform a specific 

analysis, although it may also refer to input during an interactive session. Runstreams for the 

CSM Testbed are usually developed and verified on a workstation, and then transferred to the 

NAS CRAY-2 computer system for complete processing. Following a successful execution, the 

computational database may then be “unloaded” (;.e., converted from the binary format of the 

NAS CRAY-2 computer system to ASCII format), transferred intact to the Langley Research 

Center using the NASnet wide-area network, and then “loaded” (;.e., converted from ASCII 

format to the binary format of the desired workstation) back into a computational database 

which has the identical Testbed library format as on the NAS CRAY-2 computer system. 

Finally, postprocessing is done to help the structural analyst visualize the computed structural 

response. The sequence of steps just described depicts the computing environment to which 

the structural analyst must adapt in order to exploit the full potential of available computing 

systems. 
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To exploit th is  new comput ing environment, expertise is needed in the  areas of com- 

put a t  ional strategies, numerical techniques, com pu ter science, and communication networks, 

together with a f i r m  understanding of the  principles of structural mechanics. New comput ing 

hardware environments, l ike the NAS System, offer the  computational power, memory, and 

disk space necessary for routine analysis of large structural models. New comput ing software 

environments, like t h e  CSM Testbed, offer an integrated system with data management, a 

general command language, and many different application processors - features t h a t  enable 

the structural analyst to develop new analysis methods and to tai lor the  analysis for specific 

application needs. 

CSM Testbed Architecture Features 

T h e  CSM Testbed is a Fortran program organized as a single executable file, called a 

macro-processor, which calls structural applications modules t h a t  have been incorporated as 

subroutines. The macro-processor and applications modules interface with t h e  operat ing system 

for their command input and data management functions through a set of common “architec- 

tura l  utilities”. Processors access the Testbed uti l i t ies by calling entry points implemented as 

Fortran-77 functions and subroutines which are available in t h e  Testbed object libraries. Appli- 

cations processors do not communicate directly with each other, but instead communicate by 

exchanging named data objects in a database managed by a data manager called GAL (Global 

Access Library). T h e  user controls execution of applications processors using a n  interactive, or 

batch, command runstream wr i t ten in a command language, called CLAMP (Command Lan- 

guage for Applied Mechanics Processors), which is processed by CLIP (Command Language 

Interpreter Program). 

Command Language 

T h e  Testbed command language CLAMP is a generic language originally designed to sup- 

port the NICE system and to offer program developers the  means for building problem-oriented 

languages (Felippa13-15). It may be viewed as a stream of free-field command records read 

from a n  appropriate command source (the user’s terminal, actual  files, or processor messages). 

T h e  commands are interpreted by a “filter” utility called CLIP, whose function is to produce 

object records for use b y  i ts  user program. T h e  standard operating mode of CLIP is the  

processor-command mode. Commands are directly supplied by t h e  user, retrieved from ordi- 

nary card-image files, or extracted from the  global database, and submit ted to the running 
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processor. Special commands, called directives, are processed directly by CLIP; the processor is 

"out of the loop". Transition from processor-command to directive mode is automatic. Once 

the directive is processed, CLIP returns to the processor-command mode. Directives are used 

to dynamically change run-environment parameters, to process advanced language constructs 

such as macrosymbols and command procedures, to implement branching and looping, and 

to request services of the data manager. CLIP can be used in this way to provide data to a 

processor as well as to control the logic flow of the program through a single input stream. 

All command language directives are available to any processor that uses the CLIP-Processor 

interface entry points. 

Directives are understood and processed by CLIP and provide the user with a means of 

defining command procedures. Command procedures, defined using the *PROCEDURE directive, 

bear some resemblance to Fortran subroutines. They may contain branching and looping con- 

structs (implemented using the *DO, *IF, and *WHILE directives) as well as other directives 

and processor and macroprocessor commands. Command procedures may be given arguments 

which, unlike Fortran subroutine arguments, may be assigned default values. When a com- 

mand procedure is called (using the *CALL directive), execution control shifts to the command 

procedure until the last directive (a *END directive) in the procedure is encountered. Once 

the *END directive is encountered, control returns to the input line in the calling procedure or 

runstream immediately following the call. 

Command procedures, while extremely useful, are not a requirement for performing many 

types of simple analyses. A command procedure is only required if looping or branching con- 

structs (;.e., the *DO, *IF, and *WHILE directives) are used. Researchers may use procedures 

to study analysis methods (e.g., problem-adaptive solution strategies) prior to implementing a 

specific strategy as a Fortran processor. However, computationally-intensive tasks may be inef- 

ficient as procedures and should be implemented as processors for use in a production analysis 

mode. 

Data Manager 

The data manager within the CSM Testbed was derived from the Global Access Library 

(GAL) concept developed a t  the Lockheed Palo Alto Research Laboratory (Wright et  a1.16). 

Methods for data management in structural analysis programs can be divided into three levels 

of complexity: file systems, file partition systems, and database systems (Hurst and Pratt17). 
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Since database files are subdivided or partit ioned into datasets, the  Testbed data manager is 

classified as a f i le part i t ion manager. To a processor, a GAL data library is analogous to a file. 

It must be opened, written, read, closed, and deleted explicitly. T h e  global access library resides 

on a direct-access disk file and contains a directory structure called a table of contents (TOC) 

through which specific datasets may  be addressed. Low-level 1/0 routines access the  GAL 

library f i le in a word-addressable scheme as described by Felippa18. T h e  data management 

system is accessible to the  user through the  command language directives and to t h e  running 

processors through t h e  GAL-Processor interface. 

T h e  global database is made up of sets of data libraries residing on direct-access disk files. 

Data libraries are collections of named datasets, which are collections of dataset records. T h e  

data library format  supported by the Testbed is called GAL/82, which can contain nominal 

datasets made up of named records. Some of the  advantages of using th is  form of data library 

are: I') the  order in which records are defined is irrelevant, ii) t h e  data contained in the records 

may b e  accessed from the command level, and i;;) the  record data type  is maintained by t h e  

manager; th is simplifies context-directed display operations and automat ic type  conversion. 

To provide the  e f k i e n c y  required to process the  volume of data required for a complex 

structural  analysis, a l l  usual overhead associated with Fortran has been eliminated. T h e  actual 

1/0 interface between the GAL data manager and the  UNIX operating system is accomplished 

through a set of block 1/0 routines wr i t ten in the C programming language. For non-UNIX 

computer systems, th is  interface is accomplished through a set of assembly-language routines 

which are unique to each computer system. 

User Interface 

T h e  user may develop runstreams using the  high-level command language CLAMP for 

a specific engineering problem (e.g., F e l i p ~ a l ~ , ~ ~ ) .  These runstreams may contain CLAMP 

directives and CLAMP procedures which are processed by t h e  command language interpreter 

CLIP. Application processors are called using t h e  command, or the  global access 

library GAL (e.g., Wright e t  a1.16) may be interrogated. Engineers typically interact with the  

Testbed using simple runstreams or through CLAMP procedures. Researchers interact using 

CLAMP procedures (e.g., to study nonlinear solution strategies) or through Fortran processors 

(e.g., to implement new element formulations). Developers interact with the  entire Testbed 

architecture, including the  design of the  command language, t h e  data handling techniques for 

[XQT 
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large-scale analyses, and t h e  strategy for 1/0 on parallel computers. 

CSM Testbed Structural Analysis Features 

T h e  CSM Testbed presently provides structural analysis capabilities t h a t  permit  a n  ana- 

lyst to perform large-scale nonlinear stress analyses of shell-type structures. Three-dimensional 

stress analyses are presently l imi ted to linear elastic orthotropic materials. Eigenvalue problems 

associated with either linear bifurcation buckling or linear vibration analyses may  also be solved. 

Transient dynamic analyses are l imi ted to linear elastic problems using either direct t i m e  inte- 

grat ion or mode superposition to obtain the transient response. Some of t h e  newly-developed 

engineering features of the  CSM Testbed are the  equation solvers, t h e  element library, the  

material modeling, and t h e  solution procedures. Interface ut i l i t ies to and from the  PATRAN 

graphics systems have been developed to support the  modeling and analysis of large-scale 

structures. Access to such a preprocessing and postprocessing software system enhances the  

structural  analyst's abi l i ty to understand the  structural behavior through visualization of the 

computed results. 

Equation Solvers 

T h e  system of equations t h a t  arise in static structural analysis applications has the  general 

form Ku = f where K is the  symmetric, positive definite stiffness matrix, f is t h e  load vector, 

and u is the  vector of generalized displacements. Such linear systems can b e  as large as several 

hundred thousand degrees-of-freedom (dog and of ten require significant comput ing resources, 

both memory and execution time. T h e  structure of the  stiffness matrices in these applications 

is of ten sparse, al though in many applications an ordering of the nodes which minimizes the 

bandwidth makes banded or profile (skyline) type storage of these matrices practical. T h e  

choice of t h e  particular method used to solve Ku = f will depend on the  non-zero structure 

of K and, in t h e  case of the iterative methods, the condition number of K. In addition, t h e  

architecture of t h e  computer, particularly for modern vector and parallel computers, influences 

both t h e  choice and implementation of methods used to solve these linear systems of equations. 

Or tega lQ presents a thorough description of these various methods and their implementations 

as applied to vector and parallel computers. 

T h e  data structure of the  global stiffness matr ix  is a key factor in t h e  design and implemen- 

ta t ion  of equation solvers for the  CRAY-2 architecture and t h e  Testbed software (e.g., Poole 

and Overman *'). T h e  generation of stiffness matrices is accomplished by several different 
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processors producing element stiffness matrices, defining boundary conditions, applied loads 

and ordering of nodes, and the assembling the global stiffness matrix. The stiffness matrix is 

stored in a nodal-block sparse form for which each block is dimensioned as dof xdof (usually 

3 x 3  or 6x6)  for each node. The original sparse out-of-core Choleski solver used by the Testbed 

(processors INV and SSOL) factors and solves the stiffness matrices using this data structure. 

A major source of inefficiency for this solver on a CRAY-2 computer system is that the oper- 

ations carried out in factoring the stiffness matrix and solving the resulting triangular systems 

are carried out using these small dof xdof blocks. The vector length of these operations is 

therefore six or less, and the code is faster when run without vector optimization. 

The new vectorized equation solvers (processors BAND and ITER) require K to be stored 

in one of several different sparse and banded storage schemes. Processor ITER contains three 

conjugate gradient iterative methods. These methods vary in their types of preconditioning, 

which include diagonal scaling, incomplete Choleski factorization with a sparse storage scheme, 

and incomplete Choleski factorization with a diagonal storage scheme. Processor BAN D con- 

tains three basic algorithms that are al l  based on Choleski factorization of banded matrices. 

The first algorithm uses the standard LINPACK*l routines for banded solvers; namely SPBFA 

and SPBSL. The second algorithm, kji Choleski, uses column storage of the lower triangular 

part of the symmetric matrix (to take advantage of vectors with a constant stride of one) 

and loop unrolling to level four. Loop unrolling reduces the number of memory references 

by holding vectors longer in the registers and increases the amount of vector computations 

within a loop. As a result, many of the multiplication and subtraction operations and memory 

references will overlap, leading to greater performance. In addition, the local memory of the 

CRAY-2 computer system is used to store up to four columns of the factored matrix to further 

decrease execution time. The third algorithm uses variable-bandwidth or profile storage of the 

matrix instead of banded storage and this type of storage results in a significant reduction in 

memory requirements and in the number of operations. 

The strategy used for the vectorized equation solvers involves four steps. First, the coeffi- 

cients of the unconstrained stiffness matrix are read from the global database into a temporary 

array. Second, the nodal constraint information and node ordering sequence information is 

retrieved from the global database. Third, the appropriate pointer arrays for the new storage 

scheme are formed. Finally, the coefficients of K are placed in a singly-dimensioned array and 

modifications are made to the right hand side f corresponding to any applied displacements. 
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For the direct Choleski methods, an additional storage scheme is included to reformat Testbed 

stiffness matrices into the standard LIN PACK*l-banded storage format. The reformatting pro- 

cedure is essentially sequential, but the time to reformat the matrices is small compared with 

the time to solve the equations for large problems. 

The capability to reorder the nodes automatically is an important part of the equation 

solving process in general-purpose finite element codes. The structure of the assembled st i f f -  

ness matrices is determined by the node connectivities and node numbering scheme used in 

the finite element model. Although the node connectivity is fixed by the problem definition 

and discretization, many node orderings are possible. The Testbed software contains processor 

RSEQ, which uses four different algorithms to reorder nodes automatically. These algorithms 

are: nested dissect ion, minimum degree, reverse Cut hill-M c Kee, atid Gib bs- Poole-Stockmeyer. 

