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Abstract

We describe a formal specification and mechanically assisted verification of

the Interactive Convergence Clock Synchronization Algorithm of Lamport

and Melliar-Smith [11]. In the course of this work, we discovered several

technical flaws in the analysis given by Lamport and Melliar-Smith, even

though their presentation is unusually precise and detailed. As far as we

know, these flaws (affecting the main theorem and four of its five lemmas)

were not detected by the "social process" of informal peer scrutiny to which

the paper has been subjected since its publication. We discuss the flaws

in the published proof and give a revised presentation of the analysis that

not only corrects the flaws in the original, but is also more precise and, we

believe, easier to follow. This informal presentation was derived directly
from our formal specification and verification. Some of our corrections to

the flaws in the original require slight modifications to the assumptions

underlying the algorithm and to the constraints on its parameters, and thus

change the external specifications of the algorithm.

The formal analysis of the Interactive Convergence Clock Synchroniza-

tion Algorithm was performed using our EHDM formal specification and

verification environment. This application of EHDM provides a demonstra-

tion of some of the capabilities of the system.
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Chapter 1

Introduction

The InteractiveConvergence Clock SynchronizationAlgorithm isan impor-

tantand fairlydifficultalgorithm.Itisimportant becausethe synchroniza-

tionofclocksisfundamentalto the faulttolerancemechanisms employed in

criticalprocesscontrolsystems such as fly-by-wiredigitalavionics.Itisdif-

ficultbecause itsanalysismust considerthe relationshipsamong quantities

(i.e.,clockvalues)thatarecontinuallychanging--and changing moreover at

slightlydifferentrates--andbecause itmust deal with the possibilitythat

some ofthe clocksmay be faultyand may exhibitarbitrarybehavior.Thus,

althoughthe algorithmiseasyto describeand a broad understandingofwhy

itworks can be obtainedfairlyreadily,itsrigorousanalysis,and the deriva-

tionof bounds on the synchronizationthat itcan achieve,requireattention

to a mass ofdetailand very carefulexplicationof assumptions.

Lamport and Melliar-Smith'spaper [11]isa landmark inthe field.They

not onlyintroducedthe InteractiveConvergence Clock SynchronizationAl-

gorithm,but two otheralgorithmsaswell,and they alsodevelopedformal-

izationsofthe assumptionsand desiredpropertiesthat made itpossibleto

givea precisestatementand proofforthe correctnessof clocksynchroniza-

tionalgorithms.Nonetheless,the proofgivenby Lamport and Melliar-Smith

ishard to internalize:thereismuch detailedargument, some involvingap-

proximate arithmeticand neglectof insignificantterms,and itisnot easy

to convince oneselfthat allthe detailsmesh correctly.It is preciselyin

performing conceptuallysimple,but highlydetailedarguments (i.e.,cal-

culations)that the human mind seems most fallible,and machines most

effective.Consequently,the InteractiveConvergence Clock Synchronization

Algorithm seems an excellentcandidateformechanicalverification.This re-
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port describes a mechanized proof of the correctness of the algorithm using

the EHDM formal specification and verification environment.

As we performed the forma! specification and verification of the Inter-

active Convergence Clock Synchronization Algorithm, we discovered that

the presentation given by Lamport and Melliar-Smith was flawed in several

details. One of the principal sources of error and difficulty was the use by

Lamport and Melliar-Smith of approximations--i.e., approximate equality

(_) and inequalities (_ and _)--in order to "simplify the calculations." We

eventually found that elimination of the approximations not only removed

one class of errors, but actually simplified the analysis and presentation.

We also found and corrected several other technical flaws in the published

proof of Lamport and Melliar-Smith. A discussion of these flaws is given

in Chapter 3. Some of our corrections require slight modifications to the

assumptions underlying the algorithm, and to the constraints on its param-

eters, and thus change the external specifications of the algorithm. Our

formal specification and verification of the algorithm is described in Chap-

ter 4; the detailed listings are to be found in the Appendices.

We discuss the lessons learned from this exercise, and our view of the

role and utility of formal specification and verification in Chapter 5. To

summarize those conclusions: we now believe the Interactive Convergence

Clock Synchronization Algorithm to be correct, not because our theorem

prover says it is, but because the experience of arguing with the theorem

prover has forced us to clarify our assumptions and proofs to the point

where we think we really understand the algorithm and its analysis. As a

result, we can present an argument for the correctness of the algorithm, in

the style of a traditional mathematical presentation, that we believe is truly

compelling. This presentation is given in Chapter 2 and follows very closely

the presentation given in Sections 2.1, 3, and 4 of the original paper [11,

pages 53-66]. However, the details of the proof were extracted directly from
our formal verification.

It is this traditional mathematical presentation of our revised proof of

correctness for the Interactive Convergence Clock Synchronization Algo-

rithm that we consider the main contribution of this work; we hope that

anyone contemplating using the algorithm will study our presentation and

will convince themselves of the correctness of the algorithm and of the ap-

propriateness of the assumptions (and of the ability of their implementation

to satisfy those assumptions). We stress that our presentation merely dots

the i's and crosses some important t's in the original; the substance of all



1.1. Acknowledgments 3

the arguments isdue to Lamport and Melliar-Smith.Those alreadyfamil-

iarwith the originalpresentationshould probably read Chapter 3 before

Chapter 2. (Indeed,they may then want to skipChapter 2 altogether.)
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Chapter 2

Traditional Mathematical

Presentation of the

Algorithm and its Analysis

Many distributed systems depend upon a common notion of time that is

shared by all components. Usually, each component contains a reasonably

accurate clock and these clocks are initially synchronized to some common

value. Because the clocks may not all run at precisely the same rate, they

will gradually drift apart and it will be necessary to resynchronize them

periodically. In a fault-tolerant system, this resynchronization must be ro-

bust even if some clocks are faulty: the presence of faulty clocks should not

prevent those components with good clocks from synchronizing correctly.

The design, and especially the analysis, of fault-tolerant clock synchro-

nization algorithms is a surprisingly difficult endeavor, especially if one

admits the possibility of _two-faced" clocks and other so-called Byzantine

faults.

Consider a system with three components: A, B, and C; A and C have

good clocks, but B's clock is faulty. A's clock indicates 2.00 pm, C's 2.01

pm, and B's clock indicates 1:58 pm to A but 2.03 pm to C. A sees that

C's clock is ahead of its own, and that B's is behind by a somewhat greater

amount; it would be natural therefore for A to set its own clock back a little.

This situation is reversed, however, when considered from C's perspective.

C sees that A's clock is a little behind its own and that B's is ahead by a

rather greater amount; it will be natural for C to set its own clock farward

a little. Thus the faulty clock B has the effect of driving the good clocks



A and C further apart. The behavior of B's clock that produces this effect

may seem actively malicious and therefore implausible. This is not so, how-

ever. A failed clock may plausibly act as a random number generator (noisy

diodes are indeed used as hardware random number generators) and could

thereby distribute very different values to different components in response

to inquiries received very close together. Of course, one can postulate a

design in which a single clock value is latched and then distributed to all

other componentsQbut then one must provide compelling evidence for the

correctness of the latching mechanism and the impossibility of cummuni-

cation errors, and for the correctness of a clock synchronization algorithm

built on these assumptions.

Accurate clock synchronization is one of the fundamental requirements

for fault-tolerant real-time control systems, such as flight-critical digital

avionics. These systems use replicated processors in order to tolerate hard-

ware faults; several processors perform each computation and the results

are subjected to majority voting. It is vital to this process that the repli-

cated processors keep in step with each other so that voting is performed on

computations belonging to the same "frame." Since synchronization of pro-

cessors' clocks is essential for the fault-tolerance provided by this approach,

it is clear that the clock synchronization process must itself be exceptionally

fault-tolerant. In particular, it should make only very robust assumptions
about the behavior of faulty processors' clocks.

The strongest clock synchronization algorithms make no assumptions

whatever about the behavior of faulty clocks. Lamport and Melliar-

Smith [11] describe three such fault-tolerant clock synchronization algo-

rithms. These algorithms work in the presence of any kind of fault--

including malicious two-faced clocks such as that described above. Of course,

there must not be too many faulty clocks. The first algorithm presented by

Lamport and Melliar-Smith, the Interactive Convergence Algorithm, can tol-

erate up to rn faults amongst 3m ÷ 1 clocks. Thus, 4 clocks are required

to guarantee the ability to withstand a single fault. Dolev, Halpern and

Strong have shown that 3m-t- 1 clocks are required to allow synchronization

in the presence of m faults unless digital signatures are used [8]. Thus, the

Interactive Convergence algorithm requires the minimum possible number

of clocks for its class of algorithms.

The Interactive Convergence Clock Synchronization Algorithm is quite

easy to describe in broad outline: periodically, each processor reads the dif-

ferences between its clock and those of all other processors, replaces those

differences that are "too large" by zero, computes the average of the result-
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ing values, and adjusts its clock by that amount. For descriptions of other

clock synchronization algorithms, presented in a consistent notation, see

the surveys by Butler [4] (which includes hardware techniques) and Schnei-

der [15]. A new class of probabi|istic clock synchronization algorithms that

have extremely good performance (in terms of how close the clocks can be

synchronized) has recently been introduced by Cristian [6], but so far the

algorithms in this class are not tolerant of Byzantine failures.

In the next section we give an informal overview of the analysis of the In-

teractive Convergence Clock Synchronization Algorithm. This should sup-

port the reader's intuition during the more formal analysis in the section

that follows. Although "formal" in the sense of traditional mathematical

presentations, this level of analysis is not truly formal (in the sense of be-

ing based on an explicit set of axioms and rules of inference)--that level of

presentation is described in Chapter 4 and its supporting Appendices.

2.1 Informal Overview

We assume a number of components (generally called "processors") each

having its own clock. Nonfaulty clocks all run at approximately the correct

rate and are assumed to be approximately synchronized initially. Due to

the slight differences in their running rates, the clocks will gradually drift

apart and must be resynchronized periodically. We are concerned with the

problem of performing this resynchronization; we are not concerned with the

problem of maintaining the clocks in synchrony with some external "objec-

tive" time (see Lamport [12] for a discussion of this problem), nor are we con-

cerned with the problem of synchronizing the clocks initially, although the

closeness with which the initial synchronization is performed will limit how

closely the clocks can be brought together in subsequent resynchronizations. 1

The goal of periodic resynchronizations is to ensure that all nonfaulty

clocks have approximately the same value at any time. A secondary goal

is to accomplish this without requiring excessively large adjustments to the

value of any clock during the synchronization process. Formalizing these

two goals and the assumptions identified earlier is one of the major steps

in the verification of the Interactive Convergence Clock Synchronization

Algorithm. For future convenience, we label and explicitly identify them

IThe initial synchronization establishes a bound that cannot be bettered in the worst-
case; in practice subsequent resynchronizations may improve on the initial synchronization.
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here (usingthe same names as [11]),and givethem the followinginformal

characterizations:

Requirements

SI: At any time, the valuesof allthe nonfaultyprocessors'clocksmust

be approximately equal.(The maximum skew between any two good

clocksisdenoted by 6.2)

$2: There should be a small bound (denoted ]_) on the amount by which

a nonfaulty processor's clock is changed during each resynchroniza-

tion. (When taken with A1 below, this requirement rules out trivial

solutions that merely set the clocks to some fixed value.)

Assumptions

A0: All clocks are initially synchronized to approximately the same value.

(The maximum initial skew is denoted _0.)

AI: All nonfaulty processors' clocks run at approximately the correct rate.

(The maximum driftisa parameter denoted by/7.)

Schneider [15] shows that all Byzantine clock synchronization algorithms

can be viewed as different refinements of a single paradigm: periodically, the

processors decide that it is time to resynchronize their clocks, each processor

reads the clocks of the other processors, forms a _fault tolerant average" of

their values, and sets its own clock to that value. There are three main

elements to this paradigm:

I. Each processormust be ableto tellwhen itistime to resynchronize

itsclockwith thoseofotherprocessors,

2. Each processormust have some way of reading the docks of other

processors,

3. There must be a convergencefunction which each processoruses to

form the "faulttolerantaverage"ofclockvalues.

In the InteractiveConvergence Clock SynchronizationAlgorithm, each

processorperforms a constantround of activity,executinga seriesof tasks

2A summary ofthenotationand definitionsusedisgiveninTable2.1on Page15.
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over and over again. Each iteration of this series of tasks consumes an

interval of time called a period. All periods are supposed to be of the same

duration, denoted by R. The final task in each period, occupying an interval

of time denoted by S, is the clock synchronization task. Each processor uses

its own clock to schedule the tasks performed during each period. Thus,

each processor relies on its own clock to trigger the clock synchronization

task; because the nonfaulty clocks were resynchronized during the previous

synchronization task and cannot have drifted too far apart since then, all

processors with nonfaulty clocks will enter their clock synchronization tasks

at approximately the same time.

During its clock synchronization task, each processor reads the clock

of every other processor. Of course, clock values are constantly changing

and go "stale" if a long (or indeterminate) amount of time goes by between

them being read and being used. For this reason, it is much more useful

for each processor to record the difference between its clock and that of

other processors. The closeness of the synchronization that can be accom-

plished is strongly influenced by how accurately these clock differences can

be read. This gives rise to the third assumption required by the Interactive

Convergence Clock Synchronization Algorithm:

Assumption

A2: A nonfaulty processor can read the difference between its own clock

and that of another nonfaulty processor with at most a small error.

(The upper bound on this error is a parameter denoted by e).

The remaining element that is needed to characterize the Interactive

Convergence Clock Synchronization Algorithm is the definition of its con-

vergence function. As suggested above, each processor should set its clock

to a "fault tolerant average" of the clock values from all the processors. The

obvious "average" value to use is the arithmetic mean, but this will not have

the desired fault tolerance property if faulty processors inject wildly erro-

neous values into the process. A simple remedy is for each processor to use

its own clock value in place of those values that differ by "too much" from

its own value. This function, called the "egocentric mean," is the conver-

gence function used in the Interactive Convergence Clock Synchronization

Algorithm. The parameter that determines when clock differences are "too

large" is denoted A.

To gain an idea of why this works, consider two nonfaulty processors

p and q. For simplicity, assume that these processors perform their syn-
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chronizationcalculationssimultaneouslyand instantaneously.Ifr isalsoa

nonfaultyprocessor,then the estimatesthatp and q form of r'sclockvalue

can differby at most 2_. Ifr isa faultyprocessor,however,p and q could

form estimatesofitsclockvaluethat differby as much as 2A + 8. (Sincer

could indicatea value as largeas A differentfrom each ofp and q without

being disregarded,and these processorscould themselveshave clocksthat

are 5 apart.)Assuming there are n processors,of which m are faulty,the

egocentricmeans formed by p and q can thereforedifferfrom each otherby
as much as

2(n- +m(8+

Thus, provided

n

2mA
> 2e + _, (2.1)

n--IT;

this procedure will maintain the clocks of p and q within _ of each other, as
required.

Since a nonfaulty processor's clock can differ from another's by as much

as 6, and reading its value can introduce a further error of e, it is clear that
we must require

A _>_+_,

since otherwise perfectly good clock values could be disregarded. This gives

A-e>__ 8

which, when taken with (2.1),yields

n - 3m
St < _ _. (2.2)

n--rll

Because allthe variablesinvolvedare strictlypositive(exceptm, which is

merely nonnegative),(2.2)implies

n > 3rn,

showing thatfourclocksarerequiredtotolerateasinglefailure.(Noticethat

seven clocksare requiredto withstand two simultaneousfailures.However,

ifeach failurecan be detectedand the system reconfiguredbeforeanother

failureoccurs,then fiveclockscan withstandtwo failures.)

Lamport and Melliar-Smithraisea coupleof finepointsthat should be

consideredinimplementationand applicationofthe InteractiveConvergence
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Clock SynchronizationAlgorithm. The correctionthat occursat each syn-

chronizationcausesa discontinuityinclockvalues.Ifa correctionispositive

(becausethe clockhas been running slow),then some unitsof clocktime

willvanishin the discontinuityasthe correctionisapplied.Any tasksched-

uledto startin the vanished intervalmight not occur at all.Conversely,a

negativecorrection(fora fastclock),can cause unitsofclocktime torepeat,

possiblycausinga taskto be executeda secondtime. One solutionto these

difficultiesisto followeach clocksynchronizationwith a _do nothing" task

of durationat least_. An alternative,thathas other attractiveproperties,

isto avoid the discontinuityaltogetherand spread the applicationof the

correctionevenlyoverthe whole period[11,pages 54-55].

2.2 Statement of the Clock Synchronization

Problem and Algorithm

The informalargument presentedabove did not account for the factthat

the clocksmay driftfurtherapart in the period between synchronizations,

nor did itallowfor the factsthat the algorithmtakestime to perform,and

thatdifferentprocessorswillstartitat slightlydifferenttimes.Taking care

of thesedetails,and being preciseabout the assumptions employed, isthe

taskofthe more detailedargument presentedin thissection.

The firststepistoformalizewhat ismeant by a clock,and what itmeans

fora clockto run at approximatelythe correctrate.

Physically,a clock is a counter that isincremented periodicallyby a

crystalor line-frequencyoscillator.By a suitablelineartransformation,the

countervalue isconverted to a representationof conventionalUtime" (e.g.,

the number of seconds that have elapsedsinceJanuary 1st,1960, Coordi-

nated UniversalTime). This internalestimationof time may be expected

to driftsomewhat from the external,standard recordoftime maintained by

internationalbodies. In order to distinguishthesetwo notionsof time,we

willdescribethe internalestimateoftime that may be read from a proces-

sor'sclockas clocktime, and the externalnotionof time (thatmay not be

directlyobservable)as realtime. FollowingLarnport and Melliar-Smith,we

use lowercaselettersto denotequantitiesthatrepresentrealtime,and upper

casefor quantitiesthat representclocktime. Thus, "second" denotesthe

unitof realtime,while "SECOND" denotes the unit of clocktime. Within

thisconvention,Roman lettersareused todenote "large"values(on the or-
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der of tens of milliseconds), while Greek letters are used to denote "small"

values (on the order of tens of microseconds).

We are interested in process control applications where events are trig-

gered by the passage of clock time---e.g., Ustart the furnace at 9 AM and

stop it at 5 PM," or "run the clock synchronization task every 5 SECONDS."

Our notion of synchronization is that activities scheduled for the same clock

time in different processors should actually occur very close together in real

time. 3 Thus, we define a clock c to be a mapping from clock time to real

time: c(T) denotes the real time at which clock c reads T. Two clocks c and

c I are said to be synchronized to within real time 8 at clock time T if they

reach the value T within 8 seconds of each other--i.e., if It(T) - ct(T)] < 8.

The real time quantity [c(T)- cr(T)l is called the skew between c and c e at

clock time T. Another measure of the divergence between these two clocks

is the adjustment that one of them should make in order to reduce the skew

to zero. The clock time quantity ,I_such that c(T + _) = c #(T) is called c's

adjustment to c I (at time T).

A clock is a _good clock" if it runs at a rate very close to the passage of

real time. Lamport and Melliar-Smith define this formally in terms of the

derivative of the clock function. However, since we will be using a mechanical

verification system, and do not want to have to axiomatize a fragment of

the differential calculus, we use a slightly different formulation taken from

Butler [4].

Definition 1:

[To, TN] if

A clock c is a good clock during the clock time interval

cCT1)-cCT2)_ I[ < pTi 72 2"

whenever TI and T2 (TI¢ T_) are clock times in [To, TN].

Clocks are resynchronized every R SECONDS. We assume some starting

time T °, define T(i) = TO+ iR (i > 0), and let R(i) denote the interval

[T (i), T(i+I)], which we call the i'th period. The actual synchronization task

is executed during the final S SECONDS of each period: all reading and

transmitting of clock values occurs within the interval IT(i+1) - S,T(i+I)],

which we call the i'th synchronizing period and denote by S(0.

aFor otherclassesof applications,thereversenotionmay be more appropriate---e.g.,
if a eingle event is to be given (clock time) timestamps by different processors, then we
may want the different timestamps (all triggered at the same real time) to be very close
together. Lamport and Melliar-Smith [11, page 61] indicate how to convert between this
notion of synchronization and the one used here.
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We consider a set of n processors, where processor p has clock c_. Clocks

are adjusted by adding a "correction" to their values; the correction used

by processor p during the i'th period is denoted C (_), so that the real time

corresponding to clock time T on processor p during period i is cp(T+Cp(i)).

We denote this quantity by c(i)(T) and we call c(i) the logical clock for

processor p during the i'th period. We call T + Cp(i) the adjusted value of

T for processor p in period i and denote it by A(_)(T) (so that c{/)(T) =

cp(A(_)(T))). For simplicity, we assume that the initial correction Cp{°)= 0.

The skew between the clocks of processors p and q at time T in R( _} is

given by

Ic(')(T) -

The goal of the Interactive Convergence Clock Synchronization Algorithm

is to bound this quantity for good clocks. We assume that all the clocks are

synchronized within _f0of each other at the "starting time" T(°):

AO: For all processors p and q, Ic(°)(T(°)) - c_°)(T(°))] < 60.

The process control applications that are of interest to us typically per-

form a schedule of many separate tasks during each period. Our goal is to

ensure that tasks which are scheduled to occur on different processors at

the same clock time during a particular period actually occur very close to

each other in real time. To achieve this, processor p should perform a task

scheduled for time T in the i'th period at the instant its clock actually reads

A(i)(T). 4 An obvious consequence is that the i'th period for processor p

runs from when its adjusted clock reads T (i) until it reads T(_+I). That is, it

is the clock time interval [A{/)(T(')), A{/} (T( '+ 1))]. Therefore, if a processor's

clock is to work long enough to complete the i'th period, it must be a good

clock throughout the interval [A{p°)(T(°)),A{/}(T(_+I))]. This motivates the

following definition of what it means for a processor to be nonfaulty:

AI: We say that a processor is nonfaulty through period i if its clock is a

good clock in the clock time interval [A(°)(T(°)),A{/)(T(i+I))].

4To see this,consider a processorwhose clock gains one SECOND every hour and whose

periods are of one flOUR duration. A task to be performed 5 MINUTES into period 3 should

be started when the adjustedtime reads 3 hours and 5 minutes from the initialtime. The

correctionduring period 3 willbe -3 SECONDS, so that the task willbe started when the

clock actually reads 3 hours, 5 minutes and 3 seconds from the initialtime. It can be eeen

that thisisindeed the desiredbehavior.
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There is another assumption about nonfaulty processors, which is not

formalized and is not considered further during the analysis: this is the

assumption that nonfaulty processors perform the algorithm correctly.

Now we can state formally the goals that the Interactive Convergence

Clock Synchronization Algorithm is to satisfy.

Clock Synchronization Conditions: For all processors p and q, if all but

at most m processors (out of n) are nonfaulty through period i, then

SI: If p and q are nonfaulty through period i, then for all T in R(i)

IcC )(T)- <8.

$2: If processor p is nonfaulty through period i, then

IcC'+'l-cc'lI <

We now formalizeAssumption A2 concerningthe readingofclocks.The

idea is that sometime during the i'thsynchronizingperiod,processorp

should obtain a value that indicatesthe differencebetween itsown clock

and that of another processorq. To synchronizeexactlywith q at some

time T l in S (i),p would need to know the idealadjustment _(_)qpthat it

should add to itsown valueso thatc(pi)(T'.J-=qp,a_(_)_= c_)(T').In practice,p

cannot obtainthisvalueexactly,instead,itobtainsan approximation ^(_),=_qp

that issubjectto a small errorc. The formalstatement isgivenbelow.

A2: If conditionsS1 and $2 hold for the i'thperiod,and processorp is

nonfaultythrough periodi,thenforeachotherprocessorq,p obtainsa

valueA_ duringthe synchronizationperiodS(_}.Ifq isalsononfaulty

through periodi,then
A (_)< S

qp --

an(]

Ic(p')CT'+ A(')_qp,- c_')(T')l <,

for some time T' in S(_).

Ifp = q, we take ,.,qp^(_)= 0 so that A2 holds in thiscase also.Noticethat

A2 requires$1 and $2 to hold inthe periodconcerned.This isbecause the

method by which processorsread the differencesbetween theirclocksmay
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require them to cooperate--which may in turn depend upon their clocks

already being adequately synchronized.

Finally, we can give a formal description of the Interactive Convergence

Clock Synchronization Algorithm (in the following also referred to as "the

Algorithm" forshort).

Algorithm CIN-_: For allprocessorsp:

: +
where

A(pi) = _ A (/) andrp,
r=l

(,_) = iflA!_[<Athen A! ') elseO.

A summary of the notation and definitionsintroduced so far isgiven in

Table 2.1on Page 15. Some typicalvaluesforthe parameters,based on an

experimentalvalidationusingthe SIFT computer [5],are giveninTable 2.2

on Page 17.

2.3 Proof that the Algorithm ma|ntalns Synchro-

nization

We now need to prove thatthe InteractiveConvergence Clock Synchroniza-

tionAlgorithm maintainsthe clocksynchronizationconditions$1 and $2.

Condition $2 iseasy;the difficultpartof the proof isto show thatthe Al-

gorithm maintainsCondition $1. The proof isan inductionon i--we show

thatifthe clocksare synchronizedthrough periodi,and ifsufficientproces-

sorsremain nonfaultythrough periodi+ 1,then the nonfaultyprocessors

willremain synchronizedthrough that next period. The actualproofisa

mass of details,so itwillbe helpfulto sketchthe basicapproach first.For

reference,the statementsof the main Lemmas are collectedin Figure2.1.

2.3.1 Overview of the Proof

We are interested in the skew between two nonfaulty processors during the

i + l'st period--that is, in the quantity

14'+')(r)-
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Symbol Concept

n

m

R

S

T(_)

R(i)

S(i)

A 'I(T)
cp(T)

_o
f.

P
A (_)

qP

A

A(i)
qp

r,

number ofclocks

number of faultyclocks

clocktime between synchronizations

clocktime to perform synchronizationalgorithm

clocktime at startofi'thperiod(= T(°)÷ iR)

i'thperiod (--[T(i),T(_+x)])

i'thsynchronizinginterval(= [T(i+I)- S,T(i+1)])

cumulativecorrectionforp'sclockini'thperiod

adjustedvalueofT forp'sclockin i'thperiod (= T + Cp(i))

realtime when p'sclockreadsT

realtime ini'thperiod,when p'sclockreads T (--cv(Ap(_)(T)))

maximum realtime skew between any two good clocks

maximum initialrealtime skew between any two clocks

maximum realtime clockread error

maximum clockdriftrate

clocktime differencebetween q and p seen by p in i'thperiod

cut offfora(_)
•.._qp

< then 0
clocktime correctionmade by p in i'thperiod (mean of A_v's)
maximum correctionpermitted

Table 2.1:Notation,Parameters,and Concepts
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Lemma 1: If the clock synchronization conditions $I and $2 hold for i,

and processors p and q are nonfaulty through period i + 1, then

A (i) < A.
qP

Lemma 2: If processor p is nonfault_/ through period i ÷ 1, and T

and II are such that A(')(T) and A{')(T + II) are both in the interval

[A(p°)(TC°)),A('+x)CTC'+'))],then

P
Ic_)(T+ n) -[c_)(T) +n]l < _ Inl.

Lemma 3: If the clock s_lnchronization conditions $1 and S_ hold for i,

processors p and q are nonfaultlt through period i + 1, and T E S (_), then

Ic(_')(T+ ZX(')_,p,- c_')(T)l < _+ pS.