The first two methods are used by sparse solvers and minimize fill in the factorization pro- 

cess. The last two are profile and bandwidth minimizing routines, respectively. The direct 

banded solvers implemented in processor BAND are most efficient with node orderings which 

minimize bandwidth, while the sparse out-of-core Choleski equation solver in processor INV 

is most efficient with orderings which minimize fill. For the various preconditioned conjugate 

gradient methods in processor ITER, the preconditioner used determines which ordering is best. 

Although the precise relationship between node ordering and the convergence rate of the In- 

complete Choleski Conjugate Gradient (ICCG) is not known, preliminary results indicate that 

the ordering of nodes can have a great effect on the convergence rate. In the test  problems 

used with the ICCG method, the convergence rate of ICCG is better for the sparse, minimum-fill 

orderings than for the bandwidth-minimizing orderings. However, in some cases, the ordering 

used to define the problem gives the best convergence rate. For the basic conjugate gradient 

method, the matrix structure has no effect on the convergence rate but the matrix structure 

is important for the storage requirements if diagonal storage is used. Orderings which mini- 

mize bandwidth also concentrate the coefficients near the main diagonal thereby minimizing 

the number of diagonals required for matrix storage. As a result, the vector lengths of the 

diagonals are longer, and the number of extra zeros added between non-zero coefficients is 

fewer; thus, the memory requirements are reduced, and the computation speed increased. 

Generic Element Processor Template 

The generic element processor template shown in figure 5 provides the element developer 

with a standard outer software "shell" that handles al l  user-command input and all 1/0 to and 
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from the  global database. In addition, a standard set of “shell-to-kernel” interface routines 

(e.g., ES-K, ES-M, ES-F ) are provided as cover routines for the  element developer’s “kernel” 

routines. T h e  function o f  the interface routines is to perform the  transformation between the  

standard argument lists of the  outer software “shell” and those of the  element developer’s 

personal code. T h e  element developer’s “kernel” routines are integrated with these interface 

routines using the  convention tha t  the  interface subroutine names and argument lists are stan- 

dardized. The  independent structural element processors (;.e., processor ESi, where ;=1,2,-..) 
are installed and readily accessible to  all CSM researchers for  small benchmark problems as 

well as large-scale application problems. 

T h e  generic element processor features a standard high-level procedure named ES tha t  

processes user commands such as 

*call ES ( function=’FORM STIFFNESS/MATL’; es-proc=ES; ). 

All of the  ESiprocessors are driven by a common set of commands through calls to the  ES proce- 

dure and create the  same data structure, regardless of how the  element developer programmed 

the  “kernel” routines (e.g., the  element stiffness calculations, element stress recovery). This 

approach provides an extendible and easy-to-use vehicle for integrated f ini te element research, 

development, and application within the  CSM Testbed. 

A key feature o f  the  generic element processor “shell” is t he  easy access to  the  utili- 

ties associated with an element-independent corotational formulation (Rankin and Brogan22). 

Through these utilities, element developers may readily a t tempt  geometric nonlinear problems 

which exhibit large rotations. Only the  basic element characteristics associated with linear 

strain-displacement relations are required f r o m  the  element developer in the  “kernel” routines. 

Extensions to  include the nonlinear strain-displacement relations require t h e  element developer 

to provide additional “kernel” routines (e.g., internal force calculations). 

Element Library 

Presently only two-dimensional shell elements and three-dimensional solid elements have 

been installed in the CSM Testbed using the  generic element processor template (see Ta- 

ble 2). Processor ES1 contains a family of 4- and 9-node continuum-based resultant (CBR) 

quadrilateral shell elements ( Stanley23). This family of elements includes the  assumed-natural 

coordinate strain (ANS) quadrilateral shell elements (Park and Stanley24) and t h e  Lagrangian 

(LAG) quadrilateral shell elements with selectively-reduced integration (SRI). Processor ES2 

16 



Processor ESi 

Generic Element Processor Software "Shell" I 
A 
T 
A 
B 
A m- S 

ID 

I I I I I '  I 1 I I 

I I 

Fig. 5 Generic element processor template. 

contains a new hybrid curved 4-node quadrilateral shell element (Kang and Pian 25) .  Processor 

ES3 contains a family of three-dimensional hybr id solid elements including 8- and 20-node bricks 

(hexahedrons), 6- and 15-node wedges (pentahedrons), and 4- and 10-node pyramids (tetra- 

hedrons), respectively (Aminpour26). Processor ES4 contains a fami ly of hybrid plate/shell 

elements including 4-node quadrilateral and 3-node triangular elements (Aminpour 26) .  Pro- 

cessor ES5 contains a displacement-based, 4-node quadrilateral plate/shell element from t h e  

STAGSC-1 computer code ( Rankin, Stehlin, and Brogan27), denoted the  410-element. Pro- 

cessor ESlO contains f ive isoparametric displacement-based solid elements including 8-node, 

16-node, 20-node, 24-node, and 32-node brick elements (Griffin 28). Addit ional  ESi processors 

are under development. In addition, elements in t h e  original element library of Level 13 of 

SPAR12 are currently st i l l  available for linear analyses. 

Mater ia l  Model ing 

T h e  material model ing features of t h e  CSM Testbed are directed towards t h e  analysis re- 

quirements of laminated composite structures. Constitutive relations for classical and shear 

flexible two-dimensional plate and shell models as well as for three-dimensional solids are eval- 

uated and available to the  element developer or structural analyst. Processor LAU is a laminate 

analysis utility for calculating the  constitutive relations for 2-D and 3-D isotropic, orthotropic, 
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Table 2. Summary of current ESi processors 

Processor 

ES1 
ES2 
ES3 

ES4 
ES5 

ESlO 

Description 

4-, 9-node, curved, Co, CBR (ANS and LAG), shell elements 
4-nodeI curved, C1, hybrid stress, shell elements 
4-, 6-, 8-node,Co, hybr id stress/strain, solid elements 
lo-, 15-, 20-nodeI Co, hybrid stress/strain, solid elements 
3-, 4-nodeI flat, Co, hybrid stress/strain, plate/shell elements 
4-nodeI f lat,  C1, displacement, STAGS 410 plate/shell element 
8-. 16-. 20-. 24-. 32-node displacement. solid brick elements 

and laminated structures. T h e  formulation is based on the  usual lamination theory (e.g., 

Jones29 and Whitney30) whereby the  laminate constitutive relations arc derived from the con- 

st i tut ive relations for each layer in the  laminate. Having the midplane strains and curvatures, 

the  inplane strains and corresponding stresses in each layer of the laminate may be calculated 

and used to evaluate selected stress- and strain-based failure criteria. T h e  failure criteria im- 

plemented in processor FPF include maximum stress criteria, max imum strain criteria, and 

several quadratic polynomial failure criteria including T ~ a i ~ ~ - H i I l ~ * ,  A ~ z i - T s a i ~ ~ ,  Hoffman34, 

and T s a i - W ~ ~ ~ , ~ ~ .  In addition, the  failure criterion developed by S h ~ a r t ~ ~  for zero-dominated 

laminates has been implemented. 

Soh tion Procedures 

Various types of analysis may be performed with the  CSM Testbed through the use of either 

ordinary runstreams which execute various processors sequentially or CLAMP procedures which 

execute directives and processors and perhaps call other procedures. Linear stress analyses and 

eigenvalue analyses are both performed using simple analysis runstreams (e.g., see Table 3). 

Solution procedures t h a t  require looping and branching are more complex procedures than 

linear analysis procedures. Two sets of solution procedures t h a t  require looping have been 

wr i t ten and may  be used to solve various application problems. 

T h e  f irst solution procedure is named NEWMARK and is based on t h e  computational 

strategy outl ined by Bathe38. I ts funct ion is to  perform a linear transient dynamic analysis 

using the  well-known Newmark-@ method for direct t ime integration of t h e  equations of motion. 

A l ist ing of this procedure is given in reference 6. Parameters such as system stiffness and mass 

matr ix  names, the t i m e  step, and the  to ta l  number of t i m e  steps in t h e  analysis are formal  
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Table 3. Sample linear stress analysis runstream for the CSM Testbed. 

$ t es tbed  
*set  echo=off 
*add g e n a t i l : u t i l i t i e s . p r c  
*open/nev 1, f la t -plate .101 
*def/a esname == EX97 . Element name 
*def/a e s p r o c  == ESl . Element processor 
*ca l l  ES ( funct ion = ’DEFINE ELEMENTS’; e s p r o c  = <es-proc> ;-- 

[xqt TAB 
esname = <esname>) 

START 25 1 2 6 . 25 nodes; dof 1,2,6 constrained 
JOINT LOCATIONS . Enter j o i n t  loca t ions  
I 0 . 0  0 .0  0 . 0  2.5 0 . 0  0 .0  5 1 5 

CONSTRAINT DEFINITION 1 . Constraints:  
5 0 . 0  2.5 0 . 0  2.5 2.5 0 . 0  

zero 3,4,5: 1,21,5 
nonzero 3 : 5,25,5 . Apply displacement at x= lx  edge 

CXQT IUS . Define mater ia l  and sec t ion  proper t ies  
TABLE(NI=lB,NJ=l): OMB DATA 1 1 
1=1,2,3,4,5,6,7,8,9 
J=l: 19.8+6 0.38 1.8Se+6 0.93E+6 0.93E+6 0.93e+6 1.9-4 1.8-4 .Ql 

TABLE(NI=3,NJ=2,itype=O): LAM OMB 1 1 
J=l: I .001 45.0 
J=2: 1 .001 -45.0 

[xqt LAW . Generate cons t i tu t ive  matrix 
[xqt ELD . Define elements 

<e s xxpe  smd> 
NSECT = 1 
1 3 1 3 1 1  2 8 12 6 7 1 2 2  

[xqt E . I n i t i a l i z e  element da tase ts  
s top 
*open 1 

* c a l l  ES (function=’INITIALIZE’) . I n i t i a l i z e  element matrices 
*ca l l  ES (function=’PORM STIPFNESS/MATL’) . Form i n t r i n s i c  s t i f f n e s s  matrices 
[xqt RSEQ . Resequence 

[xqt TOP0 . Create maps 
[xqt K 
[xqt I N V  
[xqt AUS 

Cxqt SSOL . Solve f o r  s t a t i c  displacements 

r e s e t  maxcon=27 

. Assemble global s t i f f n e s s  matrix 

. Form applied displacement 
sysvec : appl moti : i=3: j=5,25,5: -0.01 

s top  
*open I 

* c a l l  STRESS (d i rec t ion=l ;  locations: NODES) 
[xqt VPRT . Pr in t  s t a t i c  displacements 

[xqt e x i t  
p r i n t  STAT DISP 
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arguments to procedure NEWMARK. T h e  CLAMP macro expression capability is used for  

calculating integration constants and control l ing the algorithm. The  init ial acceleration a t  t ime  

t = 0 is calculated f rom the given in i t ia l  displacement and velocity vectors. Th i s  init ial izat ion 

is done by using processor AUS to set up the equations of mot ion a t  t = 0, and processors INV 

and SSOL to solve for the in i t ia l  accelerations. A t  each subsequent t ime step, processor AUS is 

used to set up the recursion relations, and processor SSOL is used to solve for the displacement 

vector a t  t he  next t ime  step. Velocity and acceleration vectors may then be calculated and 

selectively printed. 

The  second set of procedures is named NLSTATICJ. These procedures are used to 

perform a geometric nonlinear stat ic analysis using a modified Newton-Raphson algori thm 

with corotational updates and an arc-length control strategy for  either applied force or applied 

displacement problems (e.g., Stanley and Felippa3’). A l ist ing of th is set of procedures is also 

given in reference 6. Procedure N LSTATIC1 provides a global load-stepping algori thm for 

advancing the nonlinear solution during a stat ic analysis. Arc-length control algorithms treat the 

load factor as an addit ional unknown and augment the equil ibrium equations with a constraint 

equation t h a t  ties the load factor to the  generalized displacement unknowns. Implementations 

of the arc-length control strategy vary depending on  how the augmented equation system is 

solved and the  form of the arc-length constraint equation (e.g., see Riks40041 and Crisfield4*). 

The  implementation in procedure NLSTATlC1 involves a linearized version of the Crisfield 

quadratic arc-length constraint equation. At  the beginning of each “arc-length” step, a new 

tangent stiffness matr ix  is formed and factored. This tangent stiffness matr ix  is used for  all 

iterations a t  this step. Hence, th is implementation may be viewed as a modif ied Newton- 

Raphson algori thm w i t h  simultaneous i terat ion on the generalized displacements and the  load 

factor. 
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Application Studies Using CSM Testbed 

Research in methods development for the  CSM Testbed is driven in par t  by analysis deficiencies 

identified while solving various application problems. T h e  Langley CSM act iv i ty employs the  

concept of focus problems to  provide a common set of structural analysis problems for al l  

CSM participants. Focus problems may  be entire aerospace vehicles or various subcomponents 

t h a t  pose dif f icult  structural  mechanics problems. T h e  problems selected as focus problems 

challenge our abi l i ty  to predict their structural response and stretch our comput ing limits. 

These focus problems help guide methods research and development for generic classes of 

problems. New focus problems are selected as new technology evolves and computational 

structural  mechanics methodology develops. To use large, complex structures as focus problems 

requires an understanding of the  structure, i ts  loading, and life cycle as well as a n  understanding 

of t h e  underlying computational structural mechanics issues. 

T h e  application studies presented in this section represent a wide range of structural  analysis 

problems. T h e  problems selected for presentation here are: 

Composite hat-stiffened panel 

Composite blade-stiffened panel with discontinuous stiffener 

Three-dimensional composite analysis 

Circular cylindrical shell with cutouts 

Pear-shaped cylinder 

Impulsively loaded truncated conical shell 

SRM tang-clevis joint 

SRB global shell model 

These application studies demonstrate t h e  structural analysis capabilities of t h e  CSM 

Testbed. T h e  analyses presented herein ut i l ize solution procedures implemented through the  

CLAMP language and various f in i te elements implemented through the  generic element proces- 

sor template. T h e  execution times for selected CSM Testbed processors are compared for t h e  

various analysis problems considered. Postprocessing of t h e  results, both deflections and stress 

resultants, are performed by f irst using the  Testbed-to-PATRAN translator and then PATRAN 

for visualization of the  computed results. 
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Corn p osi te  Ha t-S tiff e ned Pa ne1 

Aerospace structures generally involve stiffened panel construction. Understanding the  

structural response of composite stiffened panels to combined longitudinal compression and 

shear loading is necessary in order to tai lor the  design of the various subcomponents of 

aerospace vehicles. Various stiffened panel configurations were analyzed by Stroud, Greene, 

and Anderson43. These results provide accurate benchmark calculations to evaluate the per- 

formance of structural analysis methods for stiffened panel analysis. T h e  stiffened panel con- 

figuration considered here is the  hat-stiffened panel shown in figure 6. 

(a) Mesh using 4-node elements. (b) Mesh using 9-node elements. 

Fig. 6 Finite element model of composite hat-stiffened panel. 
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Fig. 7 Repeating element for composite hat-stiffened panel. 

T h e  f in i te element model of the  hat-stiffened panel is "parameterized" using a CLAMP 

procedure given in reference 6. T h e  modeling parameters define a repeating cross-sectional 

element (or repeating element) as shown in figure 7. This  repeating element, composed of six 

sections or elements (denoted by the  circled numbers in figure 7), is repeated along the  length 

and width directions to create a f in i te element model of a panel 30-inches square with six hat- 

shaped stiffeners (;.e., six repeating elements for the  panel cross-section). T h e  material system 

is graphite epoxy, and the  laminate definitions for each section of the  repeating element are 

given in references 6 and 43. T h e  panel is simply supported on al l  four edges; these boundary 

conditions are applied to t h e  stiffener ends as well as to the skin of t h e  panel. 

T h e  f in i te element model shown in figure 6a has 36 4-node quadrilateral elements along the  

length. One 4-node quadrilateral element is used for each of the  repeating element sections 1, 

3, 4, 5, and 6 (;.e., one element per section). Two f in i te elements are used for section 2 of the  

repeating element (;.e., two elements per section). There are 1512 f in i te elements and 1369 

nodes in the  finite element model based on 4-node elements. T h e  f in i te element model  shown 

in figure 6b has 16 9-node quadrilateral elements along the  length. One 9-node quadrilateral 

element is used for each of the repeating element sections 1, 3, 4, 5, and 6 (;.e., two elements 

per section). Two 9-node elements are used for section 2 of the  repeating element (;.e., four 

elements per section). There are 672 f in i te elements and 2607 nodes in t h e  f in i te element 

model based on 9-node elements. 
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Fig. 8 Buckling load interaction diagram. 

A comparison of the two finite element models reveals a major problem with the use of 

higher-order elements for this stiffened panel geometry. Nearly twice as many nodes are used 

in the 9-node element model as are used in the 4-node element model due to the modeling 

constraints imposed by both the hat-shaped stiffener and the skin of the panel. A t  least one 

finite element for each section of the stiffener and skin must be used regardless of the number 

of nodes in the element. 

Linear bifurcation buckling analyses are performed for various combinations of longitudinal 

compression and shear and for different element types. The buckling load interaction diagram, 

shown in figure 8, is compiled by specifying the prebuckling stress state in each section of the 

repeating element (see figure 7) for selected combinations of compression and shear loading. For 

each prebuckling stress state, the linear algebraic eigenproblem is solved and only one converged 

eigenpair (buckling load and corresponding buckling mode shape) is extracted. These results, 

obtained for several load combinations, were used to determine the buckling load interaction 

shown in figure 8. 
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Table 4. Comparison of buckling results for composite hat-stiffened panel. 

Applied Loading I E igenva I ue 

300.0 
600.0 

1000.0 
2000.0 
1000.0 

NASA 
Ib/in N'y I/ TP 221543 

Test b ed 
ES5/E410* I ESl/EX97** 

1000.0 
1000.0 
1000.0 
1000.0 
1000.0 

0.0 

I 3.1920 I 3.2042 I 3.1906 
2.9320 
2.6800 
2.3268 
1.4062 
3.0042 

- 
- 

2.3317 

3.0000 
- 

2.9189 
2.6683 
2.3305 
1.4018 
2.9956 

* 
** ESl/EX97 - Bending, membrane plate elements with transverse shear. 

ES5/E410 - Bending, membrane plate elements without transverse shear. 

(a) Pure compression. 
A 

(b) Pure shear. 

Fig. 9 Buckling mode shapes for composite hat-stiffened panel - 4-node model. 

Buckling results obtained with the Testbed are compared to the results presented by Stroud, 

Greene, and Anderson43 in Table 4. The Testbed results prove to be in excellent agreement 

with those benchmark values for both the 4-node (ES5/E410) element and the 9-node assumed 

natural-coordinate strain (ESl/EX97) element. The extremely small variations in the results for 

the two elements indicate that transverse shear deformations, included in the 9-node element 

but not in the 4-node element, do not significantly affect the buckling response of this particular 

panel. Oblique views of the buckling mode shapes for the pure compression case and the pure 

shear case are shown in figure 9 for the 4-node element model. 
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Table 5. Selected processor execution times for hat-stiffened panel 
(ESl/EX97, 1369 nodes, 7700 dot average semi-bandwidth of 3811). 

NAS CRAY-2 
(CP U seconds) 

4.9 
1.4 
7.8 

44.7 
7.7 

55.1 
354.9 

VAX 11/785 
(CPU seconds) 

24.4 
35.6 
86.7 

698.3 
120.2 

2717.0 
5098.5 

Solution 
Phase 

Mesh Generation 

Form and Factor 
Global Stiffness 
Matrices 
Eigenvalue 
Extraction 

Computation times to obtain one converged eigenvalue for one loading condition of the 

4-node element model are given in Table 5 for selected Testbed processors. The majority of 

the CPU time is spent in processors INV and EIG performing the system matrix factorization 

and eigensolution, respectively. The estimated number of floating point operations to factor 

the system matrix is 370,206,288. This estimate is computed using the parameter IC1 output 

by processor TOPO. The parameter IC1 is the number of submatrix multiplications required to 

factor the system matrix. The estimated number of floating point operations is calculated by 

multiplying IC1 by the number of degrees-of-freedom a t  each joint cubed. The result is then 

multiplied by two to account for the two operations: multiply and add. The compute rates for 

processor INV are 6.72 and 0.14 MFLOPS (Million FLoating-point Operations Per Second) 

on the NAS CRAY-2 computer system and a VAX 11/785 computer system, respectively. The 

ratio of the overall execution time on a VAX 11/785 computer system to the execution time on 

the NAS CRAY-2 computer system is 17.1 to 1 for a single buckling analysis of the composite 

hat-stiffened panel. 

Processor 
Name 
ELD 
E 
TOPO 
ES 
K 
I NV 
EIG 

Composite Blade-Stiffened Panel  with Discontinuous Stiffener 

Discontinuities and eccentricities are usually present in practical structures. In addition, 

potential damage of otherwise perfect structures is often an important design consideration. 

Predicting the structural response in the presence of discontinuities, eccentricities, and damage 

is particularly difficult when the component is built from graphite-epoxy materials or is loaded 

into the nonlinear range. Recent interest in applying graphite-epoxy materials to aircraft pri- 
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mary structures has led to several studies of postbuckling behavior and failure characteristics 

of graphite-epoxy components (Starnes, Dickson, and Rouse44). One goal of these studies 

has been the accurate prediction of the  global response of the  composite structural  component 

in the postbuckling range. One study of composite stiffened panels tested a blade-stiffened 

panel (see Wil l iams e t  at. 45). A composite blade-stiffened panel was proof-tested and used 

as a “control specimen”. It was not tested to  failure, and was subsequently used in a study 

on discontinuities in composite blade-stiffened panels (see figure 10). T h e  f in i te element mod- 

eling and analysis needed to  predict accurately the nonlinear response of f la t  blade-stiffened 

graphite-epoxy panels loaded in axial compression is described in this section. 

i 

Fig. 10 Composite blade-stiffened panel with discontinuous stiffener. 
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(a) Control panel. (b) Panel with discontinuous stiffener. 

Fig. 11 Finite element model of composite blade-stiffened panel. 

The overall panel length is 30 in., the overall width is 11.5 in., the stiffener spacing is 

4.5 in., the stiffener height is 1.4 in., and the hole diameter is 2 in. The three blade-shaped 

stiffeners are identical. The loading is uniform axial compression. The loaded ends of the panel 

are clamped and the sides are free. The material system for the panel is T300/5208 graphite- 

epoxy unidirectional tapes with a nominal ply thickness of 0.0055 in. Typical lamina properties 

for this graphite-epoxy system are 19,000 ksi for the longitudinal Young's modulus, 1,890 ksi for 

the transverse Young's modulus, 930 ksi for the shear modulus, and 0.38 for the Major Poisson's 

ratio. The ultimate strains for this material system are 0.110 for longitudinal tension, 0.0086 

for longitudinal compression, 0.0036 for transverse tension, 0.0100 for transverse compression, 

and 0.0150 for shear. The blade stiffeners are 24-ply laminates ([f45/0,,/ 451) and the 

panel skin is a 25-ply laminate ( [f45/02/ 7 45/03/ f 45/0,/ 45/03/ f 45/02/ 7 451). 

The finite element models of these composite blade-stiffened panels are shown in figure 11. 

The finite element model of the "control panel" is shown in figure l l a .  A total of 72 9-node 

quadrilateral ANS shell elements (ESl/EX97) are used in the nonlinear analysis. This model 

has 323 nodes and 1425 active degrees-of-freedom. The finite element model of the panel 

with a discontinuous stiffener is shown in figure llb. A total of 144 9-node quadrilateral ANS 

shell elements (ESl/EX97) are used in the nonlinear analysis. This model has 628 nodes and 

2910 active degrees-of-freedom. The procedure N LSTATlCl is used to perform the nonlinear 

an a lysis. 

I 
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Fig. 12 Test and analysis correlation for end-shortening 

results for blade-stiffened panel. 
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The postbuckling response of the composite blade stiffened panel (;.e., the "control panel") 

is determined prior to analyzing the configuration with the discontinuous stiffener. End- 

shortening results are shown as a function of the applied compressive load in figure 12. The 

end-shortening u is normalized by the overall panel length L and the applied load is normal- 

ized by the panel's prebuckling extensional stiffness EA. The results indicate that the panel 

was loaded beyond i ts  buckling load. The dashed curve represents an extension of the panel's 

prebuckling path. The analytically-predicted linear buckling load is denoted by the filled sym- 

bol on figure 12. Since the test  buckling load is below the analytically-predicted value, it is 

suspected that the panel had some initial geometric imperfections that caused buckling below 

the predicted value. 