Lemma 4: If the clock synchronization conditions $1 and S_ hold for i,

processors p, q, and r are nonfaultst through period i + 1, and T E S {i), then

Ic(_')(T)+ a(/_)-[c_')(T) + ZX!_]I< U(,+ pS) + pA.

Lemma 5: If the clock synchronization condition $1 holds for i, processors

p and q are nonfaulty through period i + 1, and T 6 S (i), then

Ic_')(T)÷ zxC/_- [c_')(T)÷/X(/_]l< 6 ÷ 2A.

Figure 2.1: Statements of the Principal Lemmas used in The Proof
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Parameter Value

n

R

S

8o

P
A

E

6

6

104.8 msec.

3.2 msec

132/zsec. (typically, 10/_sec. is achieved)

66.1/_sec. (typically, better than 15/zsec.
15 × 10 -6

340 #sec.

340 psec.

134 psec.(m = 0),271 ptsec.(rn= 1)

isachieved)

Table 2.2:TypicalValuesforthe Parameters

where T E R (i+1). By the Algorithm,

Ic('+l)(r) - c_'+l)(T)l = Ic(_')(T+_(_'))- c_')(T+A_'))I, (2.a)

and since good clocks run at approximately the correct rate, c(OCT + A(pd))

and c_d)IT + A__)) are close to c(O(T)÷ A (_) and to c_') (T)+ A_d), respectively.

From this it follows that the right hand side of (2.3) can be approximated

by
Ic7)(r)+ _(/)-[c_')(r)+ _')]1.

A major step in the proof, identified as Lemma 2, is concerned with bounding

the error introduced by this approximation. Then, since A(0 and A_i) are the

averages of X(i) and X(i) it is natural to consider the individual components• .-_rp _._rq,

Ic(pO(T)+ Ac/)p- [c_0(T) + A!'_)]I. (2.4)

There are two cases to consider. The first, in which only p and q are assumed

nonfaulty, is the focus of Lemma 5, while the second, in which r is also

assumed nonfaulty, is considered in Lemma 4. The first case is quite easy--

the Algorithm ensures that x(i) and h(i)•-_rp ,--rq can be no larger than A, while

c(i)(T) and c_O(T) can differ by no more than 5 (by the inductive hypothesis).

For the second case,Lemma I providesthe resultl_!_l< 4,sothatthe
Algorithm will establish _--,rp_(i)-- _-arpA(i)and ,-ira7_(i)--_ _.-,rq.A(i) The quantity (2.4) is

then rewritten as

Ic(,O(T)+ _'_ - c!')(T)-[c_')(T)+ _!'_- c!')(T)]l.
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Q

Regarding thisas the absolutedifferenceoftwo similarexpressions,we are

ledto considervaluesofthe form

+ ACjp)-

which, using Lemma 2,can be approximated by

+ c!')(T)l.
Lemma 3 is concerned with quantities of this form.

2.3.2 The Proof in Detail

We now prove that the Interactive Convergence Clock Synchronization Al-

gorithm maintains the clock synchronization conditions S1 and $2. The

proof closely follows that of Lamport and Melliar-Smith [11, pages 64-66]

(though we do separate the two synchronization conditions and prove them

individually as Theorems 1 and 2, respectively). In particular, our Lemmas

1-5 correspond exactly to (corrected versions of) theirs. However, since we

use Lemma 2 in the proof of Lemma 1, we rearrange the order of presenta-

tion accordingly. We also introduce a Lemma 6 and a Sublemma A that is

used in its proof and also in the base case of the inductive proof of condition

S1. Lamport and Melliar-Smith subsumed both of these in the proof of their

main theorem. In addition, we distinguish several special cases for Lemma

2, which we identify as Lemmas 2a-2d. (Lemma 2c is the one that corre-

sponds most closely to Lemma 2 in [11].) The reasons for these additional

lemmas are: first, we describe the proof in greater detail than did Lamport

and Melliar-Smith; secondly, the statements of some of our lemmas are more

restrictive than those of Lamport and Melliar-Smith (that is why we need

several variants of Lemma 2--the single Lemma 2 stated by Lamport and

Melliar-Smith is false); thirdly, this presentation of the proof exactly follows

the structure of the formal verification described in Chapter 4 and presented

in detail in the Appendices.

In the remainder of this section we state and prove the lemmas identi-

fied above, followed by the main theorems. First, however, we state some

constraints on parameters that are employed in several of the proofs.

2.3.2.1 Constraints on Parameters

Our proofs are contingent on the parameters to the Algorithm

(n, m, R, S, E, A, e, 6, 60 and p) satisfying certain constraints. We could men-

tion these constraints explicitly in the statements of the lemmas and of the
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theorems, but that would be tedious and would clutter those statements

needlessly. Accordingly we list and name here the six constraints that the

parameters are required to satisfy. Satisfaction of these constraints is as-

sumed throughout the proof.

The first two constraints can be modified (but not eliminated) if neces-

sary by suitably adjusting some of the proofs; we chose these particular con-

straints for simplicity and because we felt that there would be no difficulty
satisfying them in any likely implementation. The other four constraints are

fundamental to the operation and analysis of the Algorithm.

CI: R _>3S

C2: S _>

C3: E >_A

C4: A_>8+_+_S

C5: _ _>_o+ pR

C6:6 _>2(_+ pS) +
2mA npR np_

+ _+ _+pA
n-m n-m n-m

The reader may wonder why we do not include the celebrated constraint

3m < n. The reason is simply that this is a derived constraint, not a funda-

mental one. It is easy to see that C4 and C6 can be satisfied simultaneously

only if indeed 3m < n, but it is also quite possible for values of other pa-
rameters to render C4 or C6 unsatisfiable even if 3m < n.

2.3.2.2 The Lemmas

Leznma 2: If processor p is nonfaulty through period i + 1, and T

and II arc such that A(pO(T) and A(pO(T + II) arc both in the interval

[A(p°)(TC°)),A(p'+')(T('+2))], then

P
Ic(pO(T+ rl) - [c(pO(T)+ n]l < Inl.

Proof." Since p is nonfaulty through period i ÷ 1, we know by A1 that

cr is a good clock in the interval [A(°)(T(°)),A(i+I)(T(i+2))]. Then, by the

definition of a good clock, we have

c,(a(/)(r + n))- c,(a(/)(T)) P
H -I <_,
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from which the resultfollowsby the identitiesc(i)(T)= cp(A(pl)(T)),and

c(?(T+n)-c_(A(/)(T+n)).
[]

We aregoing to need some specializationsofLemma 2. The firstwillbe

used to bound expressionsof the form

Ic(?(T+ a +n) - [c(?(T+¢)+ nil

where T E S (i).Application of Lemma 2 in this case requires us to es-

tablish that A(_)(T+ ¢) andA(_)(T+ ¢ + n) arebothin the interval
[A(_°)(r(O)),A(,,'+I)(T('+_))].

Recall that C (°) - 0, so that A(°)(T) = T. Thus, in order to satisfy the

lower bound A(°)(T(°)) _< A(O(T+¢) in the case i -- 0 and T -- T(°)+ R-S,

it is clear that we should require [(I)I _< R - S. To prove that this condition

sufficesforthe caseof generaliand T issurprisinglytediousand requires

an inductionon i.

We havejustestablishedthe basecase;forthe inductivestep,we assume

that T 6 S (_) and I_[ <_ R - S are sufficient to establish that A(°)(T (°)) _<

A(_)(T -F _) and we note that if T' E S (_+1), then T' = T -F R for T E S (i).
Thus

A(/+I)(T'+ *) -- A_i+I)(T -F @ + R)

----- (_,(i+I) __ C(pi))

-- A(/)(r+_)+ R+ _.('+')_p- c_(')
> _4°)(r(°))+ R+ c(/+')- c(/)

where the lastlinefollowsfrom the inductivehypothesis.In order to com-

pletethe inductivestep,we need to establishthat

R+ (7.(i+l)_p - C (i) _> 0.

This is an easy consequence of $2, C1 (which is used to derive S < R), and

C2.

To satisfy the upper bound A{p_}(T + ¢) _< A(p_+I}(T {i+2)) in the limiting

case T = T {_+1},we need to establish

T (_+I)+ ¢ + C_(_)< T (_+2)+ Cp(i+I).
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Now TCi+_}= TCi+1)-I-R and $2 providesICp{i+I}- Cp(-/)I< v,so what we
need is

¢ < R-r,.

It is clear that this can be achieved if I¢] _< R - S (as before), and IEI _<S.

The latter constraint is ensured by C2.

We have just sketched the proof of

Lemma 2a: If processor p is nonfaulty through period i + 1, T E S {i),

1¢ + III < R - S, and I¢1 <_R - S, then

P
Ic_)(T ÷ ¢ + II) - Ic(/)(T + ¢) + lI][ < _ Inl.

[]

We will also require a variant of this result where the only bounds avail-

able on ¢ and II are I¢1 -<s and Inl _<s. It is easy to see that Lemma 2a

can be applied, provided 3S < R--which is the Constraint C1. This yields

Lemma 2b: If processor p is nonfaulty through period i + 1, T E S (i),

I¢1_<s, andInl _<s, then

P
Ic{p_)(T+ ¢ + n) - [e(_)(T + ¢) + nil < _ Inl.

[]

The special case _ = 0 provides

Lemma 2e: If processor p is nonfaulty through period i + 1, T E S (i), and

Inl _<s, then
P

[c{/)(T + 1I) - [e(i)(T) + n]l < Inl.

[]

The final specialization of Lemma 2 is Lemma 2d. Like that of Lemma

2a, its proof requires a surprisingly tedious argument (including an induc-

tion) to establish that the constraints on II are sufficient to satisfy the an-
tecedents to Lemma 2.

Lemma 2d: If processor p is nonfaulty through period i and 0 <_ II < R,
then

P
Ic_')(T(') + n) -le_')(T(')) + nil < n.

[]

Lemma 1: If the clock synchronization conditions $1 and S2 hold for i,

and processors p and q are nonfaulty through period i + 1, then

A (_)< A.
qP
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Proof: By A2, we have

IA_I _<s
and

IcC'lCT'+ g')_,,,- c_0(T')l<,

for some time T I in sCi). Using the arithmetic identity

(2.5)

== (,, - ,,)+ (,,- u,)- (,, - [w+ =])

we obtain

m_?l = m • ^(0,_ _ "g')Cr,+.._, c_')(r')
+ c_O(T ') - c(O(T ')

^(')_ - [c(,,')(T') + "_])1.- (c(')(T'+ .._,,

Hence

I_1 < Ic(')(T' + ^('h "_ ,.,,,, - c_')(T')l

+ Ic_')(T') - c(')(T,)l

,,c,)_ [c(/)(T')+ A_]I.+ Ic(p')(T' + ,-qp, -

The first term in the right hand side is the left hand side of the instance of

A2 with which we began. Applying S1 and Lemma 2c to the second and

third terms, respectively, we obtain

A (0 <e+di+ pA(O
qP 2 qP

from which the conclusionfollowsby (2.5)(which was alsoneeded tojustify

applicationofLemma 2c) and C4.

[]

Lemma 3: If the clock synchronization conditions $1 and $2 hold for i,

processors p and q are nonfaulty through period i + 1, and T E S(O, then

Ic(0(T + A('hqp,- c_0(T)l <e + pS.

Proof: By A2, we have

A (0 < S (2.6)
qp --

and

Ic_0(T'+ hCO_qp,- c_0(r')l <_
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for some time T I in S(0. Let H = T - T', so that T = T' + II. Using the

latter, plus the arithmetic identity

=- y = ("- I_+ _])+ (_- _) - (y- 1_+ _]),

we obtain:

c(OlT , A(_)_ _ c(OiT_ -
i p _ -- qpJ q _ sl

_p _ T qp_-'J-ip (T'+ qpj+

ACi)_ - c_i) (T')+ c(O(T' + "_qvl

- (c_')(T'+ n) -[c_')(T')+ n])l.

Hence

c(O(T + A(i)_ - c(O(T)l_<I p _ qp] q

_p'(_)(_'_-_J-"_qv^6i)+ IT)- [c(O(T'+ qp]+ nil

h(0_ _ "+ IcC')(T'+ _, c_')(T')l

+ Ic_0(T ' + H) - [c_0(T') + H]I.

Applying Lemma 2b to the first term on the right hand side (this is justified

by (2.6) and the observation that IH] < S since T and T' are both in S(0),

recognizing the second term as the left hand side of the instance of A2 with

which we began, and applying Lemma 2c to the third term, we obtain

P P
Ic(pOCT+ AtOp))- c_O(T)l < _ Inl +_ + _ Inl.

The result then follows from IH] < S.

[]

Lemma 4: If the clock synchronization conditions S1 and $2 hold for i,
processors p, q, and r are nonfaulty through period i + 1, and T 6 S (i), then

Ic(0(T) + he/) - [c_')(T) + £(/_]1 < 2(e + pS) + ph.

:Proof:By Lemrna 1, we knowthatiA!_l< _ andI_!?i< 4. Hence,by
X(_) ^(i) and _(i) A(0 and sothe Algorithm, ,-,rr = "._rv ,-,rq = _rq

Ic(')(T) + £(,_p)- [c_0(T) + _!_]1= Ic(_')(T) + At/p)_ [c_0(T) + _!_]1.

Using the arithmetic identity

-v= (- -y)- (_-_)+ (_- _) - (- - _)
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we obtain

and 8o

c(_)[TI + ,%(0 _ [e(i)/TI + A(i)II=
! p _. ] rp t q x J rqJ,

.(i)t,,, ± ^(_h rc{i)tT_ ± Ali)_
'-q k.L T ,-arq/ -- [ q _ ) T rqj

(c_l(T+ ^(,)_ [4,)(T)+ _!_1)-- _._r p I --

+ 4,)(T+ AC,I_.,,_ _!')(T)
_ AC'h c!')(T))l(_'ICT+ .,,_

c(i)(TI + A(i) _ [c(i)lTI + A(i)ll <
_ p _, J rp t {I ', J rqJ,-

(i},___(O_ _(i)tT_± A(_),
Cq _l-t- /._rq/ -- L.q _ IT rql

^(i)__ c(i)(T) + ^(')I+ IcCi)(T+-,p, -,p,

^¢,I__ _!'I(T)I+ Ic{/)(T+._,_,
^('h _ c[)(T)l.+ [c_i)(T + ,-.rq,

The result follows on applying Lemma 2d to the first two terms in the

right hand side (using C2 and C3 to provide A < S) and Lemma 3 to the

remaining two.

[]

Lemma 5: If the clock synchronization condition $1 holds for i, processors

p and q are nonfaulty through period i + 1, and T 6 S (i), then

[c_')(r) + £!')p - [c_i)(T) -t- A!_]I< 8+ 2_.

Proof: Using the arithmetic identity

Ca+ z) - (b+y) = Ca- b) + (x- y),

we obtain

x(') _ [c_')(T) + _!_]l[c(')(T) +-,p = [c(/)(T) _ c_i)(T)+ ACt0_ ",q,X(')l
-< [c(_)(T)-c_)(T)I+ 1_!91+ IA!_I.

The result follows on applying S1 to the first term on the right hand side,

and observing that the Algorithm ensures that the remaining two terms are

no larger than A.
[]

Sublemma A: If processors p and q are nonfaulty through period i, and

T 6 R (i), then

Ic(/)(T) - c_')(T)l < Ic(')(T(')) - c_i)(T('))] + pR.
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Proofi Letting IT = T - T (i) (so that T = T (_) + II and 0 _< II _< R), and

using the arithmetic identity

- Y = (_ - [u + v]) + (u - '_) - (Y - [w + v])

we have

and hence

Ic(_)(T)- c_)(T)l =
I cC')(Tc`)+ n) - [_C')(TC,))+ n]

+ _C'lCrC'))_ c_'lCrC,I)
- (c[')(r(i) + II)- [c_')(T(i)) + n])l

Ic(p_)CT)-c_)(T)I <_
I_C')CTC') + n) - lcC')(TC')). nil

+ Ic(p')(T('))- c_')(rc,))l
+ Ic_')(T(') + n) - [c_')(TC'))+ nil.

The result then follows on applying Lemma 2c to the first and third terms

on the right hand side.

[]

Lemma 6: If processors p and q are nonfaulty through period i + 1, and

T E R (_+1), then

IcT+l)(T) - c_'+l)(T)l < Ic(')(TC'+x))+ hi)-[c_')(T('+l))+ _')] I+ pCR-t-_).

Proof: Using Sublemma A (for the case i ÷ 1 rather than i), we obtain

Ic(ri+l)(T)- c_i+l)(T)l < [cli+l)(T ('+1)) - c_i+l)(T('+l))[ + pR.

By the Algorithm,

Ic('+I)(TC'+I))_ c_'+l)(TC'+_))l= Ic(_')(TC'+x)+ A(/))- c_')(TC'+I)+ _'))1.

Using the arithmetic identity

x- y = (z- [u+ v])- (Y- [w + z]) + (u+ v- [w + z])

we obtain

c(d)[T (i+1) + A(i)_ _ c(i)(T (i+1) -_ A(d)_I =
ip_ p] q_ q]l

cp kT T Ap ]- [Cp 1,T ) _ hp j

- (c_)(T('+1)+ a__))-[c_')(T('+_))+ a_)])
÷ c(i)(T c/+1)) -t- A(i)- [c_')(T ('+1)) + a_')]l
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and hence

c{i)[T(i+1)+ A(i)__ c(i)[TCi+1).fA{i)_]<ip_ pJ q_ qj --

IcC')(TC,+I)+ At.'))_ [c(0(TC,+I))+ A_)]I
+ Ic_')(TC'+'_+ _')) -lc_0(TC'+'_)+ A_':_]I
+ IcC_IcTC,+,I)+ _C,I [c_'lCTC,m) + _')]1

Applying Lemma 2c to the firsttwo terms on the righthand side(whichis

justifiedbecause the Algorithm providesA(p0 = Cp(_+1)- C (/),$2 then gives

IA(p_)l< _, and C2 givesZ _<S), we obtain

IcC,ICTC,+_I+ AC,I)_c_,IcTC,-,-,:_+ A_'_)I<
Ic_0(T(_+x))+ A(p0_ [c_0(T(i+x))+ A_o]I+ .,,:_.

and the resultfollows.

[]

2.3.2.3 The Correctness Theorem

We dividethe correctnesstheorem intotwo, and prove separatelythatthe

Algorithm maintains$I and $2.

Theorem 1: For all processors p and q, if all but at most m processors are

nonfaulty through period i, then

$1: If p and q are nonfaulty through period i, then for all T in R{ i)

Ic_')(T)- c_')(T)[ < 6.

Proof: We use induction on i. The base case i -- 0 follows from Sublemma

A, Assumption A0, and Constraint C5. For the inductive step, we assume

the theorem true for i, assume its hypotheses true for i -t- 1, and consider

Ic(_+a)(T)- c_+l)(T)l. Lemma 6 then gives

[c(pi+a)(T)_ c_+ I)(T)[< [c(pi)(T(,+1))jr _(pi) _ [c_O(T(,+1))+A_0] ]+ p(R + E).

By the Algorithm, the righthand sideequals

_(cC')(TC'+_))+ a!'_-[c_')(rC'+a))+a_l) + pCR+_)
r=l

< __, Ic(_)(T{'+')) + h_')_- [c_')(T{'+l)) + £!'_11+ pCR+ 3_)
r=l
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where the first term is obtained by applying Lemma 4 to the n- m nonfaulty

processors, and the second is obtained by applying Lemma 5 to the m faulty
ones. The result then follows from the Constraint C6.

[]

Theorem 2: For all processors p, if all but at moot m processor8 are non-

faulty through period i, and proeeasor p is nonfaulty through period i, then

s2:Ic_'+I)-c_')l<_.

Proof: The Algorithm defines

cC,,X,: cC,_+_c,,

and A(pi) is the average of n terms, each less than A. The result follows.

[]



Chapter 3

Comparison with the

Published Analysis by

Lamport and Melliar-Smith

In this chapter we describe the differences between our analysis and that of

Lamport and Melliar-Smith, and we describe and discuss the flaws in their

presentation.

Our proof Of the correctness of the Interactive Convergence Clock Syn-

chronization Algorithm, which was presented in the previous chapter, follows

the original proof of Lamport and Melliar-Smith [11] very closely; our only

changes are technical ones. Some of these were motivated by the needs

of truly formal specification and verification; others were motivated by the

need to correct flaws in the original. We begin with changes in the first

class, then describe the flaws we discovered in the published proof.

3.1 The Definition of a Good Clock

Lamport and Melliar-Smith define the notion of a good clock relative to a
real time interval as follows:

A clock c is a good clock during the real time interval [tl,t2]

if it is a monotonic, differentiable function on [T1,T2], where

T_= c-l(t_),i = 1,2, and for all T in [T1,T2]:

rde (T)- I < _.

28
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This definition obviously presents a considerable challenge for a completely

formal specification--it would require axiomatizing a fragment of the differ-

ential calculus. Accordingly, we follow Butler [4] and use the Mean-Value

Theorem to provide a more tractable definition:

cC_- eCT_)_. ,oT,---_ - <_"

This formulation avoids the use of derivatives, but still requires use of the

inverse clock function. This can be avoided by defining the notion of a good

clock relative to a clock time interval:

A clock e is a good clock during the clock time interval [To, TN]

il

eC_- cCT_) X PTI_ - <_ •
whenever T1 and Ts are clock times in [To, T/v].

The formulation we employ for the notion of a good clock is this last one,

except that we rewrite the constraint as

P (T,-T2)Ic(T,)- cCT,)- (T1- T,)I<

in order to avoid the use of division and the obligation to ensure TI _ 7'2.

Notice that although we no longer explicitly require a good clock to be

monotonic, it follows implicitly as a corollary to our definition that, since p

is small, the clock function e is strict monotonic increasing (and therefore

has an inverse function). This fact is proved as Theorem monotonicity in
Module clocks.

3.2 Explicit Functional Dependencies

We made the functional dependency on i, the synchronization period, ex-

plicit in the three subscripted A quantities that appear in the Algorithm:
^(i) ^(i)where Lamport and Melliar-Smith use Aj,, Aq,,, and _qp, we use ,.....p, ,.-,qp

and x(i) Thus, ^(d) is the difference between q's clock and p's observed,-_q p . _._qp

by p during the i'th period. This change is a technical correction necessi-

tated by our use of a strict formalism. An alternative in the case of Aqp

would have been to include it in the scope of the existential quantification

in A2 (Skolemization would then have provided the func,tional dependence
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on i),but that would have needlesslycomplicatedthe technicaldetailsof

the argument.

Throughout the restof thisChapter, we use the notationof Lamport

and Melliar-Smith(i.e.,no superscriptson the A functions)whenever we

are discussingtheirproof.

3.3 Approximations and Neglect of Small Quan-

tities

Inorderto "simplifythe calculations"Lamport and Melliar-Smithmake ap-

proximationsbased on the assumption thatnp <_ 1. They neglectquantities

oforder npc and np_ [11,Section3.4]and use the notationz _ y toindicate

approximate equalityand x < y to indicateapproximate inequality.(z < y

means x < yI for some yt _ y.)

When we first attempted to formalize the proof of Lamport and Melliar-

Smith, we followed their example and used approximations. However, we

soon discovered that this required use of some unjustifiable axioms; referring

to the published proof, we found the corresponding steps to be incorrect

there also. One of these steps is in the main induction (invalidating the

whole proof), another is in Lemma 4. These are described below.

3.3.1 A Flaw in the Main Induction

The goal of the main induction is to establish the clock synchronization

condition $1. This is stated [11, page 63] as

Ic(p')(T)- <

while the inductive step [11, page 66] establishes

Ic(pi+l)CT ') -- C_d+I)CT')I _ 6.

Thus, the inductive step establishes the desired result only under the unac-

ceptable hypothesis that x < y D z < y. Of course, this immediate difficulty

can be remedied by restating S1 as

8

but one would then have to reexamine the whole proof in order to be sure

that the inductive step and all its lemmas remain true under this weaker

premise. []
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3.3.2 A Flaw in Lemma 4

Lamport and Melliar-Smith's version of Lemma 1 [II, page 64] establishes,

under suitable hypotheses, that IA_I < 8 q-e. However, their proof of

Lemma 4 [11, page 65] requires IAqpI < _ q-c, which is not substantiated by

these premises. []

The two examples cited above are definite flaws--the proofs are incor-

rect as stated. In repairing these flaws we faced a choice: we could ei-

ther continue to work with the approximations--attempting to get them

right--or we could reexamine the whole use of approximations and investi-

gate whether the proof could be carried through with exact inequalities. We

chose the latter course. Our motivation was largely aesthetic--we found the

use of approximations, and especially the potential appearance of approxi-

mate bounds in the statement of the main theorem, to be very unsatisfying.

The use of approximate relations also cluttered the mechanical verification m

unlike exact arithmetic relations, which are built into our specification lan-

guage and theorem prover, the approximate relations had to be explicitly

axiomatized and, more tediously, cited wherever they were needed. We had

also come to doubt Lamport and Melliar-Smith's belief that the use of ap-

proximations simplified the unmechanized calculations--on the contrary, we

found that the need to assure ourselves of the correctness of the approxi-

mations was a major complicating factor in understanding their published

proof.

Accordingly, we revised the published proof, adding additional terms

where necessary so that' exact equalities and inequalities could be used.

This proved to be quite straightforward and, to us at least, the resulting

proof (presented in the previous chapter) is no more complicated than that
published by Lamport and Melliar-Smith, and the use of exact bounds is

more satisfying. The revisions necessitated by the use of exact inequalities

are few and are listed below. Notice that in a couple of cases, the changes

are simplifications.

Constraint C5 is changed from

to

Constraint C4 is changed from

_ > 6o+pR

>_ _o+pR.

A_8+e
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to
P

Constraint C6 is formulated as follows by Butler et al. [5]:

8 > 2(, + pS) + 2m---A + '_P---A-R.
n--_'l n--m

Lamport and Melliar-Smith use A _ b + e to eliminate ,_ and state
the bound as

6 _ ,_'C2,+ pCR + 2s')),

where

Lemma 1:

n' : n and

S' = --n-ms
n

We prefer Butler's form and state the revised constraint as

8_>2(, + ps) + 2m__Aa+ ,p___9_n+ ,p___L_+ p_.
n--m n--m I'/,--171

The conclusion is changed from

I_qpl £ 8 +,

to

Lemma 4:

to

la_l < zx

The conclusion is changed from

Ic_0(r)+ _,_ - [c_0(r)+ _,_11<_2(,+ pS)

I_O(r)+ _!'_-[,_'_(r) + _!_11< 2(, + ps) + p_.

3.4 The Interval in which a Clock is a "Good

Clock"

Several lemmas use Definition 1 (the notion of a good clock) and Assumption

A1 (a nonfaulty processor has a good clock) to establish bounds on certain

quantities. In order to apply these definitions, we must establish that the

times concerned fall in the interval during which the processor is hypothe-

sized to be nonfaulty. The statements and proofs of Lemmas 1 and 2 [11,

page 64] do not do this with sufficient care and both are false as stated.
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3.4.1 Falsehood of Lemma 1

Lamport and Melliar-Smith's proof of Lemma 1 readily establishes

I c')(To)- cC')(To÷ Aq,,)l<

where To 6 S (i). The next step is to use the fact that p is nonfaulty up

to T(i+1) to allow use of Definition 1. In order to be able to do this, it is

necessary to show that

To + Aqv <_ T {_+1).