The influence of initial geometric imperfections on the postbuckling response is also shown 

in figure 12. The shape of the imperfection is selected to be the first buckling mode shape 

scaled by a percentage of the panel skin thickness. Processor IMP is used to calculate and 

impose the initial geometric imperfection. The postbuckling response for two values of the 

imperfection amplitude are shown in figure 12. As the imperfection amplitude increases, the 

influence of geometric nonlinearities becomes more dominant a t  lower values of the applied 

compressive load. The analytical results obtained using a maximum imperfection amplitude of 

12% of the panel skin thickness shows good correlation between test and analysis. Comparison 

29 



1 

(a) Moire-fringe pattern. 

Fig. 13 

(b) Analytical contour plot. 

Comparison of moire-fringe pattern from test with 

contour plot of out-of-plane deflections from analysis. 

of a moire-fringe pattern of the buckled panel skin and a contour plot of the analytically- 

obtained out-of-plane deflections for the last  nonlinear solution is shown in figure 13. These 

results indicate that the postbuckling out-of-plane deflections from both test and analysis have 

the same shape over the entire panel. 

End-shortening results are shown in figure 14 for the “control specimen” and for the con- 

figuration with a discontinuous stiffener. These results indicate that the presence of the discon- 

tinuity markedly changes the structural response of the panel. The structural response of the 

“control specimen” is typical of stiffened panels. Two equilibrium configurations are exhibited; 

namely, the prebuckling configuration and the postbuckling configuration. The structural re- 

sponse of the configuration with a discontinuous stiffener is nonlinear from the onset of loading 

due to the eccentric loading condition and the cutout. This problem has served as one of 

the CSM focus problems for identifying and resolving analysis deficiencies associated with the 

nonlinear global/local stress analysis of composite structures. This problem was selected as a 

focus problem because it has characteristics which often require a global/local analysis. These 

characteristics include a discontinuity, eccentric loading, large displacements, large stress gra- 

dients, high inplane loading, and a brittle material system. This problem represents a generic 

class of laminated composite structures with discontinuities in which the interlaminar stress 

state becomes important. 
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End-shortening results for composite blade-stiffened panels. Fig. 14 

End-shortening results are shown in figure 15 as a function of the applied compressive load. 

The blade-stiffened panel with a discontinuous stiffener was tested to failure. Local failures 

occurred prior to overall panel failure as evident from the end-shortening results shown in figure 

15. Good agreement between test and analysis is shown up to the load where local failures 

occurred. The analytically-obtained out-of-plane deflection w a t  the edge of the hole and blade 

stiffener normalized by the panel skin thickness t is shown as a function of the applied load in 

figure 16. These large out-of-plane deflections indicate that the response is nonlinear from the 

onset of loading. 

Oblique views of two deformed shapes with exaggerated deflections are shown in figure 

17 for two values of applied compressive load. The two values are denoted in figure 15 by 

Load A and Load B. These deformed shapes are similar to each other indicating that the 

primary equilibrium path is being followed and buckling does not occur. Contour plots of 

the longitudinal inplane stress resultant N, for Loads A and B are also shown in figure 17. 

These Nx distributions reveal several features of the global structural behavior of this panel. 

First, away from the discontinuity, the N, distribution in the panel skin is nearly uniform and 

approximately half the value of the N, in the outer two blade stiffeners. Second, load is diffused 

from the center discontinuous stiffener into the panel skin rapidly such that the center stiffener 

has essentially no N, load a t  the edge of the hole. Third, the Nx load in the outer stiffeners 
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Fig. 15 Test and analysis correlation for end-shortening results for 

composite blade-stiffened panel with a discontinuous stiffener. 
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Fig. 16 Out-of-plane deflection a t  hole and blade stiffener. 

increases towards the  center of the  panel and is concentrated in t h e  blade t ips (;.e., away from 

the  stiffener at tachment line to  the panel skin). Fourth, t h e  N, load in t h e  panel skin near the 

center of the  panel is much greater than t h e  N, load in other portions of t h e  panel skin. 
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(a) Load A (21,420 pounds). 

(b) Load B (37,800 pounds). 

Fig. 17 Deformed geometry shapes with Nx distributions. 

(see Appendix for color figures) 
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Fig. 18 Longitudinal inplane stress resultant N, distributions a t  panel midlength. 

Longitudinal inplane stress resultant N, distributions a t  panel midlength are shown in figure 

18 as a funct ion of distance from the hole for Loads A and B. T h e  results indicate t h a t  high 

inplane stresses and a high stress gradient exist near the  hole. As the  load increases, the  

longitudinal inplane stress resultant increases and t h e  stress gradient increases near the  hole 

and blade stiffeners. T h e  outer blade stiffeners carry a larger percentage of t h e  overall load a t  

Load B than a t  Load A. 

These high inplane stresses and stress gradients coupled with t h e  large out-of-plane dis- 

placements and t h e  free edge of the  hole may cause material nonlinearities, local failures, and/or 

delaminations to develop in order to provide local stress relief mechanisms (like plast ici ty in 

metal  structures) near the hole and blade stiffener. To determine when local failures init ial ly 

occur, t h e  analytically-obtained stress distributions may be used to assess various failure criteria 

to estimate when first-ply failure occurred. 
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(a) Load A. 
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Failure 
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(b) Load B. 

Fig. 19 Tsai-Hill criterion for outer fiber surface of panel skin. 

(see Appendix for color figures) 
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Table 6. Selected processor execution times for composite blade-stiffened 
panel with a discontinuous stiffener. 

(ESl/EX97, 628 nodes, 2910 dot average semi-bandwidth of 439). 

Solution 
Phase 

Mesh Generation 

Form and Factor 
Global Stiffness 
Matrix 

Each Iteration 

Processor 
Name 
ELD 
E 
TOP0 
ES 
K 
INV 
VEC 
SSOL 
SSOL 
VEC 
ES 

NAS CRAY-2 I VAX 111785 
(CPU seconds) 

3.2 
0.3 
1.6 

50.1 
1.4 
8.3 
2.9 
0.9 
0.9 
2.1 

13.5 

(CPU seconds) 

6.7 
11.4 
15.8 

821.0 
26.8 

347.0 
18.4 
28.8 
35.3 
19.4 

230.1 

Processor FPF is used to perform this assessment by evaluating various failure criteria 

and creating a dataset containing the values of the failure criteria for each element. Color 

assignment of the elemental values of the Tsai-Hill failure criterion obtained for the outer fiber 

(+45-degree ply) surface of the panel skin are shown in figure 19 for Loads A and B. First-ply 

failures are detected near the edge of the hole. Values less than one indicate no failure; values 

greater than or equal to one indicate failure. Progressive failure analysis techniques are needed 

to predict accurately the nonlinear response. 

Computation times for the nonlinear analysis of the composite blade-stiffened panel with 

a discontinuous stiffener are given in Table 6 for selected Testbed processors. Most of the 

CPU time was spent in processor ES which computes new elemental tangent stiffness matrices. 

The global tangent stiffness matrix was re-evaluated and factored fifteen times and a total of 

sixty-four iterations were required to predict the nonlinear structural response of this panel. 

The estimated number of floating point operations to factor the system matrix is 59,337,360. 

The compute rates for processor INV are 7.2 and 0.17 MFLOPS on the NAS CRAY-2 computer 

system and a VAX 11/785 computer system respectively. The ratio of the overall execution 

times on a VAX 11/785 computer system to the execution time on the NAS CRAY-2 computer 

system is 17.2 to 1 for the nonlinear response of the composite blade-stiffened panel with a 

discontinuous stiffener. 

I 
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Table 7. Performance of direct solvers in processor BAND 
(628 nodes, 2910 dot average semi-bandwidth of 439). 

Method 

LIN PACK 
kji Choleski 
kji Choleski' 
ki; Choleski** 
kji Profile 
ki; Profile* 
kji Profile** 

NAS CRAY-2 
(CPU seconds) 

27.1 
27.4 
17.7 
12.7 
12.7 
7.9 
5.6 

Compute Rate, 
(MFLOPS) 

64.1 
63.4 
98.2 

136.9 
57.1 
92.9 

129.4 
~~ 

* Loop unrolling to level 4. 
**Loop unrolling to level 4 and use of local memory. 

Performance results obtained using various direct solvers implemented in processor BAND 

are shown in Table 7. Increased performance is obtained by using "loop unrolling" to level 

4, where a column of K is updated by four columns a t  a time rather than one, and by also 

exploiting the local memory of the CRAY-2 computer system. For this problem, only the profile 

method in processor BAND performs better than processor INV. 

Three- Dimensional Com posite Analysis 

Detailed stress analysis of composite structures is often required to determine accurately 

through-the-thickness (or interlaminar) stress distributions. Some sources of interlaminar stress 

gradients are depicted in figure 20. These sources include free-edge effects, holes, ply drop-off 

(e.g., tapered stiffener attachment flanges), bonded joints (e.g., panels with secondarily-bonded 

stiffeners), and delaminations or damage. To study these effects, "quasi" three-dimensional 

formulations and two-dimensional finite element models have been used. To establish the 

quality and reliability of numerical solution procedures, researchers have studied the elastic 

response of finite-width composite plates (e.g., see Pipes and  pagan^^^ and Raju, Whitcomb, 

and G ~ r e e ~ ~ ) .  These studies developed an understanding of the mechanisms of interlaminar 

load transfer in fiber-reinforced composite materials. A symmetric four-ply laminate is shown 

in figure 21a. The laminate is assumed to be long in the x-direction. When this laminate 

is subjected to uniform axial strain E O  in the x-direction, al l  x =constant planes away from 

the ends deform in the same manner. Therefore, away from the ends, the displacements are 
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assumed to be 
u(x,Y,z) = U(Y,Z) + COX 

v(x,Y,z) = V(Y,Z) 

w(x,y,z) = W(Y,Z) 

where, U, V, and W are displacement functions expressed in terms of y and z alone. These 

equations describe a "quasi" three-dimensional problem. The term "quasi" is used because, 

displacements occur in the three coordinate directions, but the gradients of U, V, and W with 

respect to the x-coordinate are zero. Thus, only an x =constant plane may be analyzed to 

obtain the stresses in the laminate. A typical x =constant plane is shown in figure 21b. 

However, the analyses reported herein solve this problem using a three-dimensional fi- 

nite element model. The hybrid natural-coordinate assumed-strain solid elements in the CSM 

Testbed (;.e., ES3/EX20) are used for the analysis of the problem. The assumed strain field 

is chosen such that the standard isoparametric displacement-based formulation for a 20-node 

brick element is simulated. The quality of the results using the three-dimensional model are 

discussed. The problem considered in this section is a rectangular composite plate loaded by 

uniform axial extension as shown schematically in figure 21. The plate is a 4-ply ([0/90]J 

laminate with a nominal ply thickness of 0.005 in. Lamina properties used in this study are 

20,000 ksi for the longitudinal Young's modulus, 2,100 ksi for the transverse Young's moduli, 

850 ksi for the shear moduli, and 0.21 for the Poisson's ratios ~ 1 2 , ~ 1 3 ,  and ~ 2 3 .  A uniform 

extensional strain EO of 0.001 in./in. is applied. 

The [0/90], laminate is chosen to make the problem simple by being able to exploit 

symmetry. With this choice, only one-eighth of the problem needs to be analyzed due to the 

existence of three planes of symmetry. A [f45], laminate has only one plane of symmetry, 

and hence one half of the problem needs to be analyzed. 

Three finite element models were developed. A typical model is shown in figure 22. Each 

layer is idealized as a homogeneous, elastic, orthotropic material. Two elements are used 

through the thickness of each layer for al l  models. The discretization along the length (;.e., 

the long direction) consists of equally-spaced grid points. The discretization along the width 

of the plate is graded in a geometric progression. 

I 
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Fig. 20 Sources of interlaminar stress gradients. 

(a) Four-ply laminate (b) An x = constant plane 

Fig. 21 Three-dimensional composite problem. 

39 



(a) Model 1. 

(b) Models 2 and 3. 

Fig. 22 Finite element models of the three-dimensional composite plate. 
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The half-length of the plate is divided into ten equal segments for al l  models. The half- 

width of the plate is divided into twelve segments with a progression factor of 0.81 for al l  

models. The discretizations maintain a minimum aspect ratio of 0.4 (;.e., the length of the 

element in the width direction is 0.4 times the length of the element in the thickness direction) 

for elements on the free edge. This discretization results in 2597 nodes and 480 20-node brick 

elements (ES3/EX20) for al l  three models. The three models differ in their discretization. For 

Model 1, the discretization in the thickness direction consists of equally-spaced grid points. 