This constraint is not true in general--T0 could be as large as T(_+1) and

Aq p > 0. However, Lemma 1 is only used when p is known to be nonfaulty
up to T {_+2) so a plausible repair would change the statement of the Lemma

to require that p be nonfaulty up to T{ i+2). Then we would merely need to
show that

To + Aqp _ T(_+2). (3.1)

Since To _< T (_+1) and T(i+2) - T(_+1) + R and Aqp is small, this seems

straightforward. However, although Aqp is assumed small, and the purpose

of this very Lemma is to show it is less than A, there is no a priori bound

on its value and therefore no basis to establish (3.1). 1 Hence, this putative

proof of even the repaired version of Lemma 1 is flawed. In our proof, we
introduce

A (_)< S
qp--

as an explicit conjunct in Assumption A2. This is sufficient to substantiate
our use of Definition 1.

Notice that satisfaction of this strengthened statement for Assumption

A2 must be justified for any realization of the Algorithm.

*Itmight seem that we could establishthat Aqp must be very small by using the facts

the ivand q were synchronized during the previous period and cannot have drifted very

far since then. This argument, however, merely shows that a suitably small Aqp must

exist--itdoes not guarantee that thiswillbe the value that is actually obtained. It is

possible that a very large value willbe returned and that the constraint

Ic_')(T ' + A,,) - d"(T')l <,

will be satisfied adventitiously because the large value for Aqp takes iv's clock beyond the

interval in which it is a good clock--so that cp(_')(T'+ Aq_) may have any value whatever.
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3.4.2 Falsehood of Lemma 2

There is a similar problem in the proof of Lenuna 2. In order to substantiate

the use of Assumption A1, it is.necessary to ensure that

+n) <

where T E S (i) and [HI < R. Expanding definitions, this requires

T (i+1) - _ + II + Cp(i) <_ T (i+1) + R + _(i+l)_p

where0 _< • _< S. For the case where _)= 0, H _> 0, and using S2, this

reduces to

II < R-r 

which is not ensured by the condition IHI < R. Similar difficulty arises in

satisfying the lower bound to the interval required for application of A1.
In our proof we introduce several variations on Lemma 2, each with

tighter bounds on H and/or T, and we also introduce the new constraints

C1 (3S < R) and C2 (_ <__S) in order to overcome these difficulties. These

particular constraints were chosen for simplicity, and because We felt that

there would be no difficulty satisfying them in any likely implementation.

Alternative constraints are feasible, and would require minor modifications

to the proof.

3.5 Sundry Minor Flaws and Difficulties

3.5.1 Falsehood and Unnecessary Generality of Lemma 3

As stated, the Lemma is false because the bounds on H are insufficiently

tight to substantiate use of Assumption A1 (the argument is exactly the

same as that for Lemma 2). However, H is instantiated with 0 the only

time that the Lemma is used (in Lemma 4). In our proof, we discarded the

parameter H, thereby correcting and simplifying the statement and proof of

the Lemma.

3.5.2 Missing Requirements for Clock Synchronization

Condition S2

The proofs of Lemmas 1 and 3 use Assumption A2, which requires that $2

should hold. Since Lemma 4 uses Lemmas 1 and 3, its statement should
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alsorequirethat $2 hold. The statements of allthree Lenunas omit this

condition.

As stated,Lemma 2 alsorequiresthat only $1 hold. When other nec-

essarycorrectionsto the statement and proof of the Lemma are made, it

becomes necessaryto requirethat $2 hold as well (inorder to bound the

extentto which the interval[T(i+I),T (i+2)]can "shrink"when thecorrection

C (_+I)isapplied).

3.5.3 Typographical Errors in Lemmas 2 and 4

The conclusionto the firstpartof Lemma 2 statesthat a certainquantity

isstrictlylessthan (_)If.This shouldbe (_)IIIl.
The conclusionto Lemma 4 isstatedas

[c(i)(T) + Arp -[c_i)(T) - Z_rq]l < 2(e + pS).

Itshould read

Ic_)(T)+ A,p -lc_)(T)+ A,,]I< 2(,+ ps).

These seem to be no more than typographicalerrors.



Chapter 4

Formal Specification and

Verification in EHDM

In this chapter we describe the formal specification of the Interactive Con-

vergence Clock Synchronization Algorithm and its mechanical verification

using the EHDM formal specification and verification environment. This

entails encoding the Algorithm and its supporting definitions, assumptions,

lemmas, and theorems in the specification language of EHDM, and then

proving those lemmas and theorems with the help of the EHDM theorem

prover.

We begin with an overview of those features of EHDM and its specifi-

cation language that are necessary for an understanding of this particular

application, then we describe our application of the system to the Interactive

Convergence Clock Synchronization Algorithm.

4.1 Overview of EHDM

The EHDM Specification and Verification System is an interactive system for

the composition and analysis of formal specifications and abstract programs

written in the EHDM specification language. Its development by the Com-

puter Science Laboratory of SRI International is sponsored by the National

Computer Security Center.

A general overview of EHDM is provided in [18], where further references

may also be found. EHDM is written in Common Lisp and implementations

are available for Symbolics and Sun workstations. The specification and

36
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verification described here was performed on a Sun workstation using EHDM
Version 4.1.4.

Our specification and verification of the Interactive Convergence Clock

Synchronization Algorithm uses only some of the capabilities of EHDM.

Specifically, it uses unparameterized modules, the functional component of

the specification language, the ground prover, and the proof chain analyzer. 1

In this section we will describe only those parts of EHDM that are needed

to understand our specifications and proofs for the Interactive Convergence

Clock Synchronization Algorithm. Readers who wish to know more about

EHDM should consult the references cited earlier.

4.1.1 The Specification Language

The fragment of the EHDM specification language used here is a strongly

typed version of the First-Order Predicate Calculus, enriched with elements

of other logics--specifically Higher-Order Logic and the Lambda Calculus.

The two volumes by Manna and Waldinger [13, 14] provide an introduction

to some of these topics that is especially suitable for computer scientists;

Andrews [3] gives a more detailed treatment, including a good discussion of

Higher-Order Logic.

4.1.1.1 Declarations

The EHDM specification language allows the declaration of five different sorts

of entities: types, variables, constants, formulas, and proofs. There are six

built-in types in EHDM (that is, types which for which the system provides

an interpretation). The five of interest here are the rational numbers (in-

dicated by the identifier nmnber), the integers (indicated by the identifiers

integer or int), the natural numbers (indicated by the identifiers natu-

ralnumber or nat), the booleans (indicated by the identifiers boolean or

boo1), and the function types (which are described shortly). In addition,

the user may introduce uninterpreted types, type synonyms, and subtypes.

Here, we use only the built-in types, plus type synonyms. The declaration

1The capabilities not used here include parameterized modules and assuming clauses,
mapping modules, the procedural component of the specification language, the instan-
tiator for the theorem prover, the Hoare-Sentence prover, the Ada Translator, and the
multilevel security analyzer. We plan to construct a procedural description of the In-
teractive Convergence Clock Synchronization Algorithm at some time in the future; this
will enable us to demonstrate the procedural component of the specification language, the
Hoare-Sentence Prover, and possibly the Ada Translator.
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clocl_ime: TYPE 1"8 number

introducesclocktime_ as a synonym forthe naturalnumbers (equivalently,

we can thinkofthe naturalnumbers as supplyingthe interpretationforthe

type clocktime).

Variablesare introducedby declarationsofthe form

T1, T2: VAR clocktime

while uninterpretedconstantsare introducedby declarationsofthe form

T_ZERO: clocktime

Constants of a built-intype can be given an interpretationusing a literal

value ofthat type,forexample:

T_ZER0: clock-time = 0

Function typesare writtenas follows:

X: TYPE IS function[processor, period, clocktime -> realtime]

where the type-identifiersprecedingthe -> indicatethe domain ofthe func-

tiontype,and thatfollowingindicatesthe range.

EHDM isa higher-orderlanguage,so thatfunctiontypesmay have other

functiontypes in theirdomain or range,forexample

foo: TYPE IS function[nat, nat, function[nat -> number] -> number]

Functions are simply constantsof a functiontype:

correction: function[processor, period-> clocktime]

There isno specialnotationforpredicates;a predicateissimply a function

with range bool:

goodclock: function[processor,clocktime, clocktime -> bool]

Itisalsoperfectlyfeasibleto have variablesofa functiontype:

2EHDM identifiersconsist of a letter,followed by a sequence of letters,digits,and the

underscore character.Identifiersare case sensitive:tl and T2 are differentidentifiers.The

keywords of EHDM are not case sens]t]ve,however: type, TYPE, and even tYpE alldenote

the same keyword. By convention we put keywords in upper case. (This is the default

used by the EHDM prettyprinter.)
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prop: VAR function[nat -> bool]

Literalvalues of a function type are denoted using lambda-notation, and

may be used to give an interpretation to a function constant. The following

specificationfragment gives an example, s

p: VAR processor

i: VAR period
T: VAR clock-time

adjusted: function[processor, period, clocktime -> clocktime] =

(LAMBDA p, i, T -> clocktime: T + correction(p, i))

Formula declarations have the following schema:

name: KEY value

where the name issimply an identifierthat isused to referto the formula,

KEY isone of the keywords FORMULA, AXIOM, L_, or THEOREM, 4 and

value isboolean-valued expression.

Expressions can be built up from the usual propositional connectives

(which are written as NOT, AND, OR, IMPLIES, and IFF), universal and

existentialquantification,function application (written in the usual prefix

notation--e.g., adjusted(p, i, T)), equality (written as ffi),5 disequality

(written as/ffi), the usual arithmetic operations (written as -, +, * and

/), and the relations of arithmetic inequality (written as <, <ffi. >, and

>=). There is also a three-place if-then-else operator that is written, for

example, as:

abs_def: AXIOM abs(x) = IF x < O THEN -x ELSE x END IF

Quantified expressions are written in the following form:

SNotice that unlike many programming and specification languages, EHDM declarations
are not terminated by a semi-colon.

4These four keywords are almost equivalent (AXIOMis actually distinguished from the
other three). However, they are meant to be used in a way that indicates the specifier's
intention: an AXIOM is something intended to be taken as primitive, while LEMRAand
TtIEORE_indicate something that will be proved. We use FORt4ULAto indicate something

that ought to be proved but is not (i.e., a Utemporarf' axiom). The EHDM Proof-Chain
Checker is used to ensure that all non-AXIOMSare ultimately consequences only of AXIOMs
and PROOFs.

6The symbol ffidenotes logical equivalence when its arguments are of type boolean--it
is a synonym for IFF in this case.
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R: clock-time

T, PI: VAR clocktime

i: VAR period

T_sup: function[period-> clocktime]

in_R_interval: function[clock-time, period -> boolean]

Rdef: AXIOM in_R_interval(T, i) =

(EXISTS PI: 0 <= PI AND PI <= R AND T = T_sup(i) + PI)

Free variables in EHDM formulas are treated as if they are universally quan-

tified at the outermost level (i.e., formulas denote their universal closure).

Thus, the following is equivalent to the AXIOMof the same name given earlier:

abs_def: AXIOM (FORALL x: abs(x) = IF x < 0 THEN -x ELSE x END IF)

It is generally easier to read formulas when this outer level of quantification
is omitted.

EHDM permits overloading of function names and provides subtype-to-

supertype coercions. This is of some importance when dealing with arith-

metic. The naturals are defined as a subtype of the integers, which in turn

are defined as a subtype of the (rational) numbers. The binary arithmetic

functions and relations require both their arguments to be of the same type;

the function and relation symbols actually denote different functions ac-

cording to the type of their arguments. If an arithmetic function or relation

is supplied with arguments of different types, then a subtype to supertype

coercion is applied until the types match. Thus, in the following fragment

n: VAR nat

i : VAR int

r: VAR number

X: FORMULA r = i + n

itisadditionon the integersthatissuppliedas the interpretationof the ÷

sign(niscoercedtointeger),theresultiscoercedtoa (rational)number,
and the equalityfunctionused isthatforthe (rational)numbers.

4.1.1.2 Modules

Specificationsin EHDM are structuredintonamed unitscalledmodules in

much the same way as programs writtenin modern programming languages

are composed of similarunits (e.g.,packages in Ada). A module serves
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to group related concepts together and delimits the scope of names. An

(unparameterized) EHDM module consists of three parts, any of which may

be empty: an import/export part, a theory part, and a proof part.

Declarations of all the forms described above may appear in both the

theory and proof parts (except that AXIOMs may not appear in a proof part).

Types and constants declared in the theory part may be made visible to the

theory parts of other modules by listing them in the exporting part--for

example:

EXPORTING R, in_R_interval

Other modules gainaccessto thesenames by citingthe name ofthe module

inwhich they are declaredintheirUSING clauses(asthe import listiscalled

in EHDM). A module A which imports a module B may re-exportallthe

names imported from B by adding a WITH clauseto itsown exportinglist:

USING A

EXPORTING p, q, r _ITH A

This makes allthe names exported by A visibleto any module thatimports

B, without that module having toimport A explicitly.

Allnames declaredin a theorypart,whether exportedor not,are visible

insidethe proof part of any module that imports the module concerned.

Conversely,nothing declared in a proof part isever visibleoutsidethat

proofpart.

The readershould now have enough understandingof the specification

language of EHDM to be ableto read the simplemodule example, which is

a simplifiedform of the module clocks used in the actualspecificationof

the InteractiveConvergence Clock SynchronizationAlgorithm. The module

(which has no proof part)isshown in Figure4.1

4.1.1.3 Proofs

EHDM proofdeclarationsprovideinformationthattellsthe EHDM theorem

provershow to prove the formula concerned.There are two main theorem

proving components in EHDM: the ground prover,and the proofinstantia-

tot.All the proofsdescribedherewere done with the ground prover.The

followingdescriptioncoversboth provers.

A proof declarationin EHDM has the generalform

name: PROVE conclusion FROM premisel, premise2, premise3
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example : MODULE

USING time

EXPORTING proc, clock, rho, Corr, adjusted WITH time

THEORY

proc: TYPE IS nat

rho : number

rho_pos: AXIOM half(rho) >= 0

clock: function[proc, clocktime -> realtime]

p: VAR proc

T, TO, TI, T2. TN: VAR clock-time

goodclock: function[proc, clock-time, clock-time -> bool]

gc_ax : AXIOM

goodclock(p. TO, TN)

- (FORALL TI, T2 :

TO <-- T1 AND TO <= T2 AND T1 <- TN AND T2 <= TN

IMPLIES abs(clock(p, TI) - clock(p, T2) - (TI - T2))

< mult (half (rho), abs (T1 - T2)))

Corr: function[proc, period -> clock-time]

zero_correction: AXIOM Corr(p, O) = 0

i: VAR period

adjusted: function[proc, period, clocktime -> clock-time] =

(LA_DA p, i, T-> clock_ime : T + Corr(p, i))

END example

Figure4.1:An Example EHDM SpecificationModule
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where the conclusion and the premises (therecan be any number of

premises) are the names of formulas. This declarationindicatesthat the

conclusion isto be proven to be a validconsequence of the premises--

i.e.,pi,p2,ps F c in the conventionalnotationof logic.By the deduction

theorem, thisis equivalentto F Pl,P2,Ps _ c, which isequivalentto the

unsatisfiabilityof

-_ĉ PI ^ P2 ^ Ps (4.1)

The theorem proversof EHDM are refutation-basedprovers,and their

strategyisto attempt toshow that(4.1)(i.e.,the conjunctionofthe premises

and the negated conclusion)isunsatisfiable.The firststep on the way to

accomplishing thisgoal is to reduce (4.1)to an equivalentquantifier-free

form by the process of Skolemization. The detailsof Skolemizationare

somewhat tediousto describe(see[14]for a generalexplanation)but the

important pointisthatthe existentiallyquantifiedvariablesinthepremises,

and the universallyquantifiedand unquantifiedvariablesinthe conclusion,

are replacedby constants,s

Ifthe remaining variablesin the quantifier-freeformula resultingfrom

Skolernizationare substitutedwith expressionsmade up ofconstants(such

expressionsare calledground terms),then (ignoringarithmeticforthe mo-

ment) the resultwillbe a formula of the PropositionalCalculus. Since

PropositionalCalculus isdecidable,itcan be readilydetermined whether

thisformula (whichiscalleda ground instanceofthe originalpredicatecalcu-

lusformula (4.1))isunsatisfiable.Ifitis,then so is(4.1)--whichmeans the

originaltheorem has been proven.Ifthe ground instanceisnot unsatisfiable,

itdoes not mean that (4.1)isunsatisfiable,nor that the originaltheorem

isfalse--itmeans only that the particularset of ground substitutionscho-

sen did not establishthe theorem. However, by the Herbrand-Skolem-G/_del

theorem, we know that ifthe originaltheorem isvalid,then there exists

some setof substitutionsthatproduces an unsatisfiableground instance.

The ground proverof EHDM issimplya decisionprocedureforthe com-

binationof propositionalcalculuswith equalityover uninterpretedfunction

symbols, plus Uextended quantifier-freePresburger arithmetic_forboth the

rationalsand integers"[17].Proofdeclarationsforthe EHDM ground prover

eThisdescriptionignorestheeffectsofexplicitand implicitnegations(thelatterare
introducedby implicationsandequivalences).Moreprecisely,itistheoddvariablesinthe
premisesand theevenonesintheconclusionthatarereplacedby constants--andthose
constantsmay befunctionsinthegeneralcase.

VThisincludesunaryminus,additionand Bubtraction,multiplicationby constants,
equalityand disequality,togetherwiththerelations<,<,>,and >.
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must indicate the substitutions to be used to produce the ground instance

that is submitted to the ground prover. Substitutions are indicated as fol-
lows:

name {vl <- el, v2 <- e2 ..... vn <- en)

where name is a formula name appearing in a PROVEdeclaration as either the

conclusion or a premise, the vi's are substitutable (unSkolemized) variables

of the formula, and the ei's are ground terms. For example:

abs_proofO: PROVE abs_axO FROM abs_ax {a <- O}

Not all substitutions involve literal constants; most refer to the Skolem or

substitution instances of variables in other premises or in the conclusion.

The notation for this appends an _©" sign and a qualifier to the variable con-

cerned. Thus the substitution x <- y©c means %ubstitute for x whatever

is substituted for y in the conclusion," and x <- y©p3 means "substitute for

x whatever is substituted for y in the 3'rd premise." More complex forms,

such as x <- y©c+z©p3 are perfectly acceptable. When function variables

are concerned, the substitutions may involve LAMBDAterms.

The number of substitutions that must be given explicitly is greatly

reduced by application of a number of default rules. If no qualifier is given

(as in the substitution x <- y), then y is interpreted to mean %he instance

of y in the conclusion, if there is one, otherwise the instance from this

premise." If no substitution at all is given for a variable, then (for the case

of a variable x) the substitution x <- x is supplied automatically (and the

interpretation of the missing qualifier will be supplied by the previous rule).

This all sounds much more complicated than it really is. A typical proof

(from the module time in the specification)isshown below:

inRS_proof: PROVE inRS FROM Sdef, Rdef {PI <- R-S+PI@pI), SinR

The mechanics of doing a proof in EHDM are that the user moves the cur-

sor to the proof declaration of interest and presses the "prove" button. (The

interface to EHDM is a screen editor with mouse-sensitive pop-up menus.)

In the fullness of time, the system will report either "proved" (meaning just

that) or "unproved" (meaning either that the theorem is false, or that it

is true, but the premises and substitutions provided are not sufficient to

establish that fact). There is no direct interaction with the ground prover;

all the interaction is through the specification text (though there are some

proof-debugging tools). In addition to the commands for performing a single
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proof, there are commands for doing all the proofs in a module, or all the

proofs in a module and all those modules that it uses.

It will be clear from our description that the ground prover of EHDM

is really a proof checker: all the creative work is in the selection of the

premises and of the substitutions--and this is performed by the user. EHDM

contains another theorem proving component called the instantiator that

can perform some of these tasks automatically. Specifically, the instantiator

tries to supply the substitutions needed to make a proof succeed. If it finds

the correct substitutions, it can write them back into the specification text

so that in future the ground prover will be able to perform the proofs on its

own.

The instantiator is a full first-order theorem prover: it can prove any

true theorem of first-order predicate calculus. However, its effectiveness

in finding suitable substitutions is considerably diminished in the presence

of interpreted symbols, such as those for equality and arithmetic. (For

example, it succeeds on only 4 of the 12 proofs in the module absolutes

if all the explicit substitutions are deleted.) Since the specifications of the

Interactive Convergence Clock Synchronization Algorithm make heavy use

of arithmetic, we did not use the instantiator in this effort. The powerful

arithmetic capabilities of the EHDM ground prover were crucial to our ability

to perform this work.

4.1.1.4 Other Components of the EHDM System used in the Proof

Proof Chain Checker. The notion of "proof" that is established by the

EHDM theorem prover is a local one: it assures us that the conclusion is

indeed a valid consequence of the premises. But it does not tell us whether

those premises are axioms or theorems, and if the latter, whether or not

they have been proved. This larger scale analysis is performed by an EHDM
tool called the "Proof Chain Checker." The Proof Chain Checker can be

invoked with either a PROVE or a FORMULAdeclaration as its target. In the

latter case, it first searches for a proof of the formula concerned; in either

case it then recursively examines the status of all the premises named in the

proof. Proof Chain Analyses for the clock synchronization conditions in our

specification are given in Appendix C.

Prettyprinters. The writtenappearance ofspecificationshas a significant

impact on the easewith which they can be read,understood--and written.

The concretesyntaxofthe EHDM specificationlanguage attempts tobe close
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to traditionalmathematical and logicalnotation. A rathersophisticated

prettyprinterhelps ensure a uniform lexicalstylefor specifications.The

specificationlistingsin Appendix D were produced by the prettyprinter.

Even given the relativelystraightforwardconcretesyntax of EHDM, it

can stillbe hard to read specificationscomposed of long seriesof func-

tionapplications.Thus, we developed a table-driven"LATEX-printer_ for

EHDM that convertsEHDM specificationsintoLATEX input.This can then

be processedby LATEX to produce very readablespecifications,with two-

dimensionallayoutincludingsub- and superscriptsand "mix-fix_ function

symbols. For example, a functionalexpressionin EHDM

abs(c(p, i, T) - c(q, i, T))

can be convertedto the more comprehensiblenotation

When a functionname isused alone (forexample, in a declaration),itis

printedas a template indicatingargument positions.Thus, forexample,

A(_2)(,3): function[proc, period, clocktime ---*clocktime]

makes itclearthatthe firstargument willappear as a subscript,the second

as a parenthesizedsuperscript,and the thirdinnormal parentheses.We ex-

pect thistoolto become a very usefuladditionto the EHDM environment,

sinceitgreatlyassiststhe readingofspecificationsand should therebycon-

tributegreatlyto the peer review and evaluationof EHDM specifications.

The LATEX-printedversionof the example from Figure4.1isshown inFig-
ure 4.2.

We used the LATEX-printerto convertour EHDM specificationsintothe

exact notation used by Lamport and Melliar-Smith;the listingsin LATEX

form are givenin Appendix B. The translationsused forthe EHDM identi-

fiersare displayedin Table A.I of Appendix A.

Cross-Reference Tools. There are nearly300 EHDM identifiersdeclared

in our specificationof the InteractiveConvergence Clock Synchronization

Algorithm. Keeping trackof the declarationsand uses of theseidentifiers

couldbecome quiteburdensome, so the EHDM environment providessimple

cross-referencefunctionsto assistinthistask.Two of thesefunctionsallow

the userto locateand jump to the declarationsand uses,respectively,of a



4.1. Overview of EHDM 47

example: Module

Using time

Exporting proc,c.i(.2),p,U.(__),A(._)(.3)with time

Theory

proc: TYPE IS nat

p: number

rho_pos:Axiom _ _>0

c.I(.2):function[proc,clocktime---realtime]

p: VAR proc

T,To,TI,T2,T/v:VAR clocktime

goodclock:function[proc,clocktime,clocktime_ bool]

gc_ax:Axiom

goodclock(p,To,TN)

=(VTI,72:
To <_ T1A To <_ T2 A TI <_ TN A T2 <_TN

Jc_(T_)-c_(T,)- (71- T,)f < _ × IT,- T,I)

C£(*_)function[proc,period clocktime]1 : ""#

zero_correction:Axiom Up(°)= 0

i: VAR period

A{._)(*3):function[proc,period,clocktime--*clocktime]=

(A p,i,T--.clocktime:T + C_i))

End example

Figure4.2:LATEX-printedExample EHDM SpecificationModule
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given identifier; the third provides a tabular cross-reference to all declara-

tions in a given EHDM library. (EHDM allows specification modules to be

collected into "libraries" and manipulated as a group.)

The table produced by this third function of the EHDM cross-reference

tool is given in Tables A.2 to A.14 in Appendix A.

4.2 The Formal Specification and Verification of

the Algorithm

A formal specification generally divides into two components: one directly

concerned with the problem at hand, and another in which are developed

all the %upporting theories" needed in the first but peripheral to its main

purpose. The supporting theories provide the "background knowledge" that

we would like to be able to assume in order to get on with the main problem.

With a formal specification system, the built-in "background knowledge" is

generally very limited (usually it is little more than predicate calculus with

equality) and the construction of explicit specifications for the supporting

theories may often consume the greater part of a specification effort. It

has been recognized for a long time that the development of certified li-

braries of generally useful supporting theories would be one of the most

useful contributions to reducing the cost and increasing the reliability of

formal specifications. The module library mechanism of the EHDM system

provides a suitable framework for standard modules; however, the libraries

have not yet been populated.

Examination of Chapter 2 will show that the background knowledge

used in the specification and analysis of the Interactive Convergence Clock

Synchronization Algorithm includes a significant amount of arithmetic, in-

cluding inequalities, absolute values, and summations, but not much else.

Since we define a good clock without recourse to differentiation, we avoid

the need for real numbers and can use the rationals to represent time.

As mentioned earlier, integer and rational arithmetic are built into

EHDM. Thus, the only supporting theories for arithmetic that we need to

specify explicitly are those for absolute values and for summation. Because

EHDM uses a higher-order logic, induction schemes are provided axiomati-

cally, rather than being built in as rules of inference; consequently, we will

also need a supporting theory to provide a suitable induction axiom.

Our specification and verification of the Interactive Convergence Clock

Synchronization Algorithm is described in the three subsections following.
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First we describe the EHDM modules that provide the supporting theories,

then those that build up the specification of the Algorithm, and finally those

that develop the proof that the Algorithm maintains synchronization. List-

ings of the specification modules described here are given in I_TEX-printed

form in Appendix B and in raw form in Appendix D. Cross-references are

provided in Appendix A.

4.2.1 Supporting Theories

Seven modules provide supporting theories for the specification.