For Model 2, the discretization in the thickness direction is such that the elements around the 

interface are one-third as thick as the elements away from the interface. Model 3 is the same 

as Model 2 except that the midside nodes of the elements around the interface are moved 

to the quarter-point position from the interface. Also the midside nodes of the elements on 

the free-edge are moved to the quarter-point position from the free-edge. This process of 

moving the midside nodes to the quarter-point positions produces the so called "quarter-point 

singularity elements". Therefore, in Model 3 a singularity condition is induced a t  the interface 

(on both sides of the interface) in the thickness direction and also a singularity condition is 

induced a t  the free-edge in the width direction. 

The interlaminar normal stress cz distributions along the interface between the 90-degree 

layer and the O-degree layer are shown in figure 23 for all three models. The stresses shown 

are the averaged nodal values of stresses calculated directly a t  the nodes of each element. 

For all models, the interlaminar normal stress distribution along the interface between layers 

is virtually identical as shown in figure 23, except a t  the free-edge where the refined models 

(Models 2 and 3) give higher values, respectively. The accepted solution for this problem is that 

the interlaminar normal stress cz approach positive infinity a t  the free-edge. The finite element 

solution does not produce a value of infinity, but it should be rapidly approaching it as shown in 

figure 23. Much higher values can be obtained by successively refining the mesh (e.g., see Raju, 

Whitcomb, and G ~ r e e ~ ~ ) .  The normal stress a, distribution along the interface for Model 3 

exhibits a small anomaly near the free-edge as shown in figure 23 which may be attributed 

to the numerical difficulties caused by the relatively coarse mesh employed. Of course, the 

manner in which the stresses a t  the element nodes are calculated (;.e., calculated directly a t  

the nodes or calculated a t  the integration points and then extrapolated to the nodes) may alter 

the values of the stresses, and the amplitude of the anomaly may be attenuated or heightened 

when other methods of calculating the stresses are employed. 
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T h e  normal stress uz distribution a t  the free-edge in the  thickness direction are shown in 

figure 24 for al l  three models. Again, the  stresses shown are t h e  averaged nodal values of 

stresses calculated directly a t  the  nodes of each element. For al l  models, t h e  normal  stress 

distributions a t  the  free-edge in the  thickness direction exhibit similar behaviors as shown in 

figure 24. However, the  peak values near the  interface are heightened for the refined models 

(Models 2 and 3), respectively. It is noted t h a t  t h e  values of uz from all  three models a t  z = 0 

(;.e,, a t  the  interface between the  two 90-degree layers) exhibit l i t t le  difference. However, a t  

z = .01 inches (;.e., the  top surface of the plate), the  normal stress uz must  vanish. Model  I 
very nearly satisfies th is condition, but Models 2 and 3 give non-zero values a t  th is point. 

Again, th is behavior may b e  at t r ibuted to the  numerical difficulties caused by the relatively 

coarse mesh employed. This  behavior is particularly evident for Models 2 and 3, in which 

the  discretization in the thickness direction is refined towards the  interface a t  t h e  expense of 

a coarser discretization away from the  interface (Le., z = .01 inches). Again, it should be 

mentioned that the manner in which the stresses a t  the  element nodes are calculated (;.e., 

calculated directly a t  t h e  nodes or calculated a t  the  integration points and then extrapolated 

to t h e  nodes) may alter t h e  values of t h e  stresses and the  values of uz a t  z = .01 inches may 

or may not be closer to zero when other methods of calculating the  stresses are employed. 

These results demonstrate the  analysis capabilities in the CSM Testbed and show tha t  the  

solid elements recover the  established results and trends for free-edge stress analysis problems 

in composite structures. 
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Fig. 23 lnterlaminar normal stress uz distributions along the interface 
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Fig. 24 Normal stress u, distributions at the free-edge in the thickness direction. 
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Solution 
Phase 

Mesh Generation 

Form and Factor 
Global Stiffness 
Matrices 
Stress Recovery 

Table 8. Selected processor execution times for 3-0 stress analysis 
(2597 nodes, 6883 dot average semi-bandwidth of 663). 

Processor NAS CRAY-2 
Name (CPU seconds) 

ELD 3.9 
E .5 
TOPO 2.3 
ES 280.9 
K 7.1 
SPK 451.1 
ES 278.4 

Computat ion t imes for t h e  free-edge stress analysis are given in Table 8 for selected Testbed 

processors. Most  of the CPU t i m e  is spent in processor ES calculating t h e  element stiffness 

matrices and t h e  nodal values of stresses in the postprocessing phase. The remaining time 

is, for al l  practical purposes, spent in the  processor SPK factor ing t h e  global stiffness ma- 

trix. The  number of f loat ing point operations required to factor t h e  system stiffness matr ix  

is 865,404,512. T h e  compute rates for processor SPK is 2.2 MFLOPS on the  NAS CRAY-2 

computer system. Processor ELD used a very small amount  of t ime because the  model  is 

generated using PATRAN, and processor ELD only read the  data file. Processor TOPO also 

used a very small amount of t i m e  because only the  KMAP dataset for guiding t h e  assembly of 

the  global stiffness mat r ix  is generated. Processor SPK does not require the AMAP dataset 

for factor ing the  global stiffness mat r ix  tha t  is ordinarily generated by processor TOPO. These 

analyses have only been performed on the  NAS CRAY-2 computer system because of the  large 

memory requirement. 

Circular Cylindrical Shell with T w o  Rectangular Cutouts 

A common structural configuration is t h a t  of a cylindrical shell (e.g., storage tanks, 

pipelines, aircraft fuselages, rocket motor cases). Shell-type structures are generally sensi- 

t ive to in i t ia l  geometric imperfections and to local discontinuities such as cutouts. Many 

aerospace vehicles contain large cutouts (e.g., access holes, windows). The  strength of these 

structures is l imi ted to i t s  static collapse load. Stat ic collapse is characterized by two modes of 

behavior: bifurcation buckl ing and nonlinear collapse (see Bushnel14*). Predicting the nonlin- 

i 
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ear collapse behavior of these shell-type structures is a dif f icult  and computationally-intensive 

analysis problem. 

X 

T h e  circular cylindrical shell w i t h  t w o  rectangular cutouts loaded by uniform end shortening 

shown in figure 25 is representative of this class of structures. This  problem has also been used 

as a benchmark problem by Har tung and for shell analysis computer codes and by 

Almroth and Brogan5' for assessing shell elements. These researchers considered only one- 

eighth of the shell in their analyses. T h e  results reported herein are compared with their 

results, and hence only one-eighth of the shell is modeled. Three f in i te element models were 

considered in th is  study as shown in figure 26. Mesh 1 has 19 rows and 27 columns of nodes 

(including corner and midside nodes) and is composed of 101 9-node quadrilateral shell elements 

(ESl/EX97), 449 nodes, and 2012 active degrees-of-freedom as shown in figure 26a. Mesh 

2 has 25 rows and 41 columns of nodes and is composed of 210 9-node quadrilateral shell 

elements (ESl/EX97), 905 nodes, and 4182 active degrees-of-freedom as shown in figure 26b. 

Mesh 3 has t h e  same nodal  layout as Mesh 1 but is composed of 404 &node quadrilateral shell 

elements (ESl/EX47). T h a t  is, Mesh 1 uses higher-order (biquadratic shape function), curved 

shell elements while Mesh 3 uses low-order (bilinear shape function), f la t  shell elements with 

the  two discretizations having the  same number of nodes (compare figure 26a with figure 26c). 

Uniform end shortening 
I 

I 
i 

I 
i 

Fig. 25 Cylinder with cutouts - geometry, properties, and loading 

- 
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(a) Mesh 1 (101 ESl/EX97 elements, 449 nodes). 

(b) Mesh 2 (210 ESl/EX97 elements, 905 nodes). 

(c) 

Fig. 26 

Mesh 3 (404 ESl/EX47 elements, 449 nodes). 

Finite element models of cylinder with cutouts. 
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Table 9. Elastic collapse loads for cylinder w i th  cutouts - *-model results. 

Element 
Name M es h(l) 
(2) 17 x 22 

I Source 
Elastic Collapse Load, 

pounds 

2109 
I 

411 

440 

410 

ES1/ EX97 

ESl/EX47 

Almroth and Brogan 11 x 13 3698 
17 x 19 3060 
23 x 27 2922 
29 x 37 2750 
17 x 19 3733 
2 3 x  29 3098 
17 x 19 3290 
23 x 29 2962 
19 x 27 2846 
25 x 41 2828 
19 x 27 2966 

(STAGSC-1) 

STAGS C- 1 

Mesh description is n x m meaning n rows by m columns of nodes. 
( 2 )  Finite difference version of STAGS. 

A linear bifurcation buckl ing analysis is performed prior to the  nonlinear elastic collapse 

analysis. T h e  buckl ing loads computed using Meshes 1, 2, and 3 are 1016 pounds, 1008 pounds 

and 1179 pounds, respectively, which correlate well w i th  the  results presented by Har tung and 

T h e  buckl ing mode shape indicates tha t  the vertical edges of the  cutout  buckle locally. 

T h e  nonlinear analysis of the cylinder w i th  cutouts is performed using the procedure 

NLSTATICA. Out-of-plane deflections w are shown in figure 27 as a function of the ap- 

plied load for t w o  points (denoted points "a" and "b") for the three meshes considered. The 

nonlinear response shown in figure 27 is characterized by large local radial deflections along the 

straight edges of the cutouts a t  a load level of approximately 1000 pounds followed by  overall 

shell collapse at  a load level of approximately 3000 pounds. T h e  elastic collapse loads predicted 

using the  Testbed are summarized in Table 9. These collapse loads are each nearly three times 

the linear bifurcation buckling load. As the out-of-plane deflections near the  vertical edges of 

the  cutouts develop, the  compressive axial stresses are redistributed away from these regions 

and the  load is carried by the  remaining portions of the shell as shown in figure 28. 
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Total axial 
load, Ib 

0 .  01 0 .020 .030 .040 .050 .060 .070 .080 .090 .10 .I 1 
Radial deflection w, in. 

Fig. 27 Nonlinear response of cylinder with cutouts - 
Out-of-plane deflections. 
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(a) Load step 9 (989 pounds). 

-600 

(b) Load step 15 (1962 pounds). 

(c) Load step 24 (2966 pounds). 

(d) Load step 30 (2926 pounds). 

-400 

Axial stress 
resu Itant, 

Ib/in. 
-200 

0 

Fig. 28 Deformed geometry plots for several load steps - Mesh 3 results. 

(see Appendix for color figures) 

49 

I 



, 

Circumferential coordinate8 , degrees 

Fig. 29 Axial stress a t  x = 0 for various load steps - Mesh 3 results. 

I 
- 10000 

-8000 

-6000 
Axial stress 
at mid-plane 

(x = 4.5 in.), psi 

:- Load step 30 
Edge of 
cutout - 

i l  \ 

I \  Load ster, 15 i \  1 
-4000 

-2000 

I 
I 

I I !  I I I 1 I I I 

0 10 20 30 40 50 60 70 80 90 
Circumferential coordinate 8 ,  degrees 

Fig. 30 Axial stress a t  x = 4.5 in. for various load steps - Mesh 3 results. 

T h e  distribution of the axial stress a t  the  midsurface across t h e  end of the cylinder (x = 

0) is shown in figure 29 for various load levels. T h e  distribution of t h e  axial stress a t  the  

midsurface across the  midplane of the  cylinder (x = 4.5 inches) is shown in figure 30 for these 

same load levels. These distributions indicate t h a t  substantial redistribution of t h e  axial stress 

occurs as the  collapse load is approached. 
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3500 r 

I 

Total axial 
load, Ib 

------ 

STAGSC-1,410,17 x 19 grid 
STAGSC-1,410,23 x 29 grid 

---- Testbed, Mesh 1 
- Testbed, Mesh 3 

V I I I I I I I I I I 1 
0 .010 .020 .030 .040 .050 .060 .070 .080 .090 .10 .11 

Radial deflections w, in. 

Comparison of Testbed and STAGSC-1 results for the  nonlinear 

response o f  cylinder w i th  cutouts - Out-of-plane deflections. 

Fig. 3 1  

Har tung and reported a collapse load o f  2109 pounds using a f in i te difference version 

of the STAGS computer code. Later, A lmroth and Brogan50, in a convergence study using the 

f in i te element version of STAGS, reported a "nearly" converged collapse load of 2750 pounds. 

Independent elastic collapse analyses using the STAGSC-1 computer code were performed to 

compare w i t h  the  nonlinear response predictions obtained using the CSM Testbed. These 

elastic collapse loads are summarized in Table 9. T h e  nonlinear response shown in figure 31 

indicate tha t  t he  Testbed and STAGSC-1 analyses correlate well. T h e  Testbed f in i te element 

models include transverse shear deformations and the ES l /EX97  elements are curved 9-node 

elements. The  STAGSC-1 element is a 4-node flat, shell element which neglects transverse 

shear flexibility. These results indicate tha t  the influence of transverse shear deformations on 

the  nonlinear shell response is very slight. However, approximating the shell geometry as a 

curved surface rather than  a facetted surface lowers the  nonlinear collapse by approximately 

f ive percent. 

One additional analysis is performed for the cylinder w i t h  cutouts. Th is  analysis used a half 

model of the  shell as shown in figure 32. This f ini te element model is composed of 1616 4-node 

quadrilateral shell elements (ESl/EX47), 1736 nodes and 8010 active degrees-of-freedom. The  

elastic collapse load for the hal f  model is 2943 pounds compared to 2966 pounds for the  eighth 

model (Mesh 3 in figure 26c). The  nonlinear shell response for the hal f  model is compared 

w i t h  the response from the eighth model in figure 33. 
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Fig. 32 Half model of cylinder with cutouts using 4-node elements. 

(1616 ESl/EX97 elements, 1736 nodes). 

3500r 

Total axial 
load, Ib 

V I I I I 1 I I I I I I 
0 .010 .020 .030 .040 .050 .060 .070 .080 .090 .I 0 .I 1 

Radial deflections w, in. 

Fig. 33 Comparison of eighth-model and half-model results for nonlinear 

response of cylinder with cutouts - Out-of-plane deflections. 

i 

Contour plots of the axial stress resultant distributions for several load steps superposed 

on the corresponding deformed geometries with exaggerated deflections are shown in figure 34. 

Note that complete symmetry in the half-model response is exhibited up to the collapse load. 
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, (a) Load step 9 (992 pounds). ~ 

-600 

(b) Load step 15 (1959 pounds). 

-400 Axial 
stress 

resultant, 
Ib/in. 

-200 

(c) Load step 25 (2943 pounds). 

Fig. 34 Deformed geometry plots for several load steps - Half-model results. 

(see Appendix for color figures) 

53 



Table 10. Selected processor execution times for cylinder with cutouts 
(Mesh 1: ESl/EX97 - 449 nodes, 2012 dot average semi-bandwidth of 148). 

NAS CRAY-2 
(CPU seconds) 

1.00 
0.30 
1.70 

60.19 
0.94 
9.17 

12.01 
3.14 
0.80 
3.06 

15.34 

Solution I Phase 
VAX 11/785 

(CPU seconds) 
5.10 
5.30 

14.20 
971.58 

17.10 
448.55 
46.82 
75.74 
19.37 
11.98 

248.50 

Mesh Generation 

Form and Factor 
Global Stiffness 
Matrix 

Solution 
Phase 

Each Iteration 

Processor NAS CRAY-2 VAX 11/785 
Name (CP U seconds) (CPU seconds) 
ELD 2.40 13.3 

I 

Each Iteration 

Processor 
Name 
ELD 
E 
TOPO 
ES 
K 
INV 
VEC 
SSOL 
SSOL 
VEC 
ES 

SSOL 0.61 14.15 
VEC 3.14 12.09 
ES 12.88 208.72 

Table 11. Selected processor execution times for cylinder with cutouts 
(Mesh 3: ESl/EX47 - 449 nodes, 2012 dot average semi-bandwidth of 93). 

Mesh Generation 

Form and Factor 
Global Stiffness 
Matrix 

E 
TOPO 
ES 
K 
INV 
VEC 
SSOL 

0.60 
1.50 

49.37 
1.14 
5.00 

12.05 
2.32 

8.6 
11.6 

800.07 
16.67 

221.98 
46.35 
54.24 

Computation times for the nonlinear analysis of the cylinder with cutouts are given in Tables 

10 and 11 for selected Testbed processors. Most of the CPU time was spent in processor ES 

which computes new elemental tangent stiffness matrices. The global tangent stiffness matrix 

was re-evaluated and factored 23 times for Mesh 1 (9-node elements) and 25 times for Mesh 

3 (4-node elements). Mesh 1 required 102 iterations while Mesh 3 required 92 iterations to 
I 
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predict the nonlinear structural response of this cylinder. On the NAS Cray-2 computer system, 

processor INV ran a t  a compute rate of 8.3 MFLOPS for Mesh 1 and 7.9 MFLOPS for Mesh 

3. On the VAX/VMS computer system processor INV ran a t  a compute rate of 0.17 MFLOPS 

for Mesh 1 and 0.18 MFLOPS for Mesh 3. The ratio of the overall execution time on a VAX 

11/785 computer system to the execution time on the NAS CRAY-2 computer system to obtain 

the nonlinear response of the cylinder is 15.4 to 1 for Mesh 1 and 16.2 to 1 for Mesh 3. 

Pear-S haped Cylinder 

The nonlinear shell response of cylindrical shells with a noncircular cross-section became 

the subject of intense research in the early 1970’s. Early Space Shuttle fuselage configurations 

were noncircular, and the “pear-shaped” cross-section was a leading candidate. The pear- 

shaped cylinder shown in figure 35 has been adopted by many researchers and the behavior of 

this shell subject to a uniform end-shortening investigated (e.g., refs. 49 and 50). The results 

in this report are compared with results reported by Hartung and and by Almroth and 

Brogan50. In al l  cases, only one fourth of the cylinder is modeled. The shell is isotropic with 

a uniform thickness of 0.01 inches. The boundaries are simply supported. 

Material Properties: Geometric Parameters: 
E = 10’psi 
v = 0.3 

R = 1.0 inch 
L = 0.8 inches 
t = 0.01 inches 

I 

Fig. 35 Pear-shaped cylinder - geometry, properties, and loading. 
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Three f in i te element models were considered in th is  study as shown in figure 36. Mesh 1 

(3 x 26) has three nodes through the cylinder depth and 26 nodes around the  half-cylinder 

circumference (see figure 36a). T h e  mesh is composed of 50 4-node quadrilateral shell elements 

(ESl/EX47 or ES5/E410) and a to ta l  of 78 nodes. Mesh 2 (5 x 37) has f ive nodes through the  

cylinder depth and 37 nodes around the  half-cylinder circumference (see figure 36b). This  mesh 

accommodates both 4- and 9-node elements and will contain either 144 4-node (ESl/EX47 

or ES5/E410) or 36 9-node (ESl/ES97) quadrilateral shell elements and 185 nodes. Mesh 3 

(7 x 51) has seven nodes through the cylinder depth and 51  nodes around t h e  half-cylinder 

circumference (see figure 36c). Mesh 3 accommodates both 4- and 9-node elements and will 

contain either 300 4-node (ESl/EX47 or ES5/E410) or 75 9-node (ESl/EX97) quadrilateral 

shell elements and 357 nodes. 

T h e  pear-shaped cylinder is representative of a shell-type structure with a complex non- 

linear collapse behavior. The  shell response becomes nonlinear a t  a very low value of applied 

end-shortening, and the normal deflections of the  f la t  portions of t h e  shell increase rapidly. 

T h e  nonlinear analysis of the cylinder is performed using the  procedure NLSTATICJ. The  

distribution of t h e  normal displacement (normal to t h e  shell surface) is shown in figure 37 

as a funct ion of the  applied load for the  point of max imum normal displacement (at x =0, 

8 =180°) and for al l  meshes and element types considered. These results indicate t h a t  a con- 

verged solution is provided by the  ESl/EX97 elements as the  curves for Mesh 2 and Mesh 3 in 

figure 37c are nearly identical. These three solutions correspond to a discretization with 185 

nodes with either 144 4-node f la t  classical (ES5/E410) elements, 144 4-node f la t  shear-flexible 

(ESl/EX47) elements, or 36 9-node curved shear-flexible (ESl/EX97) elements. 

A comparison of t h e  three solutions obtained using Mesh 2 is provided in figure 38. T h e  

effects of transverse shear flexibility, present in the  ESl/EX97 and ESl/EX47 elements but 

not present in ES5/E410 elements, are apparent near collapse. T h e  response curves begin 

to  separate sl ightly a t  approximately ha l f  the elastic collapse load with the  shear flexible el- 

ements exhibit ing a consistent, yet sl ightly lower, stiffness than t h e  response obtained using 

the  ES5/E410 element. T h e  elastic collapse loads obtained using the  4-node f la t  elements is 

nearly the same. However, results obtained using higher-order curved elements to model the  

shell and i ts  response are approximately 10% lower than the  collapse loads obtained using the  

f la t  elements. 
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4-node elements 

4-node elements 

(a) Mesh 1. \% 
\t 

(b) Mesh 2. 

9-node elements 

9-node elements 

(c) Mesh 3. 

Fig. 36 Finite element models of pear-shaped cylinder. 
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3000 

Total axial 
load, Ib 

E55lE410 elements 
I I I I 

0 .o 1 .02 .03 .04 
Normal deflection w at 8 = 180 degrees, in. 

(a) Models using 4-node flat classical (ES5/E410) elements. 

3000 

Total axial 
load, Ib 

Mesh 1 

Mesh 3 

Normal deflection w at 8 = 180 degrees, in. 

(a) Models using 4-node flat classical (ES5/E410) elements. 
4000 - 

3000 - 

Total axial 2000 - 
load, Ib 

1000 - 

ESllEX47 elements 
I 

0 .o 1 .02 .03 .04 

Normal deflection w at e =  180 degrees, in. 

(b) Models using 4-node flat shear-flexible (ESl/EX47) elements. 

Total axial 
load, Ib 

Normal deflection w at 8 = 180 degrees, in. 

(c) Models using 9-node curved shear-flexible (ESl/EX97) elements. 
Fig. 37 Nonlinear response of pear-shaped cylinder. 
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Total axial 
load, Ib 

3000 - 

0 

- 

Mesh 2 results 

.o 1 .02 .03 .04 
Normal deflection w at 8 = 180 degrees, in. 

Fig. 38 Nonlinear response of pear-shaped cylinder - Mesh 2. 

Har tung and reported an elastic collapse load of 2372 pounds using a f in i te difference 

version of STAGS. Several years later, Almroth and Brogan50 performed a convergence study 

using t h e  f in i te element version of STAGS and estimated tha t  t h e  elastic collapse load was 

between 2300 and 2400 pounds. These results, along with the  Testbed results, and results from 

independent elastic collapse analyses using the  STAGSC-1 computer code, are summarized in 

Table 12. 
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Table 12. Elastic collapse loads for pear-shaped cylinder. 

Source 
~ 

Hartung and 

Almroth and Brogan48 

STAGS C- 1 

CSM Testbed 

Element 
Name 
( 2 )  

411 

440 

410 

ES5/ E410 

ESl/EX97 

ESl/EX47 

Mesh( l) 
4 x 40 
3 x 27 
5 x 37 
7 x 47 
5 x 37 
7 x 47 
3 x 26 
5 x 37 
3 x 26 
5 x 37 
7 x 51  
5 x 37 
7 x 51 
3 x 26 
5 x 37 
7 x 51 

Elastic Collapse Load, 
pounds 

2372 
3586 
2731 
2586 
2657 
2530 
3570 
2734 

(l) Mesh description is n x m meaning n rows by m columns of nodes. 
(2) Finite difference version of STAGS. 

In figure 39, the normal deflection a t  x =O is plotted as a function of the circumferential 

coordinate 6 for four different levels of applied load: 154, 300, 1689, and 2464 pounds (load 

steps 10, 20, 30 and 40 respectively). The final load step (step 40 a t  2464 pounds) occurs just 

after collapse. The f lat  portions of the shell, from 45" 5 6 5 90" and 157.5' 5 6 5 180", show 

a rapid growth in normal deflections. Associated with this growth is a redistribution of the 

longitudinal stress indicating that the curved portions begin to take up a larger percentage of 

the total axial load. This type of behavior can be seen in figure 40 which plots the longitudinal 

stress resultant as a function of the circumferential coordinate for load steps 10, 20, 30 and 

40. Contour plots of the longitudinal inplane stress resultant, superimposed on the deformed 

geometry with exaggerated deflections, are provided for the same four load steps in figure 41. 

3343 
2753 
2577 
2475 
2466 
3945 
2696 
2568 
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Normal 
deflection 

w, in. 

*030L .025 n f 
.020 1 Load step 40 ,/n\ 
.010 1 F o a d  step 3\ 
.015 - 

Y 

-.010 

-.015 I I I I 

- 

0 30 60 90 120 150 180 
Circumferential coordinate 8 , degrees 

Fig. 39 Normal deflection distribution at cylinder midlength for various load steps. 