4.2.1.1 Absolutes

Absolute values are used extensively in the specification. It would be entirely

feasible to specify the absolute-value function in EHDM by the definition

a : VAR number

abs: function[number -> number] =

(lambda a -> number: if a<O then -a else a end if)

However, this would result in the definition being expanded everywhere it

appeared--which would work, but would slow the theorem prover down

considerably, s Thus we chose to specify the abs function by means of an

explicit axiom, so that we could control when the definition is expanded.

a: VAR number

abs: function[number -> number]

abs_ax: AXIOH abs(a) = if a<O then -a else a end if

We could have stopped there, but decided it would be preferable to build up

a collection of useful proved results about the abs function. We were partly

motivated by concerns for theorem proving efficiency, and partly by a desire

to make our proofs as readable as possible. For example, if a proof needs

the property Ix + Yl -_ [xl ÷ lYl, it is not only more efficient to supply this

to the theorem prover explicitly (rather than merely provide abs_ax), but

it also makes it easier for a reader to follow the proof. This use of derived

properties (rather than referring everything back to definitions) is, of course,

quite normal in traditionalmathematical presentations. A collectionofsome

dozen elementary resultsof this kind are collectedand proved in the module

absolutes.

SFor example, expanding the definitionof abs willonly complicatethe proofof the
formulaa=b II_PLIESabs (a)fabs(b).
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In addition,the module absolutes containstwo axioms thatstateprop-

ertiesof the absolutevalue functionin the presenceof multiplicationand

division:

abe_times: AXIOM abs(a*b) = abe(a) * abs(b)

abs_div: AXIOM b /= 0 IMPLIES abs(a / b) = abs(a) / abe(b)

As explainedin more detailinthe followingsubsection,multiplicationand

divisionare largelyuninterpretedin EHDM so itisnecessaryto introduce

propertiessuch as these eitherby means of explicitaxioms, or as derived

consequencesof a more primitiveaxiomatizationformultiplicationand di-

vision.We have chosen the former course.

4.2.1.2 Arithmetics

Although we said earlierthat most of the arithmeticneeded was built-

in to EHDM, we were not quite tellingthe truth. EHDM supports linear

arithmetic--thatismultiplicationby constantsonly.Severalofthe formulas

and constraintsneeded in the specificationand verificationof the Interac-

tiveConvergence Clock SynchronizationAlgorithm requireuse ofnonlinear

multiplication,and alsodivision---e.g.,terms such as _ appear in then--Wl

constraintC6.

Although ithas a specialsyntacticform (theinfix/),divisionisunin-

terpretedin EHDM--the usermust supply appropriateaxioms justas ifit

were a newly introducedfunction.Ideally,EHDM should providea library

module containinga %tandard" axiornatizationfordivision,but thisisnot

done at present.Accordingly,we providesome ad hoc axioms for division

in the module arithmetics. These axioms and the lemrnas derivedfrom

them are adequate forthe presentpurpose,but we have made no attempt

toconstructa minimal or a complete set.The threeaxioms thatwe use are

shown below (theaxiom abs_div in module absolutes isalsorelevant).

quotient_ax: AXIOM y /= 0 IMPLIES x / y " x * (I / y)

quotient_axl: AXIOM x /= 0 IMPLIES x / x ffi1
quotient_ax2: AXIOM z > 0 IMPLIES 1 / z > 0

Severaladditionalpropertiesof divisionare statedand proved from these

axioms.
Multiplication by literal integer constants is treated as repeated addition

by EHDM, and the ground theorem prover is able to fully decide formulas

containing such constructs. Nonlinear multiplication can also appear in
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EHDM specifications, but is treated as an "almost" uninterpreted function.

It might be better, in fact, if it was completely uninterpreted--so that the

user could supply and invoke appropriate multiplication axioms under ex-

plicit control. As it is, the ground prover of EHDM contains heuristics that

enable it to prove certain results involving nonlinear multiplication, but

these heuristics render the ground prover incomplete (i.e., it is no longer a

decision procedure) 9 --which is unacceptable, given the proving paradigm
used in EHDM.

Consequently, the ground prover contains conservative checks that abort

the proof if there is any possibility that the presence of nonlinear multipli-

cation will take it beyond its domain of completeness. The only thing to do

when a proof aborts in this way is to define a new, uninterpreted multipli-

cation function and use that instead of the built-in function when nonlinear

multiplication is required. The semantics of the new multiplication function

have to be provided by explicit axiomatization. 1°

Thus, in the module aritlmetics, we define a function mult on the

rationals and give it the semantics of multiplication by the axiom

mult_ax: AXIOM mult(x, y) - x * y

We introduce two additional axioms

multi: AXIOM x >ffi0 AND y >= 0 I_PLIES mult(x, y) >= 0

mult_mon: AXIOM x < y AND z > 0 IMPLIES mult(x, z) < mult(y, z)

since attempts to derive these results from the first cause the prover to abort

and report that it is outside its domain of completeness. Several additional

properties of mult are stated and proved from these two axioms.

The quantity _ appears frequently in the proof. We encode this in the

function half defined by the following axiom:

half_ax: AXIOM half (x) ffix/2

We also state and prove a couple of derived properties of this function.

The module arithmetics is completed by the statement and proof of

two arithmetic identities (rearrange and rearrange_air) that are used in

a couple of other modules. Several other arithmetic identities of this form

are used only once each and are stated and proved in the modules where

they are required.

°There is no complete decision procedure for arithmetic with multiplication and there
is no syntactic characterization for the fragment of nonlinear arithmetic that is decided
by the EHDI_ ground prover.

_oWe are actively considering changes in the way EHDM handles nonlinear multiplication
as part of a review of the prover strategies.
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4.2.1.3 Natprops

EHDM does not define a subtraction operator on the natural numbers. The

naturals are treated as a subtype of the integers in EHDM, so that the ex-

pression n - m, where n and m are naturals, is interpreted by coercing those

values to type integer, and then applying the integer subtraction opera-

tor to yield an integer result. In our treatment of summations, we need

subtraction-like operators on the naturals, and these are defined axiomati-

cally in the module natprops. The predecessor function, pred, and a sub-
traction function diff are defined as follows:

pred: function[nat -> nat]

pred_ax: AXIOM n /= 0 IMPLIES pred(n) m n - 1

dill: function[nat, nat -> nat]

diff_ax: AXIOM n >= m II_PLIES dill(n, m) - n - m

Several derived properties of these two functions are stated and proved in the

module natprops. In addition, we assert that the naturals are nonnegative

using the following axiom:

natpos: AXIOM n >= 0

This is necessary because EHDM treats the naturals as simply a subtype of

the integers that is closed under addition; no other properties of the naturals

are built into the prover.

4.2.1.4 Functionprops

The module functionprops definesthe (higher-order)axiom offunctionex-

tensionality.This isrequiredforone ofthe proofsinthe module sigmaprops.

We define'thisaxiom forfunctionsofexactlythe signaturewe require(i.e.,

nat -> number) ratherthan forthemore generalcase(i.e.,number -> num-

ber) because the presentversionofthe EHDM typecheckerdoes not handle

higher-ordersubtypes.

F, G: VAR function[nat -> number]

x : VAR nat

extensionality: AXIOM (FORALL x : F(x) = G(x)) IMPLIES F = G
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4.2.1.5 Natinduction

The module natinduction provides a higher-order axiom called induc-

tionm used for inductive proofs. The axiom states a principle of simple

induction on the naturals using a predicate variable prop.

induction: AXIOM

(prop (m)

AND (FORALL i : i >= m AND prop(i) IMPLIES prop(i + I)))
IMPLIES (FORALL n >= m : prop(n))

Informally, it says that if prop is true for m, and prop (i) implies prop (i+i),

for arbitrary i >ffi m, then prop is true for all natural numbers n >= m.

Two special cases of this induction scheme are then introduced as lemmas:

induction is the case m = 0 and corresponds to the standard induction

scheme over the naturals; inductionA is the case m = 1.

Module natinduction also introduces modified induction schemes called

rood_induction and mod_inductionl that are stated as lemmas and proved
from the basic inductionm axiom. The modified scheme rood_induction is

used in the proof of Theorem_l and is specialized for the proof of predicates

of the form A(i) D B(i). The inductive step in such cases has the form

(A(;)D B(;)) D(AC;+ 1)D BC;+ 1)).

This is equivalent to

((ACi)DB(;)) ^ A(i + 1)) DBCi+ 1)

which, when we know in addition that A(i + 1) D A(i), reduces to

(ACi+ 1)^ B(;)) DB(; + 1).

This is the form for the inductive step that is stated in rood_induction and

proved in rood_induction_proof. The lenuna =od_inductionl is derived in
a similar fashion.

Another induction scheme is introduced as an axiom: induction2 is

used in the proof of sigma_rev in module sigmaprops and is specialized for

the case when the proposition to be proved takes two arguments, and the
induction is over the second. It can be derived from the standard induction

scheme, with the addition of quantification over the first argument.
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4.2.1.6 Sums and Sigmaprops

Choosing how primitive the axiomatic basis for a supporting theory should

be is a matter of taste, conscience, and the time and funds available. Ideally,

each supporting theory should be built up from a small and primitive set

of self-evident, well-accepted axioms. Unfortunately, it may then require

a considerable expenditure of time and effort to build the body of verified

lemmas and theorems for the supporting theory that are needed to solve the

actual problem at hand. The alternative is to simply assert as axioms the

results that are actually needed from the supporting theory. The danger here

is self-evident--it is remarkably easy to state plausible, but false axioms.

When formal specification and verification is practised more widely, we

would expect that verified libraries of common supporting theories will be

available. In the meantime, we are confronted with a dilemma: either build

up the supporting theories from primitive axioms--and risk never getting to

the original problem of interest, or else concentrate on the original problem--

and risk building on sand. We pursued a variant of the second course in

developing this proof of the Interactive Convergence Clock Synchronization

Algorithm. In order to make progress on the main problem, we adopted ex-

pedient axioms at first, then as time has permitted, we went back to develop

the supporting theories with greater care and with a view to incorporating

them in libraries.

Our first verification of the Interactive Convergence Clock Synchroniza-

tion Algorithm used high-level axiomatizations of the concepts of summa-

tions and means from the module sums. Later, we developed a module

sigmaprops that establishes results very similar to those used in sums as

verified consequences of very primitive definitions. Later still, we replaced

all the axioms in module sums by equivalent lemmas that are proven from

those in sigmaprops. When time permits, we may make a final revision to

these parts of the specification in order to render them suitable for inclusion

in a library.

Sums. The module sums introduces two higher-order functions,called sum
,2 ,3 ,2 ,3(_,,()) and mean ((_,1()), respectively. Each takes three arguments:

the first two are natural numbers, and the third is a function from the

natural to the rational numbers. The intended interpretation for sum is that

it sums the function supplied as its third argument from the value supplied

as its first argument to that supplied as its second. That is, in conventional

mathematical notation,
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5

sum(i,j.F)= F(r)

If3"< i,the valueof sum isintendedto be zero. The actualdefinitionof

the functionsum isaccomplishedby the axiom sum_ax interms ofthe more

primitivefunctionsigma which isdescribedin the next subsection.

The axiom mean_ax specifiesthe (arithmetic)mean functionin terms of

the sum functionintheobviousway. The lemma mean_lemma simplyrestates

the definitionofmean directlyintermsofthemore primitivefunctionsigma.

Ten furtherlemmas thenintroduceadditionalpropertiesofthe sum and mean

functions.

The first,split_sum, statesthatunder suitableconditionsa summation

from / to 3"isequal to the sum of two smallersummations: one from ,"to

k,and the otherfrom k -i-1 to 3".split_mean,the correspondingresultfor

mean, isproved directlyfrom split._um.

Lemma sum_bound says that ifa functionisbounded by a constant z

throughout the range /to _,then itssummation overthatrange isbounded

by x × (3"-/-f 1);the lemma mean_bound statesthe correspondingresult

forthe mean functionand isproved from sum_bound.

The lemmas mean_const and mean_mult simply statethat the mean of

a constantisthatconstant,and thatthe mean ofa functionmultipliedby a

constantisthe same as themean ofthe functionmultipliedby the constant.

Mean_sum and mean_dill statethat the mean of the sum or differenceof

two functionsare equal to the sum or differenceof the means. Abs_mean

statesthatthe absolutevalueofa mean islessthan or equalto the mean of

the absolutevalues.Finally,rearrange_sum statesa simpleproperty that

isneeded in module summations.

The lemmas in module sums are derivedfrom similarresultsstatedfor

the more primitivesigma functionin the module sigmaprops, which is

describednext.

Sigmaprops. The module sigmaprops introduces a function sigma

(_(,1,-2,-3))similarto stundescribedabove. The significantdifference,

however, isthat whereas sum(i, j, F) isintendedto denote the sum of F

from i to j,o(i, n, F) isintendedto denotethe sum off from i to i +

n - I (i.e.,the sum ofn terms).

Sigma isdefinedby the recursivedefinitionsigma_ax and seven lemmas

concerningthisfunctionare then statedand proved. The names used for

the lemmas are in correspondencewith those used forthe lemmas in sums:
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for example, split_sigma in sigmaprops corresponds to split_sum and

split_mean in sums. The proofs in sigmaprops mostly use induction; the

induction schemes employed are from the module natinduction.

Some of the proofs in sigmaprops use a function revsigma which is

defined like sigma, but with the recursion going in the opposite direc-

tion. A lemma called sigma_rev proves that these two functions are ex-

tensionally equal A second function, called bounded, also used internally

by sigmaprops is introduced and defined by the axiom bounded_ax. Since

they are used only by the proofs in sigmaprops, it might be preferable if the

declarations of revsigma and bounded, together with the axioms that define

these functions, were placed in the proof part of the module, rather than

the theory part. However, EHDM does not allow axiom declarations in the

proof section of a module. (Additional axioms change the theory, which is

supposed to be specified by the theory part.) The definitions for revsigma
and bounded could be moved to the proof section only if they were declared

as formulas; the proof chain checker would then report a dependency on

unproved formulas. A planned extension of the language by a facility for

defining auxiliary concepts will solve this dilemma.

4.2.2 Specification Modules

The specification of the Interactive Convergence Clock Synchronization Al-

gorithm is performed in three modules described below.

4.2.2.1 T_e

The module time is the first one that introduces concepts directly concerned

with the Interactive Convergence Clock Synchronization Algorithm. It in-

troduces clocktim_, realtime and period as types, and establishes the

rationals as the interpretation of the first two, and the naturals as the inter-

pretation of the third. R. S, and T_ZER0 (T °) are introduced as constants

of type clocktime, and then the functions T_sup (T(*I)), in_R__interval

(,1 E R(*2)), and in_B_interval (*1 E S (.2)) are introduced and defined

(by the axioms T_sup_a.x, Rdef, and Sdef) in the obvious way.

The constraint C1 (R >ffi 3 * S) is defined here, and also the axioms

posR and posS which assert that R and S are both greater than zero. Several

straightforward lemmas are stated and proved.



4.2. The Formal Specification and Verification of the Algorithm 57

4.2.2.2 Clocks

The module clocks introduces proc (short for processor) as a type in-

terpreted by the naturals, and introduces the clock, correction, adjusted-

value,and logicalclockfunctions:clock (c,1(,2)),Corr (C,(_2)),adjusted

(A(,_2)(,3)),and rt (c(,_)(,3)),respectively.The thirdof theseisgivenan

interpretationin terms of the second. The fourthisdefinedaxiomatically

(sothatwe can controlitsapplication)in terms of the firstand third.

Next, the driftraterho (p)isintroducedas a constantof type ratio-

nal number, togetherwith the predicategoodclock. The intentionisthat

goodclock(p. TI, T2) willbe truewhen processorp isa good clockin the

clocktime interval[TI, T2]. This isspecifiedinthe axiom gc_ax.Finally,

the predicatenonfaulty isintroduced and the assumption A1 is stated.

Whereas the informalstatement of AI says that ifp isnonfaultythrough

periodi,then (thisimpliesthat)p has a good clockduringthe correspond-

ing interval,the formal definitionuses equivalenceinsteadof implication.

This isnecessarybecause we willlaterneed to prove that ifp isnonfaulty

through period6+ 1,then itisalsononfaultythrough periodi.

Our definitionofgoodc lock impliesthata good clockisstrictmonotonic

increasing.This factisstatedasthe Theorem monotoniclty and provedin

the proof part ofmodule clocks.

4.2.2.3 Algorithm

The heartof the InteractiveConvergence Clock SynchronizationAlgorithm

isdefinedin the module algorithm. We introducem and n as constantsof

type proc, and assertthatn isnonzero (axiom C0_a)and that0 <= m < n

(axiom CO_b). The constantseps (e),deltaO (80),delta (6),and Delta

(A) are introducedand the constraintsC2 to C6 arestated.The constraint

that Delta be strictlypositiveisalsostated(asaxiom CO_c).
r-(,I), r_(,s),

Next, the functionsDelta1 t/X.l ],Delta2 (A{,_s)2),and D2bar t/X,l,,2)

are introduced,and the InteractiveConvergence Clock SynchronizationAl-

gorithm itselfisspecifiedin the threeaxioms llgl. Alg2, and Alg3.

The clocksynchronizationconditionsarespecifiednext. First,we define

a functionskew: skew(p, q, T, i) isthe skew between the logicalclocks

ofprocessorsp and q inperiodi atclocktime T (i.e.,Ic{p_)(T)-e_i)(T)[).In

the traditionalmathematical presentation,we identified$1 with the require-

ment thatthe skew between nonfaultyprocessorsshouldalwaysbe lessthan

6. However, we alsoneed to considerthe conditionunder which thisbound
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should hold--namely thatthereshouldbe at most m faultyprocessors.We

regardthisconditionasthe antecedentto $1 and identifyitwith the predi-

cateSIA; the bound on the skew between the clocksofnonfaultyprocessors

we considerthe consequentof$1 and identifyitwith the predicateSIC.The

axiom SICdef statesthe bound on the acceptableskew between nonfaulty

processorsp and q in periodi,while the axiom Slhdef statesthe require-

ment thatthereshouldbe at leastm - n processorsnonfaultythrough that

period.The specificationofthislastrequirement:

(FORALL r: (m+l <= r AND r <= n) I_PLIES nonfaulty(r, i))

assumes that it is those processors numbered m q- 1... n that are the non-

faulty ones. Clearly there is no loss of generality in this.

The clock synchronization condition $2, which is identified with the pred-

icate $2, is defined in the axiom S2_ax.

Finally, the two theorems which assert, respectively, S1A D SIC and $2

are defined. The proof of the latter is simple and is performed directly in

the proof part of the module algorithm.

4.2.3 Proof Modules

The proof of Theorem_2 (the Interactive Convergence Clock Synchronization

Algorithm maintains the clock synchronization condition $2) is provided

directly in the module algorithm. The proof of Theorem_l (the Algorithm

maintains clock synchronization condition S1) spans 10 modules that are

described below.

4.2.3.1 Clockprops

The module clockprops ischieflyconcernedwith establishingsome bounds

on A(p_)(T-{-l'l)that are needed to establishLemma 2. These bounds are

stated as the lenunas upper_bound, lower_bound, and lower_bound2. A

subsidiarylemma calledadj _always_posisalsostated;itisused intheproof

of lower_bound, which inturnisused to establishlower_bound2. The proof

of adj _always_pos itselfrequiresan induction.The proof ofupper_bound,

on the other hand, isstraightforward.

The two lemmas nonfx and SIh_lemma complete the module clock-

props. The firststatesthatifa module isnonfaultythrough periodiq-1,

then itiscertainlynonfaultythrough periodi.This isestablishedasa con-

sequence ofAI and the definitionof a good clock(gc_ax).SIh_lemma states

the correspondingresultforSIA, and isproved directlyfrom nonfx.
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4.2.3.2 Lemlnas 1 to 6

These follow exactly the structure and naming described in Chapter 2. In-

deed, the description in that chapter was derived directly from the formal

specifications and proofs in these six modules.

Each lemma is stated and proved in a module with the appropriate

name. The result called Sublemma A is to be found as a subsidiary lemma
sublemma_A in the module lemma6.

4.2.3.3 Smnmations

The module summations isconcerned with establishingthe inductivestep

needed in the proofof Theorem_l. This resultisstatedas the lemrna called

culmination, and isproved from a seriesofintermediatelemmas named 11

through 15.

The lenuna ii connects the main term in the conclusionof Lenuna 6

with the averagingstep performed by the Algorithm (specifiedin Alg2).

Lemma 12 splitsthe summation implicitlyinvolvedin ii intotwo smaller

summations---oneoverthe faultyprocessorsand one overthe nonfaultyones.

Lemma 13 uses Lemrna 5 to obtaina bound on the sum ofthe errorsintro-

duced by the faultyprocessors;a subsidiarylemma calledbound__aulty is

used in the process.

Lernma 14 uses Lernma 4 to obtain a bound on the sum of the er-

rors introduced by the nonfaulty processors;a subsidiarylemma called

bound_nonfaulty is used in the process. The proof of thislemma uses

Theorem_l; we discussthisbelow (on Page 60).

Lemrna 15 simply combines lemmas 12. 13 and 14; the culmination

lemrna isproved by combining 15 with Lenuna 6.

4.2.3.4 3uggle

The module juggle proves the lemma rearrange_delta. This resultisa

straightforwardalgebraicmanipulation and isquite simpleto do by hand.

Itsproof in EHDM, however, israthertedious.The sourceof the difficulty

is the appearance of nonlinearmultiplication.As explained earlier,the

EHDM ground proverisincompletein the presenceof nonlineararithmetic.

Consequently,the module juggle containsseverallemmas that essentially

switchbetween the interpretedmultiplicationsymbol and the uninterpreted

mult functionin order to establishsome simplearithmeticidentities.The
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main proof is then accomplished in 6 steps using intermediate lemmas named

stepl through stepS.

4.2.3.5 Main

The module main provides the proof of Theorem_l. It uses the induction

scheme rood_induction from the module natinduction, with the main work

for the inductive step provided by the culmination lemma from module

summations. The rather grotesque arithmetic manipulation required to

complete the proof is provided by the lemma rearrange_delta from the

module juggle.

As noted above, the inductive proof of Theorem_l depends on the lemma

culmination from the module summations. The proof of culmination de-

pends on the lemrna bound_nonfaulty, whose own proof depends on The-

orem_l. Thus, there is a potential circularity in our proof of the theorem--

which is indeed detected by the EHDM proof chain checker. In fact, this

circularity is apparent, rather than real, as it occurs in the context of an

inductive proof, in which the theorem is used for i in the part of the proof

that extends it to i + 1. We are working towards constructing a proof

description that reflects this induction step more straightforwardly.

4.3 Statistics and Observations

The specification and verification described here was performed using EHDM

Version 4.1.4 running on a Sun workstation. EHDM is written in Common

Lisp; the current version for Sun workstations uses the Lucid 2.1 Common

Lisp implementation. The particular workstation used for this exercise was

a Sun 3/75 with 8 Mbytes of real memory and 56.5 Mbytes of swap space

on a lightly loaded Sun 3/160 file server with Fujitsu Eagle and Super-Eagle

disk drives and slow Xylogics controllers.

The specifications described here occupy 20 modules, comprising about

1,550 (nonblank) lines of EHDM. There are 166 proofs in the full speci-

fication and it takes about an hour to prove them all (a little under 18

seconds each, on average). It is hard to obtain accurate timing for individ-

ual proofs, since the occurrence of garbage collection introduces tremendous

variability--however, the worst case seems to be about a minute and a half.

The proofs in each module are summarized in the table below, which

reproduces part of the output from the EHDM "proveall" command.
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Module absolutes:

Module algorithm:
Module arithmetics:

Module clockprops:
Module clocks:

Module functionprops:

Module juggle:
Module lemmal:

Module lemma2:

Module lemma3:

Module lemma4:

Module lemma5:

Module lemma6:

Module main:

Module natinduction:

Module natprops:

Module sigmaprops:
Module summations:

Module sums:

Module time:

12 proofs

5 proofs

25 proofs

12 proofs

2 proofs

no proofs

14 proofs

1 proof

5 proofs

1 proof

6 proofs

3 proofs

4 proofs

3 proofs

5 proofs

7 proofs

28 proofs

9 proofs

19 proofs

6 proofs

Table 4.1: Proof Summaries for EHDM Modules
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Of course, the raw statistics of CPU time and numbers of proofs and

lines of specification text are among the most superficial measures one can

provide for a formal specification and verification. More interesting are the

questions of how much human effort was required, whether the benefits of the
exercise could have been obtained more cheaply by other techniques, and

whether the particular specification and verification techniques and tools

used were a help or a hindrance to the effort.

Unfortunately, we did not accurately record the human effort expended

on this exercise, so the following account relies on memory. Our first attempt

to perform the verification occupied a week, with both of us devoting about

three-quarters of our time to the effort. One of us broke the published proof

of Lamport and Melliar-Smith down into elementary steps, while the other

encoded these in EHDM and persuaded the theorem prover to accept the

proofs. At this point we had caught the typographical errors in Lemmas 2

and 4, and had proofs of Lemmas 1, 3, 4, and 5--but Lemma 2 was essentially
taken as an axiom. Approximate equality and inequalities were used freely

at this stage, although several of the formulas needed were mentally flagged

as suspicious.

Itwas when we attempted to establishLemma 2 as a consequence ofa

more primitiveaxiomatizationofthe propertiesofgood clocksthat we first

came to suspectthatthe publishedproofwas flawed.Once we had satisfied

ourselvesthat thiswas indeedso,we became more criticalofother aspects

of the publishedproof and checked allthe formulas (treatedas axioms at

thisstage)needed to support the use of approximations. This led us to

fullyrecognizethe flawedcharacterofthe proofsforLemma 4 and the main

Theorem.

Untilthispointwe had merely been attempting to mechanize the pub-

lishedproof,and had not reallyinternalizedthat proof,nor triedindepen-

dentlyto re-createit.As a resultofdiscoveringflawsinthe publishedproof,

our interestinthe verificationexerciseincreasedconsiderablyand we sought

not onlyto eliminatetheuse ofapproximations,but to simplifyand system-

atizethe proofaswell.The eliminationofapproximationswas accomplished

quite easily,and simplificationof the proofsof Lernrnas1, 3,4 and 5 was

achievedby more systematicuse of the arithmetic"rearrangement"identi-

ties(e.g., x = (u - v) + (v - w) - (u - [w + x]) used in Lemma 1). All this

work was done by hand, and only cast into EHDM and mechanically verified

towards the end.

Our restructuring and better understanding of the proofs reduced the

EHDM proof declarations for Lemmas 3 and 4 to between a half and a third
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of their previous lengths (elimination of the unnecessary II from Lemma

3 also contributed to the simplification of its proof). It was during this

stage of the mechanical verification, that we recognized the need for several

variants on Lemma 2, and for modifications to Assumption A2. This stage

of the effort (including the manual reformulation of the proof, as well as its

mechanization) consumed about three man-weeks.

Next we mechanized the proof of the main theorem, developing the mod-

ules lemma6, summations, and main. The formulas in module sums were

developed while doing the proofs in module summations and were used as

axioms at this stage--which consumed about two-man weeks.

Finally, we began to put the whole verification together and to prepare

this document. We developed the module sigmaprops and used it to prove

the previously unproved formulas in module sums. We discovered several mi-

nor flaws in the statements of those formulas while performing their proofs.

As we began to describe and document our specifications and proofs, we

filled in missing fragments (e.g., the module juggle, which took a man-day

to create), and continually revised the modules of the supporting theories

in order to simplify and systematize the axiomatic basis on which the whole

verification depends. This process proceeded in parallel with the preparation

of this report--both activities together consumed about two man-months.

We have described the chronology of this effort in some detail to illustrate

the following points:

• The mechanical verification was interleaved with pencil and paper

mathematics, and each activity stimulated the other. We expand on

this below, but the essential point is that formal specification and

verification assists rather than replaces human thought and scrutiny.