Longitudinal 
inplane stress 
resu Itant, I b/in. 

Circumferential coordinate 8 , degrees 

Fig. 40 Longitudinal inplane stress resultant N, distribution 

at cylinder midlength for various load steps. 
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Load step 10 (154 

(300 

pounds). 

pounds) . 

(d) Load step 40 (2464 pounds). 

Z w 
-900- 

Fig. 4 1  Deformed geometry plots for several load steps. 

(see Appendix for color figures) 
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Table 13. Selected processor execution times for pear-shaped cylinder 
(ESl/EX97, 185 nodes, 687 dot average semi-bandwidth of 37.) 

I 

Solution I Processor I NAS CRAY-2 I VAX 11/785 

1 ELD 0.3 1.1 
E 0.2 1.9 
TOP0 0.6 4.3 

ES 9.2 44.9 
K 0.4 7.4 
I NV 0.5 19.7 
VEC 1.9 11.1 
SSOL 0.2 4.9 
SSOL 0.3 4.9 
VEC 1.8 4.0 
ES 3.4 46.1 

Phase I 1 Name I (CPU seconds) I (CPU seconds) 

Mesh Generation 

Form and Factor 
Global Stiffness 
Matrix 

Each Iteration 

This study appears to indicate that the curved element, ESl/EX97, performs much better 

than i ts  f la t  4-node counterparts. The wide range of values predicted for the collapse load 

suggests that addition research in shell element technology and in nonlinear solution strategies 

is required in order to provide reliable analysis tools. 

Computation times for the nonlinear analysis of the isotropic pear-shaped cylinder (Mesh 

2, ESl/EX97) are given in Table 13 for selected Testbed processors. Most of the CPU time 

was spent in processor ES which computes new elemental tangent stiffness matrices. The 

global tangent stiffness matrix was re-evaluated and factored 51 times and a total of 186 

iterations were required to predict the nonlinear structural response of this cylindrical shell. 

The estimated number of floating point operations to factor the system matrix is 4,204,656. 

The compute rates for processor INV are 8.41 and 0.21 MFLOPS on the NAS CRAY-2 and 

VAX 11/785 computer system, respectively. The ratio of the overall execution time on a VAX 

11/785 computer system to the execution time on the NAS CRAY-2 computer system to obtain 

the nonlinear response of the pear-shaped cylinder is 10.2 to 1. 

Impulsively Loaded Truncated Conical Shell 

A number of important engineering problems are associated with the prediction of the 

response of a shell to high-energy, short-duration dynamic loads. Examples include reentry 
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vehicles, space vehicles subjected to pyrotechnic separation loads, and vehicles subjected to 

blast or impulse environments (e.g., water impact). Sometimes these high-energy loads only 

generate a rapidly varying linear elastic stress state, but in other cases the  loads may b e  

sufficiently high or of sufficient duration tha t  the  structural response is nonlinear. 

T h e  linear elastic transient response of a t runcated conical shell subjected to an impulse load 

( init ial  velocity) shown in figure 42 is selected as representative of these transient dynamic shell 

analysis problems. This  problem also has been used as a benchmark problem by Har tung and 

T h e  f in i te element model shown in figure 43 is composed of 540 4-node quadrilateral 

elements, 589 nodes, and 2569 active degrees-of-freedom. T h e  predicted transient response 

shown in figure 44 for the normal deflections a t  two points on the  shell correlates well with 

the  results presented in reference 49. Both points are located a t  6.5 inches from the clamped, 

small diameter edge: one a t  8 = 0" (point "a") and one a t  8 = 180" (point "b"). T h e  

transient response was calculated for 1500 microseconds using the Newmark method with a 

time step of 2 microseconds. Oblique views of the  deformed shape with exaggerated deflections 

a t  various points in t i m e  are shown in figure 45. Contour plots of the  hoop stress resultants 

are superposed on these deformed shapes. 

0.543" initial velocity 

7.95" 
- - - - -  

E = 3.52 x IO6 psi 

'U = 0.286 
-4 2 . 4  p = 1.88 x 10 Ib-sec /in. 

Fig. 42 Truncated conical shell - geometry, properties, and loading. 
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Fig. 43 Finite element model of truncated conical shell. 

.040r 

-.0401 I I I I I 
0 300 600 900 1200 1500 

Time, microseconds 

Fig. 44 Normal deflections at points "a" and "b" on truncated conical shell. 
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4500 

3000 

1500 
Hoop 

(a) Time t = 0. 

(c) Time t = 400p sec. 

(b) Time t = 200p sec. 

(d) Time t = 600p sec. I 

(g) Time t = 1200p sec. 

__ 

(e) Time t = 800p sec. (f) Time t = 1000~ sec. 

(h) Time t = 1500p sec. 

Fig. 45 Deformed shapes for truncated conical shell during the transient response. 

(see Appendix for color figures) 
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Table 14. Selected processor execution times for truncated conical shell 
(589 nodes, 2146 do( average semi-bandwidth of 78). 

Processor 
Name 
ELD 
E 
TOP0 
EKS 
K 
M 
I NV 

Solution 
Phase 

NAS CRAY-2 V A X  11/785 
(CPU seconds) (CPU seconds) 

1.1 9.0 
0.6 8.5 
1.5 16.1 
8.1 77.4 
1.5 21.1 
2.9 36.8 
5.6 235.1 

Mesh Generation 

Form and Factor 
Global Mass and 
Stiffness 
Matrices 
Each T i m e  Step 5.4 

SSOL AUS I 0.7 I 12.0 

Computat ion times for the  nonlinear analysis of the truncated conical shell are given in 

Table 14 for selected Testbed processors. Whi le each t i m e  step requires a relatively small 

amount  of CPU time, 751 t i m e  steps are required in this analysis, thus the major i ty of t i m e  

is spent in the  Newmark algorithm. T h e  estimated number of f loat ing point operations in 

factor ing the matr ix  is 32,493,250. The  compute rates for processor INV are 5.4 MFLOPS 

on the  CRAY-2 computer system and 0.14 MFLOPS on t h e  VAX 11/785 computer system, 

respectively. T h e  rat io  of the  overall execution t ime on a V A X  11/785 computer system to the  

execution t i m e  on the  NAS CRAY-2 computer system is 14.5 to 1 for the  complete transient 

response prediction of the  t runcated conical shell. 

SRM Tang-Clevis Joint 

T h e  Space Shutt le Challenger accident investigation focused on the  failure of a tang-clevis 

joint on t h e  right Solid Rocket Motor (SRM). T h e  existence of relative motion between the  

inner a rm of t h e  clevis and the O-ring sealing surface on the  tang has been identified as a 

potent ia l  contributor to this failure. Finite element structural analyses were performed to  

predict both deflections and stresses in the  joint under the  primary, pressure loading condition 

(e,g., see Greene, Knight, and S t ~ c k w e l l ~ ~  and McConnaughey, Lee, and Moore5*). These 

analyses have demonsttated the difFiculty of accurately predicting the  structural behavior of the 

tang-clevis joint. Stresses in t h e  vicinity of the  connecting pins, obtained from elastic analyses, 

considerably exceed the  material yield allowables indicating tha t  inelastic analyses are probably 
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necessary. T h e  original design of the jo in t  has been modified to resolve issues raised in the  

failure investigation; namely, to control t he  relative motion between the inner clevis a rm and 

the tang a t  the O-ring sealing surface. The modification, referred to as the  "capture feature", 

uses additional material on the inside of the tang and an interference fit to restrict t he  motion 

of the inner clevis arm. A cross section of the original and modified tang-clevis jo ints are 

shown in f igure 46. The  upper end of the lower cylindrical, motor segment forms the clevis. 

The  lower end of the upper cylindrical, motor segment forms the tang which mates w i t h  the  

lower clevis. Around the circumference of both tang and clevis ends are 180 holes into which 

one-inch-diameter connecting pins are inserted. Three of the pin holes on the  t a n g  end are 

used as alignment slots to faci l i tate assembly of the  SRM segments. T h e  seal between two 

motor segments is provided by t w o  O-rings in the  "inner arm" of the  clevis. T h e  O-rings are 

compressed by a f la t  sealing surface on the tang. 

arm 

(b) Modif ied design. (a) Original design. 

Fig. 46 SRM tang-clevis joints. 
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i 
(a) Entire model. (b) Close-up of local joint. 

Fig. 47 Finite element models of the modified SRM tang-clevis joint. 

In order to model the details of the  contact between tang, pin, and clevis and also to 

predict the general three-dimensional stress state in the joint,  three-dimensional elastic, solid 

f ini te elements are selected for  the analysis. The  jo in t  geometry is assumed to be identical a t  

each of the  180 pin locations around the circumference of the case segment. T h e  effects of 

the  three alignment slots are ignored in the  analysis reported in this paper. This assumption 

implies t h a t  t he  structural behavior will be symmetric about a plane through the  shell axis and 

pin centerline, and a plane through the shell axis and the centerline between two pins. The 

f in i te element model is therefore restricted to a one-degree circumferential slice of the case 

segment as shown in figure 47. 

T h e  CLAMP language features, along w i t h  the capability to easily add new, user-supplied 

computational processors, are exploited in the study. The  f in i te element models for  each 

component use six- and eight-node elastic, solid elements. These elements are based on an 

assumed-stress hybrid formulation. The  elements have elastic material properties for all analyses 

performed in this study. T h e  f ini te element model of the redesigned SRM tang-clevis joint has 

2477 joints, 148 6-node elements, 1256 8-node elements, and 178 contact points (89 nonlinear 

spring elements). 

A key ingredient of the  joint modeling approach is the method used for connecting the  
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separate f in i te element models of the tang, clevis, and pin. It was recognized from the  outset 

t h a t  the contact regions between these components would change as a funct ion of loading, 

leading to  a nonlinear analysis problem. This  nonlinearity occurs, for example, when a gap 

t h a t  exists between unloaded components closes when loaded. The  actual contact  is modeled 

by adding a nonlinear spring between t w o  adjacent contact nodes (e.g., adjacent nodes on 

the  tang p in  hole and the  pin or adjacent nodes on the  inner clevis a rm and the  tang). T h e  

nonlinear spring stiffness curves are piecewise-linear functions of the  relative displacement and 

are generated, for example, such tha t  a high stiffness results for any compression of the  spring 

and a low or zero stiffness results if the  spring stretches. To reduce the  computational cost of 

the  overall analysis, a substructure approach based on a "unit motion" solution technique is 

adopted (see reference 51). In th is  approach, al l  nonlinear behavior in the  structure is assumed 

to b e  confined to specific contact nodes on the boundaries of the components. Therefore, a 

reduced, nonlinear problem can b e  formed which involves the  equil ibrium equations only a t  

these contact nodes. For the f ini te element model shown in figure 47, 178 unit-motion vectors 

are calculated, and the  reduced, nonlinear system has 178 unknowns. T h e  reduced, nonlinear 

problem is solved using a full Newton-Raphson strategy. 

Several characteristics of the  original SRM joint design have been identif ied as potential 

contributors to t h e  failure. One characteristic is the  behavior of the joint under internal pressure 

load. T h e  motor case expands radially outward due to t h e  pressure. Because t h e  joint has a 

higher hoop stiffness than the  case wall on either side of the  joint, i ts  radial expansion is less 

than t h a t  of t h e  case wall. Th is  nonuniform radial expansion shown in figure 48 is the  primary 

cause of relative motion between t h e  inner clevis a rm and the  sealing surface on t h e  tang. 

This  relative motion can cause the  O-rings to become unseated and therefore lose their  sealing 

capability. Away from the  tang-clevis joint, the structural response approaches t h a t  obtained 

using membrane shell theory. 

T h e  purpose of the  analysis reported herein is to examine t h e  sensitivity of the  average 

gap motion for the modified tang-clevis joint with the  capture feature to deviations from an 

interference fit. For new SRM cases, the nominal interference between the  capture feature and 

the  inner clevis a rm is 0.019 inches. For reuse, t h e  SRM cases are refurbished and proof-tested. 

A parametric study is performed to  determine the  structural response of t h e  redesigned SRM 

joint to the in i t ia l  clearance between the  capture feature and the  inner clevis arm. T h e  effect of 

th is clearance on t h e  gap motion measured midway between the  primary and secondary O-rings 
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t 

is shown in figure 49. With a metal-to-metal fit, the average gap motion is approximately 0.004 

inches. As t h e  in i t ia l  clearance becomes larger, the average gap motion increases. This  t rend 

continues until the  in i t ia l  clearance between the  capture feature and the  inner clevis arm is 

larger than the  deflection of the inner clevis a rm (Le., contact does not occur). For an init ial  

clearance greater than approximately 0.050 inches, the  average gap motion is approximately 

t h a t  of t h e  original tang-clevis joint. 