• A substantial portion of the time devoted to the mechanical verifica-

tion was expended on the supporting theories. AS formal verification

becomes more widely practiced, wewould expect libraries of such the-

ories to become established, so that later efforts can concentrate their

efforts on the problem of real interest. 11 If we neglect the effort spent

on the supporting theories, then the time required to perform the me-

chanical verification was of a similar order to that required to prepare

an adequately detailed "journaJ-level _ description and proof for human

consumption (i.e., the first 3 Chapters of this report).

IIEHDM provides linguistic and system support (in the form of module parameterization,
and a mechanism for managing module libraries, respectively) that are explicitly intended
for the support of reusable specifications.
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• "High-level" axioms are almost always wrong! The main benefit of

mechanical verification is the extreme rigor of the scrutiny to which

proofs are subjected. This benefit is subverted if axioms are intro-

duced casually. It was not until we attempted to build our proofs on

the most basic definition of a good clock, and seriously scrutinized

the lemmas required of the approximation operators, that we began

to discover the flaws in the published proof. Similarly, our first-cut

axiomatizations of the summation operators were flawed (typically at

boundary cases). Others who have undertaken formal specification

and verification exercises have privately reported similar experiences.

Our current verification depends on 47 axioms. Of these, 29 (6 in

module time, 6 in clocks and 17 in algorithm) define the concepts,
constraints, and algorithm of direct interest. The other 18 introduce

supporting concepts (e.g., summation) or properties of arithmetic be-

yond those built into the system (i.e., some of the properties of division
and multiplication). We spent a great deal of effort reducing the num-

ber and simplifying the content of these 18 supporting axioms and we

believe that they correspond to conventional interpretations of the con-

cepts concerned. Similarly, we believe that the 29 axioms underlying

our development of the Interactive Convergence Clock Synchroniza-

tion Algorithm are a simple and near-minimal foundation on which to

construct the definition and analysis of this algorithm.

It is always necessary to scrutinize axioms with great care, and we

believe that this can best be accomplished if the axioms are as simple

and as few as feasible. Our experience suggests that it can be very

time-consuming to pare away at the axiomatic foundation of a proof,
but that it is very worthwhile to do so.

It is difficult to answer the question whether the flaws we found in the

published analysis of the Interactive Convergence Clock Synchronization

Algorithm could have been discovered more easily by other methods. Once

the flaws are known, they are easy to describe and their presence in the

published proof is almost painfully obvious. Nonetheless, as far as we know,

these flaws were not discovered previously. The reputation of the journal

in which the paper was published, and of its authors, may have caused

some to assume that the proof "must be right" without further scrutiny,

and may have stilled any doubts in the minds of those who examined the

proof in sufficient detail to become concerned by some of its details. Some

who scrutinized the proof with great care decided that it would be easier to
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develop their own analysis than to persuade themselves of the veracity of

the original. 12

The root difficulty, we believe, lies in the fact that the proof in [11],

though neither mathematically deep nor intrinsically interesting, is aston-

ishingly intricate in its details. The analysis of many algorithms, computer
programs, and similar artifacts shares this characteristic--and renders the

standard `'mathematical demonstration" (which forms the basis for the con-

sensus model of classical mathematics) unreliable in these contexts.

The only reliable method for conducting such highly intricate analyses

is, we believe, a strictly formal one--one in which the "symbols do the work"

just as they do in arithmetic and other detailed calculations. Formal cal-

culations can introduce their own class of errors, but their formal character

means that they can be checked easily (if tediously) by others. Once the

decision to use a strict formalism has been taken, the additional cost of sub-

jecting the calculations to mechanical checking is not great--providing the

formal system and notation used by the machine does not differ too much

from that used by the hand and brain.

We found that EHDM served us very well from this perspective. Because

EHDM uses a standard logic (predicate calculus) with all the usual quan-

tifiers and connectives, transliterating from the notation of Lamport and

Melliar-Smith into the specification language of EHDM was straightforward.

Automation of the reverse translation (by the lATEX-printer ) enabled us to

do most of our work and thinking using compact and familiar notation and

thereby contributed greatly to our productivity. The higher-order capabili-

ties of EHDM allowed us to define the summation and averaging operators

very straightforwardly and also enabled us to tailor induction schemes ap-
propriately.

The arithmetic decision procedures of EHDM were of immense value in

the formal verification. We doubt that verification environments lacking

such decision procedures could accomplish the work described here without

unreasonable effort. Most of the really tedious theorem proving that we

undertook arose at the boundary of the arithmetic decision procedures (i.e.,

in dealing with division and non-linear multiplication). There is no perfect

solution to these difficulties (the theories concerned are undecidable), but a

better integration of decision procedures, incomplete heuristics, and man-

ual guidance is both possible and desirable--and will be pursued in further

developments of EHDM. We found the basic theorem-proving paradigm of

12Fred Schneider has told us that this was one of the motivations behind [15].
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EHDM straightforward and adequate for its purpose (though others, espe-

cially novices, might not agree). The correspondence between the informa-

tion in an EHDM "prove r declaration and that required for a journal-level

proof description is quite close. Naturally, increased automation of details

(for example, use of term rewriting to mechanize equational theories, and

automatic discovery of substitution instances) 13 would be welcome, but we

did not find theorem proving to be a bottleneck. (Discovering the correct

theorems to prove was the bottleneck.)

The module structure supported by the EHDM specification language

and its support environment simplified the task of managing and compre-

hending a formal development that eventually became quite large, and en-

abled us to keep track of undischarged proof obligations. The latter service

was particularly valuable, due to the way in which our formal specification

and verification were developed. Our approach was very much top-down: we

introduced lemmas whenever it was convenient to do so, and worried about

proving them later. We may have carried this approach a little too far in

the early stages (i.e., we did not examine the content of our lemmas with

sufficient care), but we did not know at that period whether our attempt to

mechanically verify the algorithm would be successful 14 and we were anxious

to explore the more obviously difficult parts first.

Overall, we did not find the formal specification and mechanical ver-

ification of the Interactive Convergence Clock Synchronization Algorithm

particularly demanding. The main difficulty was the sheer intricacy of the

argument, and we found the discipline of formal specification and verification

to be a help, rather than a hindrance, in finally mastering this complexity.

We found that EHDM served us reasonably well; we do not know whether

other specification and verification environments would have fared as well

or better. Understanding the practical benefits and limitations of different

approaches to formal specification and mechanical theorem proving is nec-

essary for sensible further development of verification environments. Con-

sequently, we invite the developers and users of other verification systems

to repeat the experiment described here. We suggest that the Interactive

Convergence Clock Synchronization Algorithm is a paradigmatic example

of a problem where formal verification can show its value and a verification

system can demonstrate its capabilities: it is a "real" rather than an artifi-

laThe ir_tantiator ofEHDM accomplishesboth ofthesetasksveryeffectivelyforproofs

inpurepredicatecalculus,but ismuch lessusefulwhen arithmeticisemployedextensively.

14The algorithm(orratheran implementationofit)had been assertedtobe _probably

beyond the abilityofany currentmechanicalverifier"[2,page 9].
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cialproblem, itsverificationislargeenough to be challengingwithout being

overwhelming, itrequiresa coupleoffairlyinterestingsupportingtheories,

and itsproofsare quiteintricateand varied.
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Conclusions

"The virtue of a logical proof is not that it compels belief but that

it suggests doubts. _ [10; page 48]

Verification does not prove programs "correct"; it merely establishes

consistency between one description of a system and another. The extent

to which such consistency can be equated with correctness depends on the

extent to which one of the descriptions accurately states all the properties

required of the system, on the extent to which the other accurately and

completely describes its actual behavior, and on the extent to which the

demonstration of consistency between these two descriptions is performed
without error.

In practice, all three of these limitations on "correctness" pose significant

challenges. The behavior of the actual system will depend on physical pro-

cesses that may not admit completely accurate descriptions, or that may be

subject to random effects, while the properties required of the system may

not be fully understood, let alone fully recorded in its specification. And

demonstration of consistency between the two descriptions of the system

will be subject to the errors attendant upon any human enterprise. For-

mal specification and verification attempts to control and delimit some of

the difficulties associated with verification; the use of formal specifications

can at least provide precise and unambiguous descriptions of the intended

behavior of the system--the questions remain whether these descriptions

correctly capture what is really required, or what the behavior of the sys-

tem really is, but at least the doubt about what the descriptions themselves

mean is removed. Formal verification attempts to put the demonstration

of consistency between two system descriptions onto a more reliable basis

68
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by making ita mathematical--indeed,calculational--activitythat can be

checked by a mechanical theorem prover. Of course,the validityof this

approach depends on the extentto which the semanticsof the specification

language arecorrectlyimplemented by itssupport environment,and on the

correctnessof the mechanical theorem prover. These representsignificant

challenges,but they are atleastmore sharplyposed than the problems with

which we began.

Formal verificationisno more than a formalizationof one of the com-

ponents in the widely practicedsoftwarequalityassuranceprocesscalled

Verification and Validation (V&V). Validation (testing), the other compo-

nent to this process, is not made redundant or unnecessary by formalizing

the verification component. Indeed, formal verification can help clarify the

assumptions that should be validated by explicit testing.

The opening paragraphs of the introductory document to EHDM [1] make
our own attitude clear:

"Writing formal specifications and performing verifications that

really mean something is a serious engineering endeavor. Formal

specification and verification are often recommended for systems

that perform functions critical to human safety or national se-

curity, but it must be understood that formal analysis alone

cannot provide assurance that a system is fit for such a critical

function. Certifying a system as "safe" or "secure" is a respon-

sibility that calls for the highest technical experience, skill, and

judgment--and the consideration of multiple forms of evidence.

Other important forms of analysis and evidence that should be

considered for critical systems are systematic testing, quantita-

tive reliability measurement, software safety analysis, and risk

assessment. Also, it should be understood that the purpose of

formal verification is not to provide unequivocal evidence that

some aspects of a system design and implementation are "cor-

rect," but to help you the user convince yourself of that fact; the

verification system does not act as an oracle, but as an impla-

cable skeptic that insists on you explaining and justifying every

step of your reasoning--thereby helping you to reach a deeper

and more complete understanding of your system."

The opponents to formal verification [7, 9] ignore caveats such as those

expressed above (which are similar to those expressed by all serious pro-

ponents of formal verification) and perform a straw man attack in which
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verification is set up as an unequivocal demonstration of correctness, and in

which intelligent human participation is minimized in favor of an omniscient

mechanical verifier. For example, De Millo, Lipton and Perlis [7] claim that:

UThe scenario envisaged by the proponents of verification goes

something like this: the programmer inserts his 300-line in-

put/output package into the verifier. Several hours later, he

returns. There is his 20,000-line verification and the message
'VERIFIED'."

This is parody. In a paper published several years earlier [19], yon Henke

and Luckham indicated the true nature of the scenario envisioned by the

proponents of verification when they wrote:

"The goalofpracticalusefulnessdoes not imply thatthe verifi-

cationofa program must be made independentofcreativeeffort

on the part of the programmer.., such a requirementisutterly

unrealistic."

The thrustof De Millo,Lipton and Perlis'argument isthat formal veri-

ficationmoves responsibilityaway from the "socialprocess" that involves

human scrutiny,towards a mechanicalprocesswith littlehuman participa-

tion. In reality,a verificationsystem assiststhe human user to develop a

convincingargument forthe correctnessofhis program by actingasan im-

placablyskepticalcolleaguewho demands thatallassumptionsbe statedand

allclaimsjustified.The requirementto explicateand formalizewhat would

otherwisebe unexamined assumptionsisespeciallyvaluable.Shankar [16],

forexample, observes:

"The utilityofproof-checkersisinclarifyingproofsratherthan in

validatingassertions.The commonly heldview ofproof-checkers

isthat they do more ofthe latterthan the former.In fact,very

littleof the time spent with a proof-checkerisactuallyspent

proving theorems. Much of itgoes into findingcounterexam-

ples,correctingmistakes,and refiningarguments, definitions,or

statements oftheorems. A usefulautomatic proof-checkerplays

the roleofa devil'sadvocateforthispurpose."

This perspectiveon mechanicaltheorem proving isvery similarto that de-

veloped by Lakatos [10]forthe roleofproof (notjustmechanical theorem

proving)in mathematics. Crudely,thisview isthatsuccessfulcompletionis
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among the least interesting and useful outcomes of a proof attempt; the real

benefit comes from failed proof attempts, since these challenge us to revise

our hypotheses, sharpen our statements, and achieve a deeper understanding

of our problem.

Our own experience with the verification of the Interactive Convergence

Clock Synchronization Algorithm supports this view. Most of our time was

spent in trying to prove theorems and lemrnas that turned out to be false,

in coming to understand why they were false, and in revising their state-

ments, or those of supporting lemmas and assumptions. The difficulties we

encountered were consequences of genuine technical flaws in the previously

published analysis of the Algorithm [11], and we consider the main benefit
of this exercise to be the identification and correction of those flaws. The

corrections led us to eliminate the use of approximations, thereby allowing

precise statements of the constraints on the values of the parameters to the

Algorithm, and led us to modify one of the assumptions (A2) underlying

the Algorithm, thereby changing its external specification slightly. Our cor-

rections to the statements and proofs of some of the lemmas led us to a

more uniform method for doing those proofs. When reflected back into a

traditional mathematical presentation (given in Chapter 2), we consider the

result to be an analysis that is not only more precise, but simpler and easier

to follow than the original.

Thus, we believe that a significant benefit from our formal verification is

an improved informal argument for the correctness of the Interactive Con-

vergence Clock Synchronization Algorithm. We hope that anyone contem-

plating using the Algorithm will study our presentation and will convince

themselves of the correctness of the Algorithm and of the appropriateness of

the assumptions (and of the ability of their implementation to satisfy those

assumptions).

Our formal verification does not usurp the "social process" in which De

Millo, Lipton and Perlis place their faith, but should serve to shift its focus

from details to fundamentals. We note that the "social process" apparently
failed to discover the flaws that we have noted in the main theorem concern-

ing the Interactive Convergence Clock Synchronization Algorithm, and in

four of its five lemmas. This is not surprising: the standards of rigor and for-

mality in the normal "mathematical demonstration" are simply inadequate

to the intricacy and detail required for the analysis of many algorithms and

programs. Mechanically checked verification provides valuable supplemen-

tary scrutiny and evidence in these cases.
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The extent to which our verification provides a formal guarantee of the

correctness of the Interactive Convergence Clock Synchronization Algorithm

is compromised by the fact that the representation of the problem is some-

what abstracted from reality. The aspect of the representation of the clock

synchronization problem that causes us most concern is the basic definition

of a clock. Real clocks increment in discrete "ticks" whose magnitude may

be quite large compared with some of the other parameters in the system.

Using the rationals as the interpretation of clock time is therefore unreal-

istic, as is the requirement that a good clock should be a strict monotonic

function. Schneider [15] presents a model which treats these aspects more

realistically; formalizing this approach provides an interesting challenge for
the future.

A further challenge will be to formalize and verify an implementation of

the Interactive Convergence Clock Synchronization Algorithm--so far, we

have simply verified properties of the algorithm itself. Our current work is

addressing these challenges; we expect to report our results in early 1990.
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Appendix A

Cross-Reference Listing

This Appendix provides two cross-reference tables to assist in reading and

navigating the EHDM specifications that follow. The first provides the trans-
lations used between EHDM identifiers and the symbols used in the tradi-

tional mathematical presentation and in the lATEX-printed version of the

specifications. The second table provides a cross-reference listing to the
identifiers declared in the EHDM specification.

75



76 Appendix A. Cross-Reference Listing

Identifier

abs

adjusted

clock

Corr

D2bar

Delta

delta

delta0

Delta1

Delta2

eps
G alTLITI a

half

in-R_intervaI

in_SJnterval

mean

mult

PHI

PI

rho

rt

Sigma

sigma

sum

TO

T1

tl

T2

t2

TN

T_sup
T_ZERO

Translation

1.1[

c.,(.2)
C.(.2)

I

A

60

A(.I2)

r
*I
2

*1 e R{ .2)

.I e S(.2)
*2

*I x .2

¢

H

P

a(,1, *2, *3)
*2E;.1('3)

To
T1
tl

T=
t2
TN
T(*I)

T o

Table A.I: IATEX-PrinterTranslationsfor E HDM Identifiers
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Identifier Type of Declaration Module where Declared
A0

A1

A2

A2_aux

abs

absolutes

ass _ax

abs_ax0

abs_axl

abs_ax2

abs_ax2b

abs_ax2c

abs_ax3

abs_ax4

abs_ax5

abs_ax6

abs_ax7

abs_ax8

abs_div

abs_div2

abs_div2_proof

abs_mean

abs_mean_proof

abs_proof0

abs_proofl

abs_proof2

abs_proof2b

abs_proof2c

abs_proof3

abs_proof4

abs_proof5

abs_proof6

abs_proof7

abs_proof8
abs_sum

abs_sum_proof

abs_times

axiom

axiom

axiom

axiom

function

module

axiom

lemma

lemma

lemma

lemma

lemma

lemma

lemma

lemma

lemma

leiiiina

lemma

axiom

lel'nlTla

prove
leInIna

prove

prove

prove
prove

prove

prove

prove

prove

prove

prove

prove

prove
lemma

prove
axiom

algorithm
clocks

algorithm

algorithm

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

arithmetics

arithmetics

sums

sums

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

absolutes

sums

sums

absolutes

Table A.2: Cross-Referenceto EHDM Identifiers



78 Appendix A. Cross-Reference Listing

Identifier Type of Declaration Module where Declared

adjusted

adj_always_pos

adj_pos_proof

Algl

Alg2

Alg3

algorithm

alt_sb_step_proof

alt_sigma_bound_step
arithmetics

basis

basis

basis_proof

basis_proof
bounded

bounded_ax

bounded_lemma

bounded_proof
bounds

bounds_proof

bound_faulty

bound_faulty_proof

bound_nonfaulty

bound monfaulty_pro of

C0_a

CO_b

CO_c

C1

C2

C2and3

C2and3_proof

C3

C4

C5

C6

function

lemma

prove
axiom

axiom

axiom

module

prove
lemma

module

lemma

lemma

prove
prove
function

axiom

lemma

prove
lemma

prove
lemma

prove
lemma

prove
axiom

axiom

axiom

axiom

axiom

lemma

prove
axiom

axiom

axiom

axiom

clocks

clockprops

clockprops

algorithm

algorithm

algorithm

algorithm

sigmaprops

sigmaprops
arithmetics

clockprops
main

clockprops
main

sigmaprops

sigmaprops

sigmaprops

sigmaprops

clockprops

clockprops
summations

summations

summations

summations

algorithm

algorithm

algorithm
time

algorithm

algorithm

algorithm

algorithm

algorithm

algorithm

algorithm

Table A.3: Cross-Reference to EHDM Identifiers (Continued)
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Identifier Type of Declaration Module where Declared

cancellation

cancellation_rnult

cancellation_mult_proof

cancellation _proof
cancel_mult

cancel_mult_proof
clock

clockdef

clockprops
clocks

clocktime

clock_proof

clock_prop
Corr

Cross

culmination

culm_proof

D2bar

D2bar_prop

D2bar_prop_proof
Delta

delta

delta0

Deltal

Delta2
diff

diffl

diffl_proof
diff_ax

diff_diff

diff_diff_proof

diff_ineq

diff_ineq_proof

diff_plus

diff_plus_proof
diff_zero

diff_zero_proof

lemma

lemma

prove

prove
lemma

prove
function

axiom

module

module

type

prove
lemma

function

reference

lemma

prove
function

lemma

prove
const

const

const

function

function

function

lemma

prove
axiom

lemma

prove
lemma

prove
lemma

prove
lemma

prove

arithmetics

arithmetics

arithmetics

arithmetics

juggle

juggle
clocks

clocks

clockprops

clocks

time

algorithm

algorithm

clocks

of

summations

summations

algorithm

algorithm

algorithm

algorithm

algorithm

algorithm

algorithm

algorithm

natprops

natprops

natprops

natprops

natprops

natprops

natprops

natprops

natprops

natprops

natprops

natprops

Table A.4: Cross-Reference to EHDM Identifiers (Continued)
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Identifier Type of Declaration Module where Declared
diminish

diminish_proof
distrib4_iv

distrib4_div_proof

distrib6

distrib6_div

distrib6_div_proof

distrib6_mult

distrib6_mult_proof

distrib6_proof

div_distr

div_distr_proof

div_mon

div_mon2

div_rnon2_proof

div_mon_proof

div_mult

div_mult2

div_mult2_proof

div_mult_proof

div_prod

div_prod2

div_prod2_proof

div_prod_proof

div_times

div_times_proof

eps

extensionality

final

functionprops

gc_ax

gc_proof

gc_prop

goodclock

leITiina

prove
lernlTla

prove
lemma

lenuna

prove

lemma

prove

prove
lemina

prove
lemma

]emrfla

prove

prove
lemma

lemma

prove

prove
lemma

lemma

prove

prove
lemma

prove
const

axiom

prove

module

axiom

prove
]elTl/na

function

clocks

clocks

juggle

juggle

juggle

juggle

juggle

juggle

juggle

juggle
arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

algorithm

functionprops

juggle

functionprops
clocks

clockprops

clockprops
clocks

Table A.5: Cross-Referenceto EHDM Identifiers(Continued)
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Identifier Type of Declaration Module where Declared

half

halt2

half2_proof
half3

half3_proof
half_ax

i2R

i2R_proof
Identifier

induction

inductionl

inductionl_proof
induction2

induction_m

induction_proof

inductive_step

ind_proof

ind_proof

ind_step
inRS

inRS_proof
in_R_interval

in_S_interval

in_SJemma

in_S_proof

juggle
ll

ll_proof
12

12_proof
13

13_proof
14

M_proof
15

15_proof

function

lemma

prove
lemma

prove
axiom

lemma

prove

Type
lemma

lemma

prove
axiom

axiom

prove
lemma

prove

prove
lemma

lemma

prove
function

function

lemma

prove
module

lemma

prove
lelTllTla

prove
lemma

prove
lemma

prove
lemma

prove

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

clockprops

clockprops
Module

natinduction

natinduction

natinduction

natinduction

natinduction

natinduction

clockprops

clockprops
main

main

time

time

time

time

time

time

juggle
summations

summations

summations

summations

summations

summations

summations

summations

summations

summations

Table A.6: Cross-Reference to EHDM Identifiers (Continued)
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Identifier Type of Declaration Module where Declared

lemmal

lemmaldef

lemmal_proof
lemma2

lemma2a

lemma2a_proof
lemma2b

lemma2b_proof
lemma2c

lemma2c_proof
lemma2d

lemma2def

lemma2d_proof
lemma2x

lemma2x_proof

lemma2_proof
lemma3

lemma3def

lemma3_proof
lemma4

lemma4def

lemma4_proof
lemma5

lemmaSdef

lemma5proof
lemma6

lemma6def

lemma6_proof
lower_bound

lower_bound2

lower_bound2_proof

lower_bound_proof

m

main

module

lemma

prove
module

lemma

prove
lemma

prove
lemma

prove
lemma

lemma

prove
lem_rl]a

prove

prove
module

lemma

prove
module

lemma

prove
module

lemma

prove
module

lemma

prove
lemma

lemma

prove

prove
const

module

lemmal

lemmal

lemmal

lemma2

lemma2

lemma2

lemma2

lemma2

lemma2

lemma2

lemma2

lemma2

lemma2

lemma4

lemma4

lemma2

lemma3

lemma3

lemma3

lemma4

lemma4

lemma4

lemma5

lemma5

lemma5

lemma6

lemma6

lemma6

clockprops

clockprops

clockprops

clockprops

algorithm
main

Table A.7: Cross-Reference to EHDM Identifiers (Continued)
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Identifier Type of Declaration Module where Declared

mean

mean_ax

mean_bound

mean_bound_proof

mean_const

mean_const_proof
mean_diff

mean_diff_proof
mean_]emma

mean_lemma_proof
mean_mult

mean_mult_proof

mean_sum

mean_sum_proof

mod_induction

mod_inductionl

mod_inductionl_proof
mod_induction_m

rood_induction_proof

mod_m_proof

mod_sigma_mult

mod_sigma_mult_proof

monoproof

monotonicity
mult

multO

multO_proof

multl

mult2

mult2_proof
mult3

mult3_proof

mult4

mult4_proof

function

axiom

lemma

prove
lemma

prove
lemma

prove
lemma

prove
lemma

prove
lemma

prove
lemma

lemma

prove
lemma

prove

prove
lemma

prove

prove
theorem

function

lemma

prove
axiom

lemma

prove
lemma

prove
lemma

prove

sums

sums

sums

sums

sums

sums

suins

sums

sums

sums

sums

sums

sulns

sums

natinduction

natinduction

natinduction

natinduction

natinduction

natinduction

sigmaprops

sigmaprops
clocks

clocks

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

Table A.8: Cross-Reference to EHDM Identifiers (Continued)
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Identifier Type of Declaration
mult_ax

mult_div

mult_div_proof

multJneql

mult_ineql_proof

multJneq2

multJneq2_proof

mult_mon

mult_mon2

mult_mon2_proof

n

natinduction

natpos

natprops

nonfaulty
nonfx

nonfx_proof

period

posR

posS

pos_abs

pos_abs_proof

pred

)red_ax

pred_diff

pred_diff_proof

pred_lernma

pred_lemma_proof

proc

quotient_ax

quotient_axl

quotient_ax2

quotient_mult

quotient_mult_proof

axiom

lemma

prove

lemma

prove
lemma

prove
axiom

lemma

prove
const

module

axiom

module

function

lemma

prove

type
axiom

axiom

lemma

prove
function

axiom

lemma

prove
lemma

prove

type
axiom

axiom

axiom

lemma

prove

Module where Declared

arithmetics

arithmetics

arithmetics

juggle

juggle

juggle

juggle

arithmetics

arithmetics

arithmetics

algorithm
natinduction

natprops

natprops
clocks

clockprops

clockprops
time

time

time

absolutes

absolutes

natprops

natprops

natprops

natprops

natprops

natprops
clocks

arithmetics

arithmetics

arithmetics

arithmetics

arithmetics

Table A.9: Cross-Reference to EHDM Identifiers (Continued)
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Identifier

R

Rdef

realtime

rearrange

rearrangel

rearrangel

rearrangel

rearrangel_proof

rearrangel_proof

rearrangel_proof

rearrange2

rearrange2

rearrange2

rearrange2_proof

rearrange2_proof

rearrange2_proof

rearrange3

rearrange3_proof

rearrange_alt

rearrange_alt_proof

rearrange_delta

rearrange_proof

rearrange_sub

rearrange_sub_proof

rearrange_sum

rearrange_sum_proof

reciprocal

reciprocal_proof

revsigma

revsigma_ax
rho

rho_pos
rho_small

rt

S

Type ofDeclaration Module where Declared

const

axiom

type
lemma

]emina

lemma

lemma

prove

prove

prove
lemma

lemma

lemma

prove

prove

prove
lemma

prove
leIIlma

prove
lemma

prove
]emma

prove
leITlma

prove
lemma

prove
function

axiom

const

axiom

axiom

function

const

time

time

time

arithmetics

arithmetics

lemma4

lemma5

arithmetics

lemma4

lemma5

arithmetics

lemma4

lemma5

arithmetics

lemma4

lemma5

lemma4

lemma4

arithmetics

arithmetics

juggle
arithmetics

sums

sums

sums

sums

juggle

juggle

sigmaprops

sigmaprops
clocks

clocks

clocks

clocks

time

Table A.10: Cross-Reference to EHDM Identifiers (Continued)
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Identifier Type of Declaration Module where Declared

S1A

S1Adef

S1A_lemma

S1A_lemma_proof

slb_proof
S1C

S1Cdef

S1Clemma

S1C_lemma_proof

sis_proof
$2

S2_ax

S2_pqr

S2_pqr_proof

sa_basis_proof

sa_proof

sa_step_proof
sb

sb_basis_proof

sb_proof

sb_step_proof

sc_basis_proof

sc_proof

sc_step_proof
Sdef

Sigma

sigma

sigmal

sigmal_basis

sigmal_proof

sigmal_step

sigmaprops

sigma_abs

sigma_abs_basis

sigma_abs_step

sigma_ax

function

a_fiom

lelnn2a

prove

prove

function

axiom

lemma

prove

prove
function

axiom

lemma

prove

prove

prove

prove
lemma

prove

prove

prove

prove

prove

prove
axiom

const

function

lemma

lemma

prove
lemma

module

lemma

lemma

lemma

axiom

algorithm

algorithm

clockprops

clockprops

sigmaprops

algorithm

algorithm

algorithm

algorithm

sigmaprops

algorithm

algorithm
summations

summations

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops
time

algorithm

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

Table A.11: Cross-Reference to EHDM Identifiers (Continued)
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Identifier Type ofDeclaration Module where Declared

sigma_bound

sigma_bound2

sigma_bound2_proof

sigma_bound_basis

sigma_bound_proof

sigma_bound_step

sigmaconst

sigma_const_basis

sigma_const_step

sigma_mult

sigma_mult_basis

sigma_mult_step

sigma_rev

sigma_rev_basis

sigma_rev_proof

sigma_rev_step

sigma_sum

sigma_sum_basis

sigma_sum_step

SinR

SinR_proof
skew

small_shift

small_shift.proof

sm_basis_proof

sm_proof

sm_step_proof

split_basis_proof

split_mean

split_mean_proof

split_proof

split_sigma

split_sigma_basis

split_sigma_step

split_step_proof

split_sum

split_sum_proof

lemn2a

lemma

prove
leIIIITla

prove
lemlna

lemlna

leHiIna

leln_rl2a

lemma
lenllTla

lelTiIna

len'IIna

lemma

prove
lemma

]er/inla

len-iHl&

|elnn'la

|eInlna

prove
function

|enlma

prove

prove
prove

prove

prove
lemma

prove

prove

lemma

lemma

lemma

prove
lemrna

prove

sigmaprops

sums

sums

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops
time

time

algorithm

clockprops

clockprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sums

sulns

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sums

sums

Table A.12: Cross-Referenceto EHDM Identifiers(Continued)
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Identifier

srb_proof

srp_proof

ss_basis_proof

ss_proof

ss_step_proof

stepl

stepl_proof

step2

step2_proof

step3

step3_proof

step4

step4_proof

step5

step5_proof

subl_proof

sub2_proof
sublemmal

sublemmal

sublemmal_proof

sublemma2

sublemma_A

sub_A_proof

sum

summations

sums

sum_ax

sum_bound

sum_bound0

sum_bound0_proof
sum_boundl

sum_boundl_proof
sum_bound2

sum_bound2_proof
sum_bound_mod

sum _bound_rood_proof

sum_bound_proof

Type of Declaration

prove

prove

prove

prove

prove
lemma

prove
lemma

prove
lemma

prove
lemma

prove
lemma

prove

prove

prove
lemma

lemma

prove
lemma

lemma

prove
function

module

module

axiom

lemma

lemma

prove
lemma

prove
lemma

prove
lemma

prove

prove

Module where Declared

sigmaprops

sigmaprops

sigmaprops

sigmaprops

sigmaprops

juggle

juggle

juggle

juggle

juggle

juggle

juggle

juggle

juggle

juggle
lemma6

lemma6

lemma4

lemma6

lemma4

lemma6

lemma6

lemma6

sums

summations

sums

sums

sums

sums

sums

sums

sums

sums

sums

sums

sums

sums

Table A.13: Cross-Reference to EHDM Identifiers (Continued)
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Identifier Type of Declaration Module where Declared
sum_mult

sum_mult_proof
Theorem_l

Theorem_l_proof
Theorem_2

Theorem_2_proof
time

times_half

times_half_proof

Ti_in_R

Ti_in_S

Ti_in_S_proof

lemlna

prove
theorem

prove
theorem

prove
module

lemma

prove
lemIlla

lemma

prove

Ti_proof
T_next

T_next_proof

T_sup

T_sup_ax
T_ZERO

upper_bound

upper_bound_proof
zero_correction

prove
lemma

prove
function

axiom

const

lemma

prove
axiom

sums

sums

algorithm
main

algorithm

algorithm
time

arithmetics

arithmetics

time

time

time

time

time

time

time

time

time

c]ockprops
clockprops
clocks

Table A.14: Cross-Reference to EHDM Identifiers (concluded)



Appendix B

 EX-printed Specification

Listings

The following specification listings were formatted and converted to math-

ematical notation automatically using the EHDM IbTEX-printer. The raw
EHDM text is in Appendix D. All the proofs in these listings have been

checked by the EHDM theorem prover using the EHDM variable settings

prmode = checking and prlambdafree = everywhere.

9O
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Module Page
Absolutes 92

Algorithm 120
Arithmetics 94

Clockprops 123
Clocks 118

Functionprops 100

Juggle 139
Lemmal 126

Lemma2 127

Lemma3 129

Lemma4 130

Lemma5 132

Lemma6 133

Main 144

Natinduction 101

Natprops 98

Sigmaprops 108
Summations 135
Sums 103

Time 116

Table B.I: Page References to EttDM Specification Modules



92 Appendix B. I_TEX-printed Specification Listings

absolutes:Module

Exporting I* 11

Theory

a,b,w, x,y,z: VAR number

i* 11:function[number--*number]

abs_ax:Axlomlal= if a<Othen -aelse aendif

abs_times: Axiom Ia • b] = ial * ibi

abs_div: Axiom b _ 0 _ ta/b I = ial/ibl

abs_axO: Lemma 0 = 60[

abs_axl: Lemma 0 _< ix I

abs_x2: Le_ma ix + Yl< Ixl+ i91

abs_x2b: T.e_a ix + 9 + zi < Ixl+ 191+ izl

abs_ax2c: Lemrna tw + x + Y + zl --- awl + Ix] + lYl + Izl

abs_ax3: Lemma I- x[= ix[

abs_ax4: Lemma

abs_ax5: Lemma

abs_ax6: Lemma

abs_ax7: Lemma

abs_ax8: Lemma

pos_abs: Lemma

Proof

Ix- 91= 19- xl

0<_ x^x<_ z^O< 9^9<_ z _ Ix-yl < z

Ixl ___9_-y_< x^x_< 9

Ixl= ilxll

Ix- yl -<Ixl+ lyl

o<x_ixl=x

abs_proofO: :Prove abs_axO from abs_ax {a *- O}

abs_proofl: Prove abs_axl from abs_ax {a *-- x}

abs_proof2: Prove abs_ax2 from

abs_ax {a ,--- x + y}, abs_ax {a _ x}, abs_ax {a ,--- y}

abs_proof2b: Prove abs_ax2b from

_bs_x2 {y _ 9 + _), _bs_x2 {x _ y, y _- _)
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abs_proof2c:Prove abs_ax2cfrom

abs_ax2 (x *- w, y _ x + y + z_, abs_ax2b

abs_proof3:Prove abs_axSfrom abs_ax(a *--z), abs_ax {a _ -z)

abs_proof4:Prove abs_ax4from

abs_ax {a _ x - y), abs_ax{a _ y - x)

abs_proofS:Prove absosx5from abs_ax(a +--x - y)

abs_proof6:Prove abs_ax6from abs_ax{a +- x)

abs_proofT:Prove abs_ax7from abs_axl,abs_ax(a +- Ix[}

abs_proofS:Prove abs_ax8from

abs_ax (a ,--x - y},abs_ax (a *- x), abs_ax{a ,--y)

pos_abs_proof:Prove pos_absfrom abs_ax (a _ x)

End absolutes
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arithmetics: Module

Using absolutes

Exporting ,1 x ,2, _ with absolutes

Theory

a, b, c, u, v, w, z, y, z: YAR number

*1 x *2: function[number, number --* number]

_: function[number --* number]

(, ,)

quotient__x:Axiom y_ 0 D=/y = • *(l/y)

quotient_axl: Axlom z _ 0 _ x/z = 1

quotient_ax2: Axiom z > 0 D 1/z > 0

(, ,)

div_times:T.emmay_ 0 D (z/V)*z = (_, z)/y

div_distr:Lemma z # 0 Dx/z + y/_ = (_+ y)/_

abs_di_2:Le_n_ y > 0 D I_/Yl= I=l/_

div_mon: Lennna _ < y A z > 0 Dz/z < y/z

div_mon2: Lemma x <_ y ^ z > 0 D z/z <_ y/z

div_prod: Lemma y > 0 ^ a < z * y D a/y < x

div_prod2: Lennna y > 0 ^ a <_ x * y D a/y < x

cancellation: Lemma y _ 0 D (y * x)/y -- x

(, ,)

mult_ax: Axiom x x y = x * y

multl: Axiomx>_0Ay_>0_x×y>0

mult_mon: Axiomx<yAz>0_x×z<y×z

(, ,)

mult_mon2: I, emmax_yAz>0_x×z_yxz
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cancellation_mult:Lemma y # 0 D x x y/y = z

multO: Lennna y = 0 D z x y = 0

mult_div: Lemma y _ 0 D z/y x l� = x

(, ,)

z x/2half_ax: Axiom _ =

(, ,)

times_half: Lemma 2 * _ = x

half2: Lemma _ + } -- x

half3: Lemma2,_×y=xxy

mult2: Lemma 2 • (x x y) - (2 • x) x I/

mult3: Lemmaxxy+z=xxy+zxz

mult4: Lemma0<zAy_<zDzXy<zxz

rearrange: Lennna

I_- yl -<I, - (,_+ _)1+ ly- (_+ z)l+ I_+ ,.'- (_+ _.)1
rearrange_all:"r.e',-,",_aI_- Yl-<Ix- (,.,+ ")1+ I'.'- wl+ I_- (" + _)1

Proof

div_times_proof: Prove div_times from

quotient_ax, quotient_ax {x _ x * z}

div_distr_proof: Prove div_distr from

quotient_ax {y *-- z},

quotient_ax {x 4- !/, y _ z},

quotient_ax {x 4-- x + l/, y _-- z}

abs_div2_proof: Prove abs_div2 from

abs_div {a +- z, b +- l/}, pos_abs {x *- l/}

quotient_mult: Lemma y -_ 0 _ z/!/= z x 1/!I

quotient_muir_proof: Prove quotient_mult from

quotient_ax, mult_ax {y +- l/y}

95
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div_mon_proof: Prove div_mon from

mult_mon {z _-- 1/z},

quotient_mult {y _-- z},

quotient_mult {x _ y, y _---z},

quotient_ax2

div_mon2_proof: Prove div_mon2 from div_mon

div_mult: Lemmay>OAa<xxyDa/y<x

div_mult_proof: Prove div_mult from

div_mon {z _-- y, x _-- a, y _-- x × y}, cancellation_mult

div_mult2: Lemma y > 0 A a <_ x × y D a/y <_ x

div_mult2_proof: Prove div_mult2 from

div_mon {z _-- y, x 4- a, y _-- x x y}, cancellation_mult

div_prod_proof: Prove div_prod from div_mult, mult_ax

div_prod2_proof: Prove div_prod2 from div_mult2, mult_ax

cancellation_proof: Prove cancellation from

div_times {x _ y, z _ x}, quotient_axl {x _ y}

mult_mon2_proof: Prove mult_mon2 from mult_rnon

cancellation_mult_proof: Prove cancellation_mult from

cancellation, mult_ax

multO_proof: Prove multO from mult_ax {y _-- O}

mult.div_proof: Prove mult_div from

mult_ax {x _ x/y}, air_times {z 4- y}, cancellation

times_half_proof: Prove times_half from

half_ax, div_times {y _ 2, z ,--- 2}, cancellation {y 4-- 2}

half2_proof: Prove half2 from times_half

half3_proof: Prove half3 from mult2 {x _ _}, times_half

mult2_proof: Prove mult2 from mult_ax, mult_ax {x *-- 2 * x}

mult3_proof: Prove mult3 from

mult_ax, mult_ax {y _- z}, mult_ax {y *- y ÷ z}

mult4_proof: Prove mult4 from mult3 {z _-- z - y}, multl {y 4-- z - y}
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rearrangel: Lemma

_-y= (_- (_+ _))+ (_+ _-y)+ (_+,,, - (_ + _))

rearrangel_proof: Prove rearrangel

rearrange2: Lemma

ICz - (u + v)) + (_ + z - y) + C_ + ,., - (w + z))l

-< I_ - (_ + '.')1+ ly - (_ + _')1+ I'_+ _ - (_ ÷ _)1

rearrange2_proof: Prove rearrange2 from

abs_ax2b {x 4- x - Cu -t- v), y 4-- u + v - Cw ÷ z), z _-- w + z - y},

abs_ax3 {x +- w + z - y}

rearrange_proof: Prove rearrange from rearrangel, rearrange2

rearrange_a|t_proof: Prove rearrange_alt from rearrange {z _- v}

End arithmetics
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natprops: Module

Exporting pred, diff

Theory

i, m, n: YAR nat

pred: function[nat --_ nat]

natpos: Axiom n __0

pred_ax: Axiom n _ 0 D pred(n) = n - 1

diff: function[nat, nat _ nat]

diff_ax: Axiom n > rn D diff(n, m) = n - rn

pred_lemma: Lemma pred(n + 1) = n

diff_zero: Lemma n > rn _ diff(n, rn) > 0

pred_diff: Lemma n > rn _ pred(diff(n, rn)) diff(n, rn+ 1)

diffl: Lemma n > m D diff(n + 1, rn + 1) = diff(n, rn)

diff_diff: Lemma

n > m ^ n > i A rn _>i 3 diff(diff(n, i), diff(m, i)) = diff(n, rn)

diff_plus: Lemma n > rn 3 rn + diff(n, rn) = n

diff_ineq: Lemma n _> rn A n _> i A rn > i 3 diff(n, i) > diff(rn, i)

Proof

predlemma_proof: Prove predlemma from pred_ax {n +- n + 1}, natpos

diff_zero_proof: Prove diff_zero from diff_ax

pred_diff_proof: Prove pred_diff from

pred_ax {n *-- diff(n, rn)}, diff_ax, diff_ax {m _- rn + 1}

diffl_proof: Prove diffl from

diff_ax, diff_ax {n +- n + 1, m *- rn + 1}

diff_diff_proof: Prove diff_diff from

diff_ax,

diff_ax {m *-- i),

diff_ax {n _- rn, m _-- i},

diff_ax {n *- diff(n,i), m *- diff(rn,i)}
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difLplus_proof: Prove dill_plus from ditLax

diff_ineq_proof: Prove diff_ineq from

diff_ax {m _ i}, difLax {n 4- rn, m _ i}

End natprops
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functionprops: Module

Theory

F, G: VAR function[nat -, number]
z: YAR nat

extensionality: Axiom (Vx: F(z) "- a(z)) _ F = a

End functionprops
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natinduction:Module

Using natprops

Theory

i,i0,il,i2,i3,j,m, n: VAR nat

prop,A, B: VAR function[nat--_bool]

prop2: VAR function[nat,nat --_bool]

induction_m:Axiom

(prop(m) A (Vi:i > m^ prop(i)D prop(/+ I)))

D (Vn: n > m D prop(n))

induction2:Axiom

(V i0:prop2(i0,0))

A (Vj: (Vil:prop2(il,j))D (Vi2:prop2(i2,j+ 1)))

D (Vi3, n: prop2(i3,n))

mod_induction_rn:Lemma

(vj:j> m^ A(j+ 1)_ A(j))
A ((A(m) D B(m)) A (Vi:i > m^ A(i + 1)^ BCi) D B(i + 1)))

(Vn: n_>m^ ACn)D BCn))

induction:Lemma

(prop(0)A (Vi:prop(i)D prop(i+ I)))D (Vn: prop(n))

rood_induction:Lemma

(Vj: A(j+ 1) D A(j))

A ((A(0) D B(0)) A (V i: A(i + 1) ^ B(i) D B(i + 1)))

(Vn: ACn)DBCn))

inductionl:Lemma

(prop(l) ^ (Vi:i _> 1A prop(i) D prop(i+ 1)))

D (Vn: n _> 1 D prop(n))
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mod_inductionl: Lemma

(vj:j> I^A(j÷I)_A(j))
^C(A(1)_ B(1))̂(vi:i> I^A(i+ I)̂ B(0D B(i+ I)))

D(Vn:n > 1^ A(.) DB(.))

Proof

rnod_m_proof:Prove mod_induction_m {i_ i@pl, j _ i) from

induction_m {prop *--(A i_ bool: A(i) _ B(i)))

induction_proof:Prove induction{i_ i@pl) from

induction_m {rn *- 0},natpos

rood_induction_proof:Prove mod_induction {i_ i@pl, j _ j@pl} from

mod_induction_m {m .--0),natpos

inductionl_proof:Prove inductionl{i_ i@pl) from

induction_m {rn 4--1)

rnod_inductionl_proof:Prove mod_inductionl {i,---i@pl, j *- j@pl)

from mod_induction_m {m *- 1}

End natinduction
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sums: Module

Using arithmetics, natprops, sigmaprops

*2 . *2 ,Exporting E.I( 3),_.1(3)

Theory

i,j, k, n, pp, qq, rr: VAR nat

z, y, z: VAR number

F, G: VAR function[nat --* number]

_'2[.3 _" function[nat, nat, function[nat --* number] --, number],1_, )"
.2

(]).1(.3): function[nat, nat, function[nat --, number]--, number]

sum_ax: Axiom

_-_ F = if i _< j + 1 then _(i, diff(j + 1,i),F) else 0 end if

mean_ax: Axiom

(_F= if i_<jthen _{F/(j+l-i) else 0endif

mean_]emma: Lemma

_)_ F= if i < j

then a(i, diff(j + 1,i),F)/(j+ 1-i)
else 0

end if

split_sum: Lemma

i <j+ 1Ai < k+ 1Ak<_j_ Y_{F=___F + _+IF

split_mean:Len_ana

i<_jAi<_k+lAk<_j

e.'-_ = (E_ F + E{+, F)I(j-_+ _)

sum_bound: Lemma

i <_ j+ 1^ (Vpp: i < ppApp <__j D F(pp) < z)

mean_bound: Lemma

i _<j^ (Vpp: i_< pp^pp _<j D F(pp) < z) D (_F < z

mean_const: Lemma i _<j D z = (_( A qq-, number : z)

mean_mult: Lemma (_ F • z - (_ ( A qq-, number: F(qq) * z)
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mean_sum: Lemma

_ F + e_ G = e_( Aqq_ number: F(qq) + G(qq))

mean_diff: Lemma

e_ F- e_ C = e_( A qq--*number: F(qq)- G(qq))

abs_mean: Lemma [e_ FI < e_(Aqq--* number: IF(qq)l)

rearrange_sum:Lem_ma

i <_j D x-{-e_F-(y+e_a)

--_( A qq-, number: x % F(qq) - (y% G(qq)))

Proof

mean_lemma_proof: Prove meanJemma from mean_ax, sum_ax

(, ,)

split_sum_proof:Prove split_sumfrom

sum_ax,

sum_ax{j *- k},
sum_ax {i *- k + 1},

split_sigma {n _-- diff(j + 1,i), m *-- diff(k + 1,i), i _-- i},

diff_diff {n _- j + 1, m _ k + !},
diff_plus {n _- k + 1, m _ i},

diffAneq {n _-- j + 1, m _-- k + 1}

split_mean_proof: Prove split_mean from split_sum, mean_ax

(, ,)

sigma_bound2: Lemma

n>0A(Vk:i<kAk<i+pred(n) DF(k)<x)

tr(i,n,F) < x x n

sigma_bound2_proof: Prove sigma_bound2 {k *-- k@pl} from

sigma_bound, mult_ax {y *-- n}

sum_bound_rood: Lemma

i < 3"A (Vpp: i < pp ^pp < 3"D F(pp) < x)

DE_ F < x × (j + 1-i)
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sum_bound_rood_proof:Prove sum_bound_rood {pp _ k@p2} from

sum_ax

sigma_bound2 {n ,---diff(j+ I,i),i_ i},

pred_diff{n _ j + 1,m _ i},

diff.ax {n 4-- 3"+ 1, m _ i},

diff.ax {n ,-- j + 1, m ,- i + 1}

sum_bound1: Len_na

i_<jA(Vpp:i_<ppApp__jDF(pp)<x)

D E_ F < x*(j-i+ 1)

sum_boundl_proof: Prove sum_boundl {pp _- pp@pl} from

sum_bound_rood, mult_ax {y _--j + 1 - i}

sum_boundO: Lemma

i=j+ 1A (Vpp:i < ppApp < j D F(pp) < x)

DE,'.F < x × (j + 1- 0

sum_boundO_proof: Prove sum_boundO from

sum_ax {i +- j + 1},

diff_ax {n +- j + 1, m +-- j + 1},

sigma_ax {i *- j + 1, n _- 0},

multO {y *-- j + 1 - i}

sum_bound2: Lemma

i < j + 1A (Vpp: i < pp A pp < j D F(pp) < x)

E,'.F < • x (y+ 1-0

sum_bound2_proof: Prove sum_bound2 {pp *- pp@pl } from

sum_bound_rood, sum_boundO

sum_bound_proof: Prove sum_bound {pp 4--pp_pl} from

sum_bound2, mult_ax {y _--j + 1 - i}

(, ,)

mean_bound_proof: Prove mean_bound {pp _-- pp_pl} from

sum_boundl, mean_ax, div_prod {a _- _ii F, y *-- j- i+ 1}
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* ,)

mean_const_proof: Prove mean_const from

mean_lemma {F *-- ( A qq--* number: z)},

sigma_const {n *-- ditf(j + 1, i), i 4- i},

diff_ax {n _ j + 1, m _ i},

cancellation {y _-- j + 1 - i}

(* *)

sum_mult: Lemma _i F • x = _i( 2 qq"* number: F(qq) * x)

sum_mult_proof: Prove sum_mult from

sum_ax,

sum_ax {F *- ( 2 qq--* number: F(qq) * x)),

mod_sigma_mult {i *-- i, n +- diff(j + 1,i)}

mean_mult_proof: Prove mean_mult from

me an _ax,

mean_ax {F *-- ( _ qq--* number: F(qq) * x)},

sum_mult,

div_times {x ,-- _ F@p3, y _ j + 1 - i, z _ z}

(* *)

mean.sum_proof: Prove mean_sum from

mean_lemma {F _ (_qq--* number: F(qq)÷ G(qq))},

mean_lemma,

mean_lemma {F *--G},

sigma_sum {n _-- diff(j + 1,i), i 4- i},

div_distr {x _ a(i, diff(j + 1,i), F),

y _ a(i, diff(j + 1,i),G),

z _--j+l-i)

(* *)

mean_diff_proof: Prove mean_diff from

mean_mult {F *-- G, x _-- -1},

mean_sum(G number:G(qq)• -1))

* ,)
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abs_sum: Lemma [E_ F] _< E_(A qq--* number: [F(qq)])

abs_sum_proof: Prove abs_sum from

sum__tX)

sum_ax {F 4-- ( A qq-* number: [F(qq)])},

sigma_abs {n 4- diff(j + 1, i), i *- i},
abs _ax0

abs_mean_proof: Prove abs_mean from

me an _&x )

mean_ax {F 4--(Aqq---_number: [F(qq)[)},

abs_sum,

abs_div2{x _ _/F, y ¢---j % 1 - i},

div_mon2 {x _ IZ_ FI, Y * Z_ F@p2, z _ j ÷ 1 - i},

abs _ax0

(* *)

rearrange_sub:Lemma

i < j D z +(_F=(_CAqq_ number:::+ F(qq))

rearrange_sub_proof: Prove rearrange_sub from

mean_const, mean_sum {G +-- (A qq-, number :z)}

rearrange_sum_proof: Prove rearrange_sum from

rearrange_sub,

rearrange_sub {x *- I/, F _- G},

mean_diff{F _ (A pp---,number: x + F@c(pp)),

G _ (A pp--*number: tt+ G@c(pp))}

End sums
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sigmaprops: Module

Using arithmetics, natprops, functionprops, natinduction

Exporting #(.1, .2, .3)

Theory

i, il, i2,3", k, h VAR nat

F, G: VAR function[nat --* number]

n, rn, ram, nn, qq: VAR nat

x, y: VAR number

or(.1, *2, *3): function[nat, nat, function[nat _ number] --* number]

sigma_ax: Axiom

_(i,n,F)= ff n=O
then 0

else F(i + pred(n)) + a(i, pred(n),F)
end if

sigma_const: Lemma _r(i,n,(A qq--, number: x)) = n * x

sigma_rnult: Lemma

a(i,n,( Aqq---_ number : x, F(qq)))= x*a(i,n,F)

rood_sigma_muir: Lemma

_(i,n,( A qq--_ number: F(qq) * z)) --aCi, n,F)* x

sigma_sum: Lemma

a(i,n,F)+a(i,n,G)=_(i,n,(A qq---, number: F(qq) + G(qq)))

split_sigma: Lemma

n _> rn D a(i, n, F) = _r(i, rn, F) + _r(i + rn, diff(n, rn), F)

sigma_abs: Lemma Io'(i, n, F)] < a(i,n,(Aqq-, number: IF(qq)]))

sigma_bound: Lemma

n>0A(Vk:i_<kAk_<i+pred(n) DF(k)<x)

3 _r(i,n,F) < n * z



Sigmaprops 109

bounded: function[nat, nat, function[nat -_ number], number --* bool]

bounded_ax: _Axiom

n > 0 _ (bounded(i,n,F,x)

= (Vk: i < kA k _ i+pred(n) D F(k) < x))

revsigma: function[nat, nat, function[nat --* number]--* number]

revsigma_ax: Axiom

revsigma(i, n, F) = if n = 0
then 0

else F(i) + revsigma(i + 1,pred(n),F)
end if

sigma_rev: Lem_ma a(i, n, F) = revsigma(i, n, F)

Proof

sigma_const_basis: Lena a(i,0, (Aqq-* number: x)) = 0

sc_basis_proof: Prove sigma_const_basis from

sigma_ax {n +- 0, F _-- ( A qq-* number: x)}

sigma_const_step: Lemma

a(i,n, ( Aqq-* number: x)) = n * x

D a(i,n+ 1, (Aqq-* number : x)) = (n ÷ 1),x

sc_step_proof: Prove sigma_const_step from

sigma_ax {n 4-- n + 1, F *-- ( A qq--* number: x) }, predlemma

sc_proof: Prove sigma_const from

induction (prop *-- (Ann--* bool:

cr(i, nn, ( _ qq---_ number: x)) ----nn * x)},

sigma_const_basis,

sigma_const_step {n _-- i@pl}

(* *)

sigma_mult_basis: Lemma

a(i,0, ( Aqq-* number: x* F(qq))) = x*o(i,O,F)
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sm_basis_proof: Prove sigma_mult_basis from

sigma_ax {n _--0},

sigma_ax {n *- 0, F *- ( A qq--, number: z * F(qq))}

sigma_mult_step: Lemma

a(i,n,(A qq--, number:x* F(qq))) = z*a(i,n,F)