I I 

(a) Overall response. (b) Local joint response. 

Fig. 48 Deformed geometry of the  modified SRM tang-clevis joint. 
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Fig. 49 Effect of in i t ia l  clearance on average gap motion. 

Computat ion t imes for t h e  SRM tang-clevis joint analysis are given in Table 15 for selected 

Testbed processors. Most  of t h e  CPU t i m e  was spent in processor SSOL generating the  unit- 

motion vectors needed a t  each contact  point in order to generate t h e  reduced nonlinear system. 

However, several other processors (EKS, INV, AUS) also used a sizeable amount  of CPU time. 

All of these processors need to be studied and improved for large-scale analysis problems. T h e  

estimated number of f loat ing point operations to factor t h e  system mat r ix  is 74,862,252. T h e  

compute rates for processor INV are 6.72 and 0.14 MFLOPS on t h e  NAS CRAY-2 computer 

system and a VAX 11/785 computer system, respectively. T h e  rat io  of t h e  overall execution 

t ime on a VAX 11/785 computer system to the  execution t ime on t h e  NAS CRAY-2 computer 

system is 13.7 to  1 for the  eight in i t ia l  clearance cases reported in figure 49. T h a t  is, the 

unit-motion vectors are formed once and t h e  reduced, nonlinear system of equations is solved 

once for each in i t ia l  clearance case considered. 
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Solution Processor NAS CRAY-2 VAX 111785 
Phase Name (CP U seconds) (CP U seconds) 

ELD 9.2 52.7 
Mesh Generation E 3.4 45.1 

TOP0 11.5 119.0 
Form and Factor EKS 20.5 249.5 
Global Stiffness K 9.4 104.1 
Matrix I NV 21.3 884.4 
Generate Reduced SSOL 223.1 2712.2 
Stiffness Matrices AUS 87.0 1692.6 
Solve Reduced SSNA 28.8 661.0 
Nonlinear System , 

SRB Global Shell Model 

I 

The basic elements of the Space Shuttle system are the Orbiter, the External Tank (ET), 

and the two reusable Solid Rocket Boosters (SRB’s) as shown in figure 50. The SRB’s provide 

the primary Shuttle ascent boost for the first two minutes of flight with an assist from the 

three Space Shuttle Main Engines (SSME’s) on the Orbiter. The SRB structural subsystems 

are described in reference 53. A major subsystem of the SRB is the Solid Rocket Motor 

(SRM) which consists of four lined, insulated rocket motor segments. These segments are 

connected using pinned tang-clevis joints. Each SRB is approximately 144 feet long and 12 

feet in diameter. 

The modeling philosophy adopted for the SRB was substantially influenced by the size of the 

structure to be analyzed and the resulting number of the degrees-of-freedom in the equations 

to be solved. The underlying philosophy was to construct a finite element model that would 

accurately reflect the global load transfer in the SRB in a manner such that nonlinear shell 

collapse and shell ovalization under prelaunch loads could be assessed. 
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Fig. 50 Overview of Space Shuttle system. 
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Fig. 5 1  Overview of SRB/ET attachment ring interface. 
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Fig. 52 Finite element model of SRB. 
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(a) Oblique view. 

(b) Top view. 

Fig. 53 Close-up view of finite element model of SRB/ET 

attach men t ring interface. 
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The SRB/ET attachment (SRB/ETA) ring interface region shown in figure 51  includes 

both of the ETA rings (ring webs are approximately 12 inches apart), a portion of the SRM 

af t  attachment segment including the factory joint a t  station 1577 (approximately sixty inches 

of shell), and a portion of the a f t  center segment including the field joint a t  station 1491 

(approximately 64 inches of shell). The center of the SRB/ETA ring interface region is located 

a t  station 1511, approximately twenty inches below the a f t  attachment segment field joint. 

The ETA ring assembly is comprised of two tapered, partial rings, H-fittings to attach the 

ET struts, cover plates, and various other intercostals and brackets. The ETA ring assembly 

extends only 270-degrees circumferentially around the SRM segment. Three struts attach the 

a f t  ends of the SRB and the ET. These three attachment struts are designated the lower strut 

(P9), the diagonal strut (PlO), and the upper strut (P8). 

A preliminary assessment of the SRB global shell response to selected prelaunch loads has 

been performed Knight, Gillian and Nemeth54 using the STAGSC-1 computer code27. The 

STAGSC-1 two-dimensional shell finite element model was translated into a format compatible 

with the CSM Testbed. This finite element model shown in figure 52 involves 9205 nodes 

with 1273 two-node beam elements, 90 three-node triangular elements, and 9156 four-node 

quadrilateral elements. A close-up view of the finite element model of the SRB/ET attachment 

ring interface is shown in figure 53. Although the resulting finite element model involves nearly 

54,870 degrees-of-freedom, it does not have the fidelity necessary to determine detailed stress 

distributions in particular SRB subsystems. In this global shell model, the field and factory 

joints are modeled by using equivalent stiffness joints instead of detailed models of the joint. 

As such, local joint behavior cannot be obtained from this global model. Additional details of 

the finite element modeling for the entire SRB shell structure are described in reference 54. 

The linear stress analysis considered herein involves only the loading case of a uniform 

SRM internal pressure of 1000 psi. An oblique view of the deformed geometry with exaggerated 

deflections is shown in figure 54. The deflection pattern exhibits a "pressure pillowing" behavior 

in the vicinity of the joints. The influence of the partial (270-degree) SRB/ET attachment 

ring on the SRB shell response is shown in figure 55. An abrupt change in the deflection 

pattern near the ends of the ET attachment ring can be seen. Further studies on the SRB/ET 

attachment ring are reported by Knight55. 
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Fig. 54 Deformed geometry plot of global SRB shell model. 
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(a) Oblique view. 

3: Z 

(b) Top view. 

Fig. 55 Close-up view of deformed geometry at SRB/ET attachment ring interface. 
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Table 16. Selected processor execution times for lobal SRB shell model 
(9205 nodes, 54870 dof, average semi-ban f width of 382). 

Solution 
Phase 

Mesh Generation 

Form and Factor 
Global Stiffness 

Processor NAS CRAY-2 VAX 111785 
Name (CPU seconds) (CP U seconds) 
ELD 248.6 460.8 
E 2.0 70.7 
TOPO 94.3 1678.4 
EKS 168.3 1625.0 
K 46.9 472.3 
I NV 804.1 51185.1 
SSOL 17.2 295.6 

Computation times for the SRB global shell analysis are given in Table 16 for selected 

Testbed processors. Most of the CPU time was spent in processor INV factoring the global 

stiffness matrix. However, several other processors (ELD,EKS, TOPO) also used a sizeable 

amount of CPU time. Al l  of these processors need to be studied and improved for large-scale 

analysis problems. The estimated number of floating point operations required to factor the 

system stiffness matrix is 5,652,771,408. The compute rates for processor INV are 7.03 and 

0.11 MFLOPS on the NAS CRAY-2 computer system and a VAX 11/785 computer system, 

respectively. The ratio of the overall execution time on a VAX 111785 computer system to 

the execution time on the NAS CRAY-2 computer system is 35.6 to 1 for a single linear stress 

analysis of the SRB global shell model. 

The new Testbed equation solvers implemented in processors BAND and ITER have also 

been applied to  this problem. Using the skyline method in processor BAND with loop unrolling 

to level 4 and exploiting local memory, the solution time to factor and solve was 74.8 CPU 

seconds on the NAS CRAY-2 computer system (a compute rate of 127.9 MFLOPS). Processor 

BAND factors the global stiffness matrix in less than one-tenth the CPU time required by 

processor INV on the NAS CRAY-2 computer system. Using the incomplete Choleski conjugate 

gradient method with a sparse storage scheme, the solution was obtained after 562 iterations. 

The solution time was 455 seconds which corresponds to a compute rate of 20 MFLOPS. 
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CSM Research Directions 

I 

I 

T h e  research directions of the CSM activi ty a t  Langley Research Center a im to resolve deficien- 

cies noted in today's computational structural mechanics technology. T h e  broad objective of 

the CSM activi ty is to develop advanced structural analysis technology that will exploit modern 

and emerging scientific computers - such as computers having vector and/or parallel process- 

ing capabilities. T h e  evolving computational environment (both hardware and software) is 

providing new opportunities to the structural analysts tha t  enable them to study the structural 

behavior of complex nonlinear systems. 

T h e  current research direction of the Langley CSM activi ty for structural analysis technol- 

ogy is focused on methodology for predicting the nonlinear structural response of large-scale 

composite primary aircraft structures. Many of the structural analysis software systems avail- 

able today can predict the nonlinear structural response of composite components. However, 

t he  lack of progressive failure analysis techniques in large-scale structural analysis systems l imits 

the analyst in the  design of composite aerospace structures. A capabil ity to model and analyze 

damaged composite structures is needed in the aerospace community. In addition, designers 

needs analysis tools tha t  can be used to assess the sensitivity of variations in material properties 

or loads on selected response parameters for complex structural systems. Finally, error sensing 

and control strategies for  f ini te element solutions are needed in order to provide quanti tat ive 

as well as qualitative information about the quality of the results from such calculations. 

To complement the transition to multiple-instruction, multiple-data (MIMD) computers, 

numerical analysts are preparing a wealth of new algorithms designed to take advantage of the 

vector processing capabil ity offered by many modern computers. In the past, the sparse nature 

of the  matrices tha t  dominate the structural analysis task has made vector processors of l imited 

use. It is anticipated tha t  work wi l l  continue on the  development of numerical algorithms tha t  

will take full advantage of bo th  the vector capabilities and the  MIMD capabilities of future 

computer architectures. Such algorithms wi l l  be developed within the Testbed framework and 

wi l l  be evaluated on challenging structural analysis focus problems. 

T h e  Langley CSM methods research emphasizes applied structural mechanics research to 

accelerate the transfer of methods technology to industry. Structural analysis and computa- 

t ional methods tha t  have reached a level of matur i ty  to demonstrate high potential for  solving 

realistic, practical structural problems wi l l  continue to be a focus. Problem-adaptive solution 
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strategies with error control  for routine global/local stress analysis is a goal of t h e  CSM methods 

research. 

Summary 

T h e  CSM Testbed is a powerful methods development environment for developing structural 

analysis and computational methods. With enhancements and extensions for MlMD comput-  

ers, the  Testbed should continue to b e  a useful research environment for the  forseeable future. 

It is currently being used by researchers developing structural analysis methods, numerical al- 

gorithms, and evaluating MIM D 1/0 strategies. T h e  Testbed application environment provides 

the  mechanism to allow researchers concentrating on different parts of the structural  analysis 

problem to  communicate about solutions to problems directly related to current NASA needs. 

T h e  transfer of technology among researchers in structural engineering, computer science, and 

numerical analysis can now b e  accomplished more effectively than was previously possible. 

A n  overview of t h e  CSM act iv i ty a t  t h e  NASA Langley Research Center has been presented. 

T h e  CSM Testbed software system serves as a framework for structural analysis and computa- 

t ional  methods research for high performance computers. T h e  CSM Testbed has been described 

and i t s  use demonstrated by solving selected structural analysis problems. Future directions 

for CSM research using t h e  Testbed have been outlined. These fu ture developments will take 

full advantage of both vector processors and parallel methods on the  CRAY-2 computer system 

and on anticipated supercomputers of the  1990's. 
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APPENDIX 

Color Photographs of Figures 17, 19, 28, 34, 41, and 45 
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(b) Load B (37,800 pounds). 
Fig. 17 Deformed geometry shapes with N, distributions. 
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Fig. 19 Tsai-Hill criterion for outer fiber surface of panel skin. 
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Fig. 28 Deformed geometry plots for several load steps - Mesh 3 results. 
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Fig. 28 Concluded. 
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Fig. 41 Concluded. 

96 



ORIGINAL PAGE 
COLOR PHOTOGRAPH 

(a) Timet = 0. (b) Timet = 200p sec. 

Timet = 400p sec. (d) Time t = 600 p sec. 

Time t = 800p sec. (f) Time t = 1OOOp sec. 

Time t = 1 2 0 0 ~  sec. (h) Timet = 15001 sec. 

Hoop stress 
resultant, I b/in. 

4500 - 

3000 - 

1 

-1 

-3 

500 

0 

500 

;ooo 

Fig. 45 Deformed shapes for truncated conical shell during the transient response. 
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