D a(i, n + 1, ( A qq-, number: x • F(qq))) : x * _(i, n + 1, F)

sm_step_proof: Prove sigma_mult_step from

sigma_ax {n +- n + 1, F +-- ( Aqq-, number:x, F(qq))},

sigma_ax {n _ n + 1},

predJemma

sin_proof: Prove sigma_mult from

induction {prop _- (A nn_ bool :

o(i, nn, ( A qq--, number :z* F(qq))) = z* _(i, nn, F))},
sigma_mult_basis,

sigma_mult_step {n _ i@pl}

(, ,)

mod_sigma_mult_proof: Prove mod_sigma_mult from

sigma_mult,

extensionality{F _ (A qq_ number: z • F(qq)),

G _-- ( A qq-_ number: F(qq) * z) }

(, ,)

sigma_sum_basis: Lemma

a(i,O,F)+#(i,O,G)=cz(i,O,( A qq--* number: F(qq)+ G(qq)))

ss_basis_proof: Prove sigma_sum_basis from

sigma_ax {n *-- 0, F _- (A qq--* number: F(qq)+ G(qq))},

sigma_ax {n _ 0, F _ (Aqq_ number: G(qq))},

sigma_ax {n _ 0}

sigma_sum_step: Lemma

a(i,n,F) + a(i,n,G) = a(i,n,(A qq--,number: F(qq) + G(qq)))

D 1,F)+,,(i,n+I,G)
= a(i,n + 1,( A qq--* number: F(qq) + G(qq)))
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ss_step_proof: Prove sigma_sum_step from

sigma_ax {n _ n + 1, F _ (Aqq-_ number: F(qq) + G(qq))},

sigma_ax {n *- n + 1, F _ (Aqq_ number: G(qq))},

sigma_ax {n 4-- n + 1},

pred_lemma

ss_proof: Prove sigma_sum from

induction {prop _- (A nn--_ bool :

_;(i,nn, F) + _(i, nn, G)

= _(/,nn,(A qq--* number: F(qq)+ G(qq))))},

sigma_sum_basis,

sigma_sum_step {n _ i@pl)

(, ,)

split_sigma_basis: Lemma a(i, n, F) = a(i, O, F) + a(i, diff(n, 0), F)

split_basis_proof: Prove split_sigma_basis from

sigma_ax, sigma_ax {n *- 0), di_x {m .- 0), natpos

split_sigma_step: Lemma

(n > m D _r(i, n, F) = or(i, m, F) + a(i + m, diff(n, m), F))

D(n>m+l

D _(i,n,F)= a(i,m+ 1, F) +cr(i + m+ 1,cliff(n, rn + 1), F))

split_step_proof: Prove split_sigma_step from

sigma_ax {n _ rn + 1},

sigma_rev {i *- i + m + 1, n 4- diff(n, m + 1)},

revsigma_ax {i *- i + m, n *- diff(n, m)},

sigma_rev {i *- i ÷ m, n *- diff(n, m)},

pred_lemma {n *-- m},

pred_diff,

diff_zero,

natpos {n _ m}

split_proof:Prove split.sigmafrom

induction{n *--m,

prop *--(A nn_ bool:

n >__nn D o(i,n,F)= o(i,nn, F)+ a(i + nn,diff(n, nn), g))},

split_sigma_basis,

split_sigma_step {m *-- i@pl)
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(* *)

sigma_abs_basis:Lemma

]a(i,0, F)I _<a(i,0, (A qq---/number: IF(qq)l))

sa_basis_proof: Prove sigma_abs_basis from

sigma_ax {n _- 0},

sigma_ax {n _ 0,F _ (A qq--*number: IF(qq)[)},

abs_ax0

sigma_abs_step:Lennna

la(i,n,F)[ <_ a(i,n,( Aqq--*number: [F(qq)D)

I_(i,n + 1,F)I < _(i,n + 1,(A qq---} number: IF(qq)l))

sa_step_proof:Prove sigma_abs_stepfrom

sigma_ax {n _- n + 1},

sigma_ax {n _-- n + 1, F _-- (A clq--} number: IF(qq)D),

abs_ax2 {x _ F(i + n), y *-.-a(i, n, F)},

natpos,

pred_lemma

sa_proof: Prove sigma_abs from

induction {prop 4--- (A nn_ bool :

la(i, nn, F)I < a(i, nn,( A qq---} number: IFCqq)l)))),
sigma_abs_basis,

sigma_abs_step {n ,-- i@pl}

(, ,)

bounded_lemma: Lemma

n > 0 A bounded(i,n+ 1, F,z) D bounded(i, n, F,x)

bounded_proof: Prove bounded_lemma from

bounded_ax {k *-- k@pl},

bounded_ax {n _-- n + 1, k *-- k@pl},

pred_lemma,

pred_ax

sigma_bound_basis: Lemma bounded(i, 1, F, x) _ a(i, 1, F) < x
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sb_basis_proof:Prove sigma_bound_basisfrom

bounded_ax {n _ I,k *--i},

sigma_ax {n *- 0},

sigma_ax {n _ 1},

pred_ax {n *-- 1)

alt_sigma_bound_step: Lemma

n > 0 A bounded{i, n + 1, F, x) A a(i, n, F) < n x z

a(i,n+ 1,F) < z+ n × z

alt_sb_step_proof:Prove alt_sigma_bound_stepfrom

bounded_ax {n *--n ÷ 1,k *--i+ n},

sigma_ax {n _-- n + 1},

predAemma,

natpos

sigma_bound_step: Lemma

n > o ^ bounded(i, n + 1, F, z) ^ a(i, n, F) < n • x
D_(i,.+ 1,F)< (.+ 1)._

sb_step_proof: Prove sigma_bound_step from

alt_sigma_bound_step, mult_ax {x _ n, y ,-- z)

sb: Lemma n > 0 ^ bounded(i, n, F, x) D a(i, n, F) < n * x

sb_proof: Prove sb from

modAnduction I {A *-- ( Ann _ bool: bounded (i, nn, F, x)),

B *-- ( A mm--* bool: a(i, mm, F) <mm • x)},
boundedAemma {n *--jOpl),

sigma_bound_basis,

sigma_bound_step {n *- i@pl}

sigma_bound_proof: Prove sigma_bound {k *- k@p2} from sb, bounded_ax

(, ,)

sigmal: Lemma a(i,n + 1, F)= F(i)+ a(i + 1,n, F)

sigmal_basis: Lemma a(i, 1, F) = F(i) + a{i + 1,0, F)
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slb_proof: Prove sigmal_basis from

sigma_ax {n *-- 0},

sigma_ax {i _ i + 1, n _ 0},

sigma_ax {n _-- 1},

pred_ax {n *-- 1}

sigmal_step: Lemma

cr(i,n+ 1, F)= F(i)÷_x(i÷ 1, n,F)

D aCi, n+ 2, F)= FCi)+aCi+ 1,n+ I,F)

Ms_proof: Prove sigmal_step from

sigma_ax {i _- i + 1, n ,-- n + 1),

sigma_ax {n 4-- n + 2),

predAemma,

predlemma {n *- n + 1},

natpos

sigmal_proof:Prove sigmal from

induction{prop _ (A nn_ bool :

_(_,nn + 1,F)= FC0+ _0"+ 1,nn, r))},
sigmal_basis,

sigmal_step {n *- i_pl)

(* *)

sigma_rev_basis: Lemma a(i, 0, F) = revsigma(i, 0, F)

srb_proof: Prove sigma_rev_basis from
sigma_ax {n _ 0}, revsigma_ax {n _ 0}

sigma_rev_step: Lemma
(V i1: o01, n, F) = revsigma(i], n, v))

(V i2: 002, n + 1, F) = revsigma(i2, n + 1, F))

srp_proof:Prove sigma_rev_step{il_--i2+ I} from

revsigma_ax {i_ i2,n _-n+ I),
sigma1 {i _ i2),

predAemma,

natpos
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sigma_rev_proof: Prove sigma_rev from

induction2 {il _ il@p3,

i3 4-- i,

prop2 4- ( _i, nn--* bool: ¢(i, nn, F) - revsigma(i, nn, F))},

sigma_rev_basis {i _-- i0_pl),

sigma_rev_step {i2 _- i2@pl, n *--j@pl}

End sigmaprops
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time: Module

Using arithmetics

Exporting clocktime, realtime, period, R, S, T °, T(*I), .1 6 R (*_),
* 1 6 S (.2) with arithmetics

Theory

clocktime: TYPE IS number

realtime: TYPE IS number

period: TYPE IS nat

R, S: clocktime (* Synchronizing periods *)

posR: Axiom 0 < R

posS: Axiom 0 < S

CI: Axiom R _> 3 * S

SinR: Lemma S < R

i: VAR period

T(*I): function[period --* clocktime]
TO: clocktime

T_sup_ax: Axiom T(i) = T o + i * R

T_next: Lemma T (i+l) = T (_) + R

T, T1, T2, II: VAR clocktime

.1 E R(*2): function[clocktime, period --. boolean]

Rdef: AxiomTER (_)=(3II:0_<IIAII_<R^T=T(_)+H)

Ti_in_R: Lemma T (i) 6 R (1)

-1 E S('2): function[clocktime, period --* boolean]

Sdef: AxiomT6S (_)=(3II:0<rlAII<SAT=T (_)+R-S+H)

inRS: Lemma T • S(_) D T • R(_)

Ti_in_S: Lemma T(_+1) • S(0

in_S_lemma: Lemma T1 • S (_) ^ T2 • S(_) D IT1 - T2] _< S
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Proof

SinR_proof: Prove SinR from C1, posS, posR

Ti_proof: Prove Ti_in_R from Rdef {T _- T(0, II *-- 0}, abs_ax0, posR

inRS_proof: Prove inRS from Sdef, Rdef {H *-- R - S + II@pl}, SinR

T_next_proof: Prove T_next from T_sup_ax, T_sup_ax {i *- i + 1)

Ti_in_S_proof: Prove Ti_in_S from

Sdef {II .- S, T 4- T(_+I)}, posS, T_next

in_S_proof: Prove in_S_lemma from

Sdef {r *-- T1},

Sdef {T *-- T_),

abs_ax5 {x *- rI_pl, y _- II_p2, z _- S)

End time
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clocks: Module

Using time

_(.2) A(.12)(.3), c(12)(.3), nonfaultyExporting proc, c.1(.2), p, L.'_1 ,
wlth time

Theory

proc: TYPE IS nat

p: VAR proc

c.1(.2): function[proc, clocktime --* realtime]

C.(.2) function[proc, period clocktime]

zero_correction: Axiom C (°) = 0

i: VAR period

T, To, T1, T2, TN: VAR clocktime

A(_2)(.3): function[proc, period, clocktime-4 clocktime] =

( ._ p, i, T-. clocktime : T + Cp(_))

c(_2)(.3): function[proc, period, clocktime --. realtime]

clockdef: Axiom c(_)(T) = cp( A(pi)(T) )

goodclock: function[proc, clocktime, clocktime --* bool]

p: number

rho_pos: Axiom _ > 0

rho_small: Axiom _ < 1

gc_ax: Axiom

goodclock (p, To, TN)

= ( V T1 , T2 :

To < TI ^ To < T2 ^ TI < TN ^ T2 < TN

D Ic,,(T1)- cp(T_)- (T1- T,)J< _ × IT_- T,I)

monotonicity: Theorem

goodclock(p, To, TN) ^ To <_T1 ^ To <_ T2 ^ T1 <_ TN ^ T2 <_ TN

(71> 75_ cp(T_)> or(T2))

nonfaulty: function[proc, period --, boolean]
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AI: Axiom nonfaulty(p, i) = goodclock(p, A(°)(T(°)), A(i)(T('+I)))

Proof

z, y: VAR number

diminish:Lemma z > 0 D _ x z < x

diminish_proof:Prove diminishfrom

mult_rnon {x _--_,y _--1,z _ z},

rho_small,

mult_ax {x _- 1, y +- x}

monoproof: Prove monotonicity from

g C _ax

diminish {x ,--IT1- T_I},

abs_ax {a +---cp(T_)-cp(T2)- (T_- T2)},

abs_ax {a _-- T1 - T:z}

End clocks
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algorithm: Module

Using clocks, sums

.{.2) {.s) -{.s)
Exporting r., A, ".1 , A.1,.2, A.1,.2, skew, S1A, S1C, $2,6, e, 50,

n, m with clocks

Theory

T, To, 2'1, X, H: VAR clocktime

i: VAR period

p, q, r: VAR proc

A_12): function[proc, period --* clocktime]

A(.s) _ (.3) function[proc, proc, period clocktime].1,.2' /X-1,.2: "-+

rn, n: proc

e, 60, 6: realtime

X_,A: clocktime

C0_a: Axiom n > 0

C0_b: Axiom 0 < m A m < n

C0_c: Axiom A > 0

C2: Axiom S _>

C3: Axiom E _> A

C4: Axiomh>6+e+_xS

C5: Axiom 6 >_ 50 + p * R

C6: Axiom 6

> 2.(c+p* S)+2*m*A/Cn-m)+n.p. Rl(.-m)+p*

+..p. r_/(.- m)

C2and3: LeIItma A < S

c{,'+'l: 4 `)+4 '1
: 7_{_)__g2: Axiom A_') e;'(._r---,number:_,_,

_{'} if , ¢:pAla!91< A then ..,,Alg3: Axiom ,..,p: A0) else 0 end if
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clock_prop: Lemma c{ri+*)(T)= e(i)(T + A{p0)

D2bar_prop: Lemma [_{p_[ < A

skew: function[proc, pro(, clocktime, period --4 clocktime] =

(A p,q, T, i-*clocktime:[c[)(T)- c_i)(T)l)

SIA: function[period-* bool]

SIAdef: Axiom SIA(i) = (Vr: (m + 1 < r^ r < n) D nonfaulty(r,i))

SIC: function[proc,proc,period --*bool]

SICdef: Axiom

S1C(p,q,i)

= (nonfaulty(p, i) A nonfaulty(q, i) A T 6 R (i) D skew(p, q, T, i) _< 6)

SlC_lemma: Lemma SIC(p, q, i) D SlC(q,p,i)

$2: function[proc, period --* bool]

s2_ax:AxiomS2(p,i)= (Ic ('+') < z)

A0: Axiom skew(p, q, T(°), 0) < 60

A2: Axiom nonfaulty(p, i) A nonfaulty(q, i) A SIC(p, q, i) A S2(p, i)

< s
^ (3To : To 6 S(_) ^ lc(')(To± h(O_qp, - c_')(T0)l< e)

A2_aux: Axiom ^(i)_-0
,..-pp

Theorem_l: Theorem SIA(i) D SICCP ,q,i)

Theorem_2: Theorem S2(p, i)

Proof

C2and3_proof: Prove C2and3 from C2, C3

clock_proof: Prove clock_prop from

clockdef {T *- T + A(i)}, clockdef {i *- i + 1}, Algl

D2bar_prop_proof: Prove D2bar_prop from

Alg3 {r *-- p, p *-- q}, C0_c, abs_ax0
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S1C_lemma_proof: Prove S1C_lemma from

S1Cdef,

S1Cdef (p *-- q, q *-- p},

abs_ax4 (x +-- e_'){T@pl), y *-- c(')(T@pl)}

Theorem_2_proof: Prove Theorem_2 from

S2_ax,

Algl,

D2bar_prop {p +- pp@p7, q _-- p},

Alg2,

C0_a,

C0_c,

mean_bound {i _ 1,

x _-- A,

F _ (A r--*number: [Zk!_l )),

abs_mean {i*--1,j *--n, F *--(A r--*number :,_rpjj,

C3

End algorithm
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clockprops:Module

Using clocks,algorithm,natinduction

Theory

T, To,T1,T2,TN, If:VAR clocktime

p,q: VAR proc

i:VAR period

upper_bound: Lennna

7 e s(_)̂[nl<_R- S _ A(p{)(T+ n)< A(pi+I)(T({+_))

lower_bound:Lena 0<n=A(_°)(T(°))<A(/)(T(')+n)

lower_bound2: Lemnna

T e so,)^ Inl < R- s D A(°)(T (°)) < A(')(T + II)

adj_always_pos:Lemma A(_)(T(_))> T °

nonfx: Lemma nonfaulty(p,i+ 1)D nonfaulty(p,i)

SIA_lemma: Lemana SIA(i % 1) D SIA(i)

Proof

i2R: Lemma T (_+2) = T (i) + 2 * R

i2R_proof: Prove i2R from T_sup.ax {i _- i + 2}, T_sup_ax

upper_bound_proof: Prove upper_bound from

Sdef,

i2R,

abs_ax6 {x _ H, y _ R- S},

S2_ax,

Theorem_2,

abs_ax6 {x _---c,'_-(i+1)- C (i), y_-- ]D},

C2

basis: Lemma A{p°)(T{ °)) _>T O
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basis_proof: Prove basis from zero_correction, T_sup_ax {i *-- 0}

small_shift: Lemma C (_+1) - Cp(i) > -R

small_shift_proof: Prove smMl_shift from

S2_ax, Theorem_2, abs_ax {a _ C ('+1) - C(')), C2, SinR

inductive_step: Lemma A(_}(T(i)) _>T O D A(v_+I)(T(_+I)) _>T O

ind_proof: Prove inductive_step from small_shift, T_next

adj_pos_proof: Prove adj_always_pos from

induction {n *--i, prop _ (Ai--* bool: A(r_)(T(')) > TO)},

basis,

inductive_step {i *--i@pl)

lower_bound_proof: Prove lower_bound from

adj_always_pos, T_sup_ax {i *- 0), zero_correction

lower_bound2_proof: Prove lower_bound2 from

lower_bound {II ,--- T - T(i) + II_c}, Sdef, abs_ax {a ,-- II), SinR

gc_prop: Lemma

goodclock(p, To, TN) A To <_ T A T <_ TN _ goodclock(p, To, T)

gc_proof: Prove gc_prop from

gc_ax {T1 *-- Tl@p2, T2 *-- Tm_p2}, gc_ax {TN _ T}

bounds: Lemma

A(°)(T(°)) _< A(')(T('+'))

^ A(')CTC'+I)) _< A('+I)(TC'+'))

bounds_proof: Prove bounds from

upper_bound {II *-- 0, T _ T(i+l)),

lower_bound2 {II *-- 0, T _ T(_+I)},

abs_ax0,

SinR,
Ti_in_S
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nonfx_proof: Prove nonfx from

A1 {i _ i + 1},

A1,

gc_prop {To _-- A(°)(T(°)),

T N +--- A(pi'kl)(T(i+2)),

T +- A(p i)(T(i+l))},

bounds

S1AJemma_proof: Prove S1A_lemma from

S1Adef, S1Adef {i 4-- i + 1, r *-- r_pl}, nonfx {p 4- r_pl)

End clockprops
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lemmal: Module

Using algorithm,lemma2

Theory

p,q: VAR proc

i:VAR period

lemmaldef: Lemma

SlC(p, q, i) A S2(p, i) A nonfaulty(p, i % 1) A nonfaulty(q, i + 1)

Proof

lemmal_proof: Prove lemmaldef from

A2,

lemma2c {l-I_ A(_)qv,T ,--T0@pl},

SICdef {T _ To@pl),

abs_ax4 {x *-- c(')(T0@pl), y _-- c_')(To@pl)),

abs_ax2b {x 4-- y@p5 - x@pS, y *- y@p4 - x_p4, z _-- x{}p5 - y@p4),
nonfx,

nonfx {p *--q},

inRS {T 4---ro@pl},

mult4 {x _-- _, y *- ,-,qpa(i),Z _-- S},

rho_pos,
C4

End lemmal
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lemma2: Module

Using algorithm, clockprops

Theory

p, q, r: VAR proc

i: VAR period
T: VAR clocktime

H, _: VAR realtime

lemma2def: Len_aa

nonfaulty(p, i + 1)

A A(pi}(T) < A(pi+l)(T {i+2))

^ A_°I(T¢°))< A_')(T)
A A(O(T % 12) <_ Ap{'+I)(T ('+'))

^ A_°I(T¢0))<A_'I(T+ n)
D Ic(_)(T+ 12)- (cp)(T)+ 12)I< _ x 1121

lemma2a: Lennna

nonfaulty(p, i + 1) ^ 112% ¢] - R - S A [¢1 -< R - S ^ T 6 S (#)

D Ic(O(T + ¢ + l'I) - (c[)(T + ¢) + 12)1 < _ × [H[

lemma2b: Len_na

nonfaulty(p, i + 1) ^ I¢1 --..<S A 1121--< S ^ T 6 S(0

Ic_')(T+ ¢ + IT) - (,:_')(T+ ¢) + 12)1< _× 1121

lemma2c: Lemma

nonfaulty(p,i + 1) ^ I121 <_ S ^ T 6 S(0

Ic[)(T + n) - (c{p')(T)+ n)l < _ × Inl

lemma2d: Lemma

nonfaulty(p, i) ^ 0 _ II A II < R

Ic(p')CT(')+ 12)- (c(')(T (')) -t- n)l < _ x 12
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Proof

lemma2_proof: Prove lemma2def from

A1 {i _i+ 1),

gc_ax {To _ A(°)(T(°)),

TN
T2 ,-- A(pO(T),

T1 *---A(pO(T + II)},

clockdef,

clockdef {T _ T + l-I}

lemma2a_proof: Prove lemma2a from

lemma2def {T *-- T + ¢},

upper_bound {II _-- • + II},

lower_bound2 {II _ ¢ + II},

upper_bound {II 4-- ¢},

lower_bound2 {H 4-- ¢}

lemma2b_proof: Prove lemma2b from

lemma2a, abs_axl {x _ II),abs_ax2 {x 4- ¢, y _--If),C1, posS,posR

lemma2c_proof: Prove lemma2c from lemma2b (_ +--0),abs_ax0,posS

lemma2d_proof: Prove lemma2d from

A1,

gc_ax {To ",-- A(°)(T(°)),

T/v *-- A(0(T(i+I)),

T1 _ A(pO(T (0 -{-If),

T2 _ A(0(T(0)),

clockdef {T ,-- T(0),

clockdef (T _ T(0 + II),

posR,

pos_abs {x *-- H),

lower_bound,

lower_bound (II _-- 0),

T_next

End lemma2
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lemma3: Module

Using algorithm, lemma2

Theory

p, q: VAR proc

i: VAR period

T, To, T1, T2: VAR clocktime
rh VAR realtime

lemma3def: Lennna

SlC(p,q,i)

A S2(p, i) A nonfaulty(p, i + 1) A nonfaulty(q, i + 1) A T • S(i)
^(i)_

-C_qi)(T)l< _+ * SD + p
/

Proof

lemma3_proof: Prove lemma3def from

A2,
,_ A(0_rearrange_alt {x c(i)( T + _qvJ,

y 4-'- c_')(T),

u *-- c(O(To@pl + ...qp;,

v _ T - T0_pl,

w _-- c_0(To@pl)},

lemma2b {T 4-- To_pl, • _ ,..,qp,^(i)IT _-- T - To_pl},

lemma2c {p *- q, T _- To_pl, II _-- T - To_pl},
nonfx,

nonfx {p _ q},

mult4 {x ¢- 2_, y 4- IT - T0_pll, z 4- S},
rho_pos,

half3 {x 4- p, y ¢- S},

mult_ax {x *- p, y _- S},

in_S_lemma {Ti 4-- T, T2 _-- T0_pl}

End lemma3
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lemma4: Module

Using algorithm,lemmal, lemma2, lemrna3

Theory

p,q,r: VAR proc

i:VAR period

T: VAR clocktime

lemma4def: Lemma

SlC(q,_,;)
^ sic(p, q,i)

A S1C(p, r, i)

^re(p,0
^S2(q,i)
^s2(,,i)
^ nonfaulty(p,i+ 1)

^ nonfaulty(q,i+ I)^ nonfaulty(r,i+ I)^ T E S (i)

i_P)(T)+ A!',)_ (_0(T) + AC_)I< e • (, + p • s + e × z_)

Proof

To, T1, T2: VAR clocktime
l-I: VAR realtime

u, v, w, z, _/, z: VAR number

rearrangel:Lemma z - _/= (u - _) - (v- z)+ (v - w) - (u - w)

rearrangel_proof:Prove rearrange1

rearrange2:Lennna

I('.' - _) - ('-' - z) + (" - w) - (" - ")1

-< I',' - _1+ I" - _1 + I" - wl + I" - wl

rearrange2_proof:Prove rearrange2from

abs_ax2c {w _- (u - y),x *--(x- v),y *- (v - w), z *--(w - u)},

ab___x3{x ,- (,,- _)},
abs_,_x3{x ,- (- - _)}

rearrange3:Lena I_- _1< I"- Yl+ I"- _1+ I" - wl+ I'_- _1
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rearrange3_proof: Prove rearrange3 from rearrangel, rearrange2

sublemmal: Lemma

SlCCP, r, i) A S2(p, i) A nonfaulty(p, i + 1) A nonfaulty(r, i + 1)
X(i) ^(0

D ,-._rp: ,-_rp

sublemmal_proof: Prove sublemmal from lemmaldef {q *-- r}, Alg3,
A2 _aux

lemma2x: Lemma

sm(v,r,0
A S2(p, i) A nonfaulty(p, i + 1) A nonfaulty(r, i + 1) A T 6 S (i)
c(0 (0 (0 (0 eD I_ (T + Arv) - (c} (T) + A,v) I < _ x A

lemma2x_proof: Prove lenuna2x from

lemma2c {II *- At/)),

lemmaldef {q _ r},

C2and3,

^(0 A},mult4 {x _--_, y _--_rv ,z *--

rho_pos

lemma4_proof: Prove lemma4def from

rearrange3 {x _-- c(pi)(T) + A (rO,

Y ,---c_O(T) + A(i)

U 4--c_i)(T+ ^(/)_
,-_rq]_

v *- c(_)(T + "v,,

w J,')(T)),
sub]emmal,

sublemmal {p *-- q},

lemma2x,

lemma2x {p 4-- q},

lemma3def {q .-- r},

lemma3def {p _ q, q 4-- r},
S1C_lemma

End lemma4
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lenuna5: Module

Using algorithm, clockprops

Theory

p, q, r: VAR proc
T: VAR clocktime

i,j: VAR period

lemmaSdef: Lemma

SIC(p,q,i)^ nonfaulty(p,i+ I)^ nonfaulty(q,i+ I)^ T e S(_)
_(_)_ •

Proof

a, b, x, y: VAR clocktime

rearrange1:Lemma (a ÷ z) - (b÷ y) --(a - b) ÷ z - y

rearrangel_proof:Prove rearrange1

rearrange2: Lemma I(a ÷ =) - (b ÷ Y)I < Ia - bl -I- Izl ÷ lYl

rearrange2_proof: Prove rearrange2 from

rearrange1, abs_ax8, abs_ax2 {x _- (a- b), y 4-- (=-y))

lemma5proof: Prove lemma5def from

rearrange2 {a _-- c(pi)(Y),

b _ c_')(T),
_(_)

X _ ,..Lrp_

Y _- _._rqJ_

D2bar_prop {p *- r, q ,--- p),

D2bar_prop {p _ r, q _-- q),

inRS,

S1Cdef,

nonfx

nonfx {p _ q}

End lemma5
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lemma6: Module

Using algorithm, clockprops, lernma2

Theory

p, q: VAR proc

i: VAR period

T, H: VAR clocktime

sublemma_A: Lenlma

nonfaulty(p, i) A nonfaulty(q, i) A T E R(0

skew(p, q, T, i) < skew(p, q, T(i), i) + p * R

lemma6def: Lemxna

nonfaulty(p, i + 1) A nonfaulty(q, i + 1) A T E R (i+1)

D skew(p,q,T,i+ 1)

< Ic_')(TC,+I))+ AC')_ (c_O(TC,+I))+ A_O)I
+p*R+p*_

Proof

sublemmal: Lenmaa 0 < IT^ II _< R D 2 • 2ex II < p • R

subl_proof: Prove sublemmal from

mult2{_,---_, y _- R},
times_half {x *-- p},

mult4 {x ,-- 2e, y *-- l'I, z *-- R},

rho_pos,

mult_ax {x *-- p, y *-- R}

sub_A_proof: Prove sublemma_A from

Rdef,

rearrange_alt {x _-- cp(0(T),

y _- _')(T),
u _ c(_)(T(')),

v _-- II@pl,

lemma2d {II *-- H@pl},

lemma2d {p _ q, IT _ l'I@pl},

sublemmal {II _-- II@pl}
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sublemma2: Lemma

skew(p,q,T,i + 1)= le(1)(T + A (i)) -c_i)(T + A_i))I

sub2_proof: Prove sublemma2 from clock.prop, clock_prop {p _-- q}

lemma6_proof: Prove lemma6def from

sublemma_A {i _ i + 1},

sublemma2 {T *-- T(i+I)},

rearrange {x +- c(i)(T(i+') + A(i)),

y ,q')),
u _- _(O(T(_+_)),
v +- A(i),

w _- _O(r(i+_)),

lemrna2c {T _ T(i+I),II_ A{pi)},

lernma2c {T _--T{i+z),YI_--A_i),p _--q},

Algl,

Algl {p _--q},

S2.ax,

S2_ax {p ,-- q},

Theorem_2,

Theorem_2 {p 4-- q},

mult4 {x _-- _, y _-IA(i)I, z 4-- _},

mult4 {x _-- _, y _-IA_i)I, z *- r,},

rho_pos,

Ti_in_S,

C2,

half3 {x 4- p, y _ _},

mult_ax {x _ p, y _- Z}

End lemma6
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summations: Module

Using algorithm, sums, lemma4, lemma5, lemma6

Theory

p, q, r: VAR proc
T: VAR clocktime

i: VAR period

culmination: Lemma

mA(; + 1)^ mCCp,q,i)
D (nonfaultyCp, i + 1) A nonfaultYCq, i + 1) ^ T E R (i+1)

D skew(p, q, T, i -b 1)

_< ((5 q- 2* A) • m-k 2. (p* S -be+ _ X A), (n-- _))/.

+p,R+p,E)

Proof

11:Lemma I_')(rC'+l))+ _')- (_'_(TC,+_))+ A_'))l
_< _'( A r_ number :

_c,I (_,ICTC,+_I)+ _'!_)1)I_C')(l'C'+l))+ ._.,,,-

< (E_(A r--,number:
_C')_ (_')(TC'+'))+ AC_)I)

le'l,

+ _,n+1 (A r---,number :

/-

13:Lemma S1A(i -I- 1)

A S1C(p, q, i) A nonfaulty(p, i q- 1) A nonfaulty(q, i + 1)

D _ ( A r--* number :

_,c,I_ (_'l(rc,+_)+ _)1)Ic(')(r('+l)) + ,_,p

(d_q-2. A) * m
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14: Lemma S1A(i + 1)

A S1C(p, q, i) A nonfau]ty(p, i ÷ 1) A nonfaulty(q, i ÷ 1)
n

D Y]_m+l( A r--* number :

Ic(_')cTC'+x))+-_,p - -_,,,I)
_<2. (p*S÷e+ _ X A)* (n- m)

15:Lemma SIA(i + I)

A SIC(p,q,i)A nonfaulty(p,iJrI)A nonfaulty(q,i-{-1)

IJ_')(TC,+I))+ A(_')- (_')(TC,+I))+ A_'))I
< ((8+ 2. A).m+ 2. (p, s +_+ _ × _). (.- m))/.

ll_proof:Prove II from

Alg2,

Alg2{p_-q},
rearrange_sum {x _-- c(i)(T(i+l)),

y 4-- c_d)(T(i+l)),
7_(_)_

F _- (A r---,number :.-.rpj,

G _-- ( A r--, number : _rqs,

i_--l,

j .- .).
abs_mean {i _-- 1,

j 4--- n_

_c,) _!_))}.F _- ( A r--* number : x_p3 + _rp - (y_p3 +
C0_a

12_proof:Prove 12from

II,

split_mean{i_ I,

k +-- fB_

F _--(A r--,number :

x(')- (c_')(TC,+l))÷ a!Q)I)},k(_')(TC'+'))÷-,_
CO_a,
CO_b
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bound_faulty:Lemma

S1A(i + 1) A S1C(p,q,i)

A I _<rA • < m A nonfaulty(p,i+ I)A nonfaulty(q,i+ I)

D I_C')(TC'+_))+ _C/__ (_')(TC'+_))+ _C,._)I
<,_+2,A

bound_faulty_proof:Prove bound_faultyfrom

lemmaSdef {T _ T(i+x)},Tidn_S

13_proof:Prove 13from

sum_bound {F *--(A r--*number :

I_C_')(TC,+_))÷ 7,C/)__ (_')(TC'+_))÷ A!_)I),
x*-- 8+2.A,

i *-- 1,

j .- _},
bound_faulty {r _ pp_pl},
C0_b

s2_pqr:_,e_a S_(p,i) ^ S2(q,i) ^ S_(•,i)

S2_pqr_proof: Prove S2_pqr from

Theorem_2, Theorem_2 {p *-- q), Theorem_2 {p *-- r)

bound_nonfaulty: Lemma

SIACi + I)^ SICCp,q,0

^ m + 1 _ • ^ • _< n ^ nonfaulty(p, i + 1) ^ nonfaulty(q, i + 1)

_c,)_ (_')(TC'+_))+ A!_)IIc(_)(TCi+l)) + ,._,p

< 2, (p,S+_+ _ × A)
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bound_nonfaulty_proof:Prove bound_nonfaulty from

SIAdef {i_- i+ 1},

SIA_lernma,

SIAdef,

nonfx,

nonfx {p *-- q},

Theorem_l {q 4-- r},

Theorem_l {p _-- q, q _-- r),

S2_pqr,
lemma4def {T _ T(i+x)},

TiJn_S

14_proof: Prove 14 from

sum_bound {F _ (A r_ number :

(,) +Ic(')(T('+')) + ,..,p-

x*-2*(p*S+_+ =e× A),
i*-- m+ 1,

j ,- .},
bound_nonfaulty {r *- pp@pl},

CO_b

15_proof: Prove 15 from

12,

13,

14,

div_mon2 {x _ _( A r-+ number :

-
n -4+_m+l(Ar number:

xC')_ (c_')(T(,+x)) + a!_)[),

y +- (6 +2. A)*m+ 2* (p* S +¢+ 2e x A)* (n-m),

Z e-- n}_

C0_a

culm_proof:Prove culminationfrom lemma6def, 15,SIAdef {i_- i+ 1}

End summations
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juggle:Module

Using algorithm

Theory

rearrange_delta:Lemma

8>_ 2,(_+p,S)+2,m,Al(n-m)+n, p, R/(n-m)

+p*A

+.,p, _I(.-,.)
_ _>((8 + 2, a),,_ + 2,(_+.,s + _ × a), (.- m))/.

+p*R

Proof

a, b, bl, b2, b3, b4, b5, b6, c, z, y: VAR number

distrib6: Lemma

(bl + b2 + b3 + b4 + b5 + b6) •c

= bl ,c+ b2,c+ b3,c+ b4,c+ b5,c+ b6,c

distrib6_proof:Prove distrib6

distrib6_mult:Lemma

(bl + b2 + b3 + b4 + b5 + b6) x c

= bl × c+b2 × c+b3 × c+b4 x c+b5 × c+b6 × c

distrib6_mult_proof:Prove distrib6_rnultfrom

distrib6.

mult_ax {x _ bl + b2 + b3 -{-b4 + b5 + b6. y _ c}.

mult_ax {x _ bl. y _ c).

mult_ax {x *--b2. y _--c}.

mult_ax {x _ b3. y _ c}.

mult_ax {x .--b4. y *--c}.

mult_ax {x 4--b5. y .--c}.

mult_ax {x .--b6. y _- c}

mult_ineql:Lenzma

a > bl+ b2 +b3+ b4+b5 ^ c > 0

D a × c _>bl × c+b2 × c+b3 × c+b4 × c+b5 × c
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mult_ineql_proof: Prove mult_ineql from

distrib6_mult {b6 *-- 0},

mult_mon2 {x _-- bl + b2 + b3 + b4 + b5, y 4- a, z _ c},

mult_ax {x *-- O, y *-- c}

distrib6_div: Lemma

c>OD (bl+b2+b3+b4+b5+b6)/c

= bl/c + b2/c+ b3/c+ b4/c+ bS/ + bS/ 

4----

_-- b2, y .-- c},

*-- b3, y _ c},

_-- b4, y *- c},

b5, y _ c},

.-- b6, y 4-- c}

reciprocal: Lemma y # 0 v x x 1/y = x/y

reciprocal_proof: Prove reciprocal from

quotient_ax, mult_ax {y 4-- l/y}

distrib6_div_proof: Prove distrib6_div from

distrib6_mult {c _-- l/c},

reciprocal {x _ bl + b2 + b3 + b4 + b5 + b6, y _-- c},

reciprocal {x bl, y _ c),

reciprocal {x

reciprocal {x

reciprocal {x

reciprocal {x

reciprocal {x

cancel_mult: Lemma c > 0 A a × c >_ b D a >_ b/c

cancel_mult_proof: Prove cancel_mult from

div_mon2 {z _-- c, x *-- b, y 4-- a × c},

cancellation_mult {x ,-- a, y ,-- c}

mult_ineq2: Lemma

c > OAa × c > bl + b2 + b3 +b4+ b5 + b6

D a >_ bl/c + b2/c + b3/c + b4/c + b5/c + b6/c

mult_ineq2_proof: Prove mult_ineq2 from

cancel_mult {b ,--- bl + b2 + b3 + b4 + b5 + b6}, distrib6_div

distrib4_div: Lemma

c > 0 _ bl/c + b2/c + b3/c + b4/c = (bl + 52 + 53 + b4)/c
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distrib4Aliv_proof: Prove distrib4_div from

distrib6_mult {b5 *-- O, b6 4- O, c _ 1/c},

reciprocal {x 4- bl + b2 + b3 + b4, y *-- e},

reciprocal {x +- bl, y *-- c},

reciprocal {x +- b2, y *-- c),

reciprocal {x 4- b3, y *-- c},

reciprocal {x *-- b4, y *-- c},

mult_ax {x *-- O, y *-- I/c}

stepl: Lemnla

8 _> 2* (e+p* S)÷2*m* AICn-m)+n,p, Rl(n-m)

÷p*A

+-*p* m)
D6xn-m

2. (e÷p* S) × n-m+2*m*A+n*p*R+p*A X n-m

÷n*p*E

stepl_proof: Prove stepl from

multSneql {a _ 6,

C '(---Irl._ I')'I,_

bl *-- 2. (e+p* S),

b2 +- 2 * rn • A/(n - rn),

b3 _ n* p* R/(n - m),

b4 _-- p* A,

b5 +-- n,p* _/(n-rn)),

mult_div {x +-- 2 * m * A, y +- n - m},

mult_div {x +- n * p * R, y +-- n - m),

mult_div {x +-- n * p * E, y +- n - rn),
CO_b

step2: Lemma

6 x n-m_> 2* (e÷p*S) x n-m+2,rn,A÷n,p, R

+p,Axn-m

÷n*p*_

D6 xn>_6xm+2*(e+p*S) xn-m+2*m*A+n*p* R

÷p,Axn-m

+n*p*_
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step2_proof: Prove step2 from

mult_ax {x *-- 8, y *- n - m},

mult.nx {x _ 8, y *- n},

mult_ax {x *- _, y *- rn}

step3: Lemma

6 x n > 8 x m+2* (e+p*S) x n- m+2.m.A+n.p.R

+p. Axn-m

+n*p*E

8 >_ _ x m/n+ 2*(e+p*S) x,,-m/n+ 2.m. Z_/n+ p* R

+p*A xn-m/n

+p* _,

step3_proof: Prove step3 from

mult_ineq2 {a *-- _,

C _-- n,

bl *-- _ × m,

b2 *-- 2. (e+p* S) x n-m,

b3 *- 2.m. A,

b4 *--n*p* R,

b5 .-- p. A x n- m,

b6 *---n* p* _},

cancellation {x 4-- ,o * R, y *-- n},

cancellation {x *- ,o * E, y *-- n},
CO_a

step4: Lemma

> _ x m/n+ 2. (e+p* S)x n-m/n+ 2.m. A/n+p. R

+p*Axn-m/n

+p*_

_ _>(_ × m+2 • (_+p, s) x, - ,_+ 2, m,.z_ +p, z_×, - m)/n
+p*R

+p*_
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step4_proof: Prove step4 from

CO_a,

distrib4_div {c _ n,

bl *-- 6 x m,

b2 _ 2* (e+p*S) x n- m,

b3 ¢- 2,m, A,

b4 _p*A x n-m}

step5:Lemma

> (6Xm+2*(e+p*S) xn--m+2*m*A+p*Axn-m)/n

+p*R

+p*_

DS_>((_+2*A)*,-+2*(e+P*S+_×ZX)*(n-"))/n

+p*R

+p,P,

step5_proof: Prove step5 from

mult_ax {x _- 6, y 4- m},

mult.ax {x *-- p * A, y _- n - m},

mult_ax {x 4-" 2 * (e + p * S), y 4-- n - m},

half3{x ¢-- p, y *- A},

mult_ax {x 4-- p, y *-- A}

final:Prove rearrange_deltafrom stepl,step2,step3,step4,step5

End juggle
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main: Module

Using natinduction,algorithm,lemma6, summations, juggle

Proof

p,q,r: VAR proc

i,j,k: VAR period

T: VAR clocktime

basis:Lemma SIA(0) _ SIC(p,q,0)

basis_proof:Prove basisfrom

S1Adef {i *-- 0}, sublemma_A {i *-- 0}, S1Cdef {i _ 0}, A0, C5

ind_step:Lemma SIA(i + 1)A SIC(p,q,i)D SIC(p,q,i+ 1)

ind_proof:Prove ind_stepfrom

culmination,rearrange_delta,SICdef {i_--i+ 1),C6

Theorem_l_proof:Prove Theorem_l from

basis,

ind_step{i_ i_p3},

mod_induction {n _ i,

A _ (Ak-, bool: SIA(k)),

B _- (Ak-_ bool: SIC(p,q,k))},

SIAlemma {i_--j@p3)

End main
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Proof-Chain Analysis

This Appendix reproduces the output from the EHDM Proof Chain Analyzer

for the two Theorems proved in the specification.

C.1 Clock Synchronization Condition $2

The proof chain for Theorem_2 in the specification is given below in full. It

can be seen that the proof chain is complete.

Proof chain for formula Theorem_2 in module algorithm

algorithm.Theorem_2

is the conclusion of the proof

algorithm. Theorem_2_proof

Proof algorithm. Theorem_2_proof (vhich is PROVED) establishes

algorithm. Theorem_2

Its premises are:

algorithm.S2_ax

algorithm.Algl

algorithm.D2bar_prop

algorithm.Alg2

algorithm.CO_a

algorithm.C0_c

sums.mean_bound

sums.abs_mean

algorithm. C3

145
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algorithm.S2_ax
is an axiom

algorithm.Algl
is an axiom

algorithm.D2bar_prop

is the conclusion of the proof

algorithm.D2bar_prop_proof

Proof algorithm.D2bar_prop_proof (which is PROVED) establishes

algorithm.V2bar_prop

Its premises are:

algorithm.Alg3

algorithm.C0_c

absolutes.abs_ax0

algorithm.Alg3

is an axiom

algorithm.C0_c
is an axiom

absolutes.abs_axO

is the conclusion of the proof

absolutes.abs_proofO

Proof absolutes.abs_proofO (which is PROVED) establishes

absolutes.abs_axO

Its premises are:

absolutes.abs_ax

absolutes.abs_ax

is an axiom

algorithm.Alg2

is an axiom

algorithm.C0_a
is an axiom

algorithm. C0_c
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has already been justified

sums.mean_bound

is the conclusion of the proof

sums.mean_bound_proof

Proof sums.mean_bound_proof (which is PROVED) establishes

sums.mean_bound

Its premises are:

sums. sum_boundl

sums.mean_ax

arithmetics.div_prod

sums. sum_bound1

is the conclusion of the proof

sums. sum_boundl_proof

Proof sums.sum_boundl_proof (which is PROVED) establishes

sums.sum_boundl

Its premises are:

sums.sum_bound_mod

arithmetics.mult_ax

sums.sum_bound_mod

is the conclusion of the proof

sums.sum_bound_mod_proof

Proof sums.sum_bound_mod_proof (which is PROVED) establishes

sums. sum_bound_rood

Its premises are:

Bums. euM_ax

sums.sigma_bound2

natprops.pred_diff

natprops.diff_ax

netprops.diff_ax

SumS • SUJ[__ax

is an axiom

sums.sisma_bound2

is the conclusion of the proof
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sums. sigma_bound2_proof

Proof sums.sigma_boumd2_proof (which is PROVED) establishes

sums. sigma_bound2

Its premises are:

sigmaprops.sigma_bound

arithmetice.mult_ax

eismaprops.sigma_bound

is the conclusion of the proof

eigmaprops.sigma_bound_proof

Proof eigmaprops.sigma_bound_proof (vhich is PROVED) establishes

sigmaprops.eigma_bound

Its premises are:

sigmaprops.sb

sigmaprops.bounded_ax

sigmaprops.eb

is the conclusion of the proof

sigmaprops.eb_proof

Proof sismaprops.sb_proof (which is PROVED) establishes

eigmaprops.sb

Its premises are:
natinduction.mod_inductionl

sigmaprops.bounded_lemma

eigmaprops.sigma_bound_basis

eigmaprops.sigma_bound_step

natinduction.mod_inductionl

is the conclusion of the proof

natinduction.mod_induction1_proof

Proof natinduc-

tion.mod_inductionl_proof (which is PROVED) establishes

natinduction.mod_inductionl

Its premises are:
natinduction.mod_induction_m
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natinduction.mod_induction_m

is the conclusion of the proof

natinduction.mod_m_proof

Proof natinduction.mod_m_proof (which is PROVED) establishes

natinduction.mod_induction_m

Its premises are:

natinduction.induction_m

natinduction.induction_m

is an axiom

eigmaprops.bounded_lemma

is the conclusion of the proof

sigmaprops.bounded_proof

Proof sigmaprops.bounded_proof (which is PROVED) establishes

sigmaprops.bounded_lemma

Its premises are:

sigmaprops.bounded_ax

sigmaprops.bounded_ax

natprops.pred_lemma

natprops.pred_ax

sigmaprops.bounded_ax
is an axiom

sigmaprops.bounded_ax

has already been justified

natprops.pred_lemma

is the conclusion of the proof

natprops.pred_lemma_proof

Proof natprops.pred_lemma_proof (which is PROVED) establishes

natprops.pred_lemma

Its premises are:

natprops.pred_ax

natprops.natpos

natprops.pred_ax
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is an axiom

natprops.natpos
is an axiom

natprops.pred_ax

has already been justified

sigmaprops.sigma_bound_basis

is the conclusion of the proof

sigmaprops.sb_basis_proof

Proof sigmaprops.sb_basis_proof (which is PROVED) establishes

sigmaprops.sigma_bound_basis

Its premises are:

sigmaprops.bounded_ax
sigmaprops.siEma_ax

sigmaprops.sigma_ax

natprops.pred_ax

sigmaprops.bounded_ax

has already been justified

sigmaprops.sigma_ax
is an axiom

sigmaprops.sigma_ax
has already been justified

natprops.pred_ax
has already been justified

sigmeprops.sigma_bound_step

is the conclusion of the proof

sigmaprops.sb_step_proof

Proof sigmaprops.sb_step_proof (which is PROVED) establishes

sigmaprops.sigma_bound_step

Its premises are:

sigmaprops.alt_sigma_bound_step
arithmetics.mult_ax



C.I. Clock Synchronization Condition $2 151

sismaprops.alt_sigma_bound_step

is the conclusion of the proof

sigmaprops.alt_sb_step_proof

Proof sigmaprops.alt_sb_step_proof (which is PROVED) establishes

siscnaprops.alt_sisma_bound_step

Its premises are:

sigmaprops.bounded_ax

sigmaprops.siEma_ax

natprops.pred_lemma

natprops.natpos

sigmaprops.bounded_ax

has already been justified

sigmaprops.sigma_ax

has already been justified

natprops.pred_lemma

has already been justified

natprops.natpos

has already been justified

arithmetics.mult_ax

is an axiom

siEmaprops.bounded_ax

has already been justified

arithmetics.mult_ax

has already been justified

natprops.pred_diff

is the conclusion of the proof

natprops.pred_diff_proof

Proof natprops.pred_diff_proof (which is PROVED) establishes

natprops.pred_diff

Its premises are:

natprops.pred_ax

natprops.diff_ax
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natprops.diff_ax

natprops.pred_ax

has already been justified

natprops.diff_ax

is an axiom

natprops.diff_ax

has already been justified

natprops.diff_ax

has already been justified

natprops.diff_ax

has already been justified

arithmetics.mult_ax

has already been justified

el.l.m8. mean_ax

is an axiom

arithmetics.div_prod

is the conclusion of the proof

arithmetics.div_prod_proof

Proof arithmetics.div_prod_proof (which is PROVED) establishes

arithmetics.div_prod

Its premises are:

arithmetics.div_mult

arithmetics.mult_ax

arithmetics.div_mult

is the conclusion of the proof

arithmetics.div_mult_proof

Proof arithmetics.div_mult_proof (which is PROVED) establishes

arithmetics.div_mult

Its premises are:

arithmetics.div_mon

arithmetics.cancellation_mult
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arithmetics.div_mon

is the conclusion of the proof

arithmetics.div_mon_proof

Proof arithmetics.div_mon_proof (which is PROVED) establishes

arithmetics.div_mon

Its premises are:

arithmetics.mult_mon

arithmetics.quotient_muir

arithmetics.quotient_mult

arithmetics.quotient_ax2

arithmetics.mult_mon

is an axiom

arithmetics.quotient_muir

is the conclusion of the proof

arithmetics.quotient_mult_proof

Proof arithmetics.quotient_muir_proof (which is PROVED) establishes

arithmetics.quotient_mult

Its premises are:

arithmetics.quotientax
arithmetics.mult_ax

arithmetics.quotient_ax

is an axiom

arithmetics.mult_ax

has already been justified

arithmetics.quotient_muir

has already been justified

arithmetics.quotient_ax2

is an axiom

arithmetics.cancellation_muir

is the conclusion of the proof

aritkmetics'cancellati°n-mult-pr°°f
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Proof arith-

metics.cancellation_mult_proof (which is PROVED) establishes

arithmetics.cancellation_mult

Its premises are:
arithmetics.cancellation

arithmetics.mult_ax

arithmetics.cancellation

is the conclusion of the proof

arithmetics.cancellation_proof

Proof arithmetics.cancellation_proof (which is PROVED) establishes

arithmetics.cancellation

Its premises are:

arithmetics.div_times

arithmetics.quotient_axl

arithmetics.div_times

is the conclusion of the proof

arithmetics.div_times_proof

Proof arithmetics.div_times_proof (which is PROVED) establishes

arithmetics.div_times

Its premises are:

arithmetice.quotient_ax

arithmetics.quotient_ax

arithmetics.quotient_ax

has already been justified

arithmetics.quotient_ax

has already been justified

arithmetics.quotient_axl

is an axiom

arithmetics.mult_ax

has already been justified

arithmetics.mult_ax

has already been justified
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sums. abs_mean

is the conclusion of the proof

sums. abs_mean_proof

Proof sums.abs_mean_proof (which is PROVED) establishes

sums. abs_mean

Its premises are:

sums. me an_ax

sums. me an_ax

stuns, abs_Bum

arithmetics, abs_div2

arithmetics, div_mon2

absolutes, abs_axO

BUmS. mean_ax

has already been justified

sums. me an_ax

has already been justified

sums. abs_sum

is the conclusion of the proof

sums. abs_sum_proof

Proof sums.abs_sum_proof (which is PROVED) establishes

sums. abs_sum

Its premises are:

Bums. sum_ax

sums. sum_ax

sigmaprops.sigma_abs

absolutes.abs_axO

Bums. sum_ax

has already been justified

BUmS, BUm_EX

has already been justified

sigmaprops.sigma_abs
is the conclusion of the proof

sigmaprops.sa_proof
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Proof sigmaprops.sa_proof (which is PROVED) establishes

sigmaprops.sigma_abs

Its premises are:

natinduction.induction

sigmaprops.sigma_abs_basis

sigmaprops.aisma_abs_ete p

natinduction.induction

is the conclusion of the proof

natinduction.induction_proof

Proof natinduction.induction_proof (which is PROVED) establishes

natinduction.induction

Its premises are:

natinduction.induction_m

natprops.natpos

natinduction.induction_m

has already been justified

natprops.natpos

has already been justified

sigmaprops.sigma_abs_basis

is the conclusion of the proof

sigmaprops.sa_basis_proof

Proof sigmaprops.sa_basis_proof (which is PROVED) establishes

aigmaprops.sigma_abs_basis

Its premises are:

sigmaprops.sigma_ax

eigmaprops.sigma_ax

absolutes.abs_axO

sigmaprops.sigma_ax

has already been justified

eigmaprops.sisma_ax

has already been justified
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absolutes.abs_axO

has already been justified

si_naprops.si_na_abs_step

is the conclusion of the proof

sigmaprops.sa_step_proof

Proof sigmaprops.ea_step_proof (which is PROVED) establishes

sigmaprops.si_na_abs_step

Its premises are:

sigmaprops.sigma_ax

sigmaprops.siglna_ax

absolutee.abs_ax2

natprops.natpos

natprops.pred_lemma

eigmaprops.sigma_ax

has already been justified

sigmaprops.si_na_ax

has already been justified

absolutes.abs_ax2

is the conclusion of the proof

absolutes.abe_proof2

Proof absolutes.abe_proof2 (which is PROVED) establishes

absolutes.abs_ax2

Its premises are:
absolutes.abs_ax

absolutes.abs_ax

absolutes.abs_ax

absolutes.abs_ax

has already been justified

absolutes.abe_ax

has already been justified

absolutes.abs_ax

has already been justified
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nstprops.natpos

has already been justified

natprops.pred_lemma

has already been justified

absolutes.abs_axO

has already been justified

arithmetics.ebs_div2

is the conclusion of the proof

arithmetics.abs_div2_proof

Proof arithmetics.abs_div2_proof (which is PROVED) establishes

arithmetics.abs_div2

Its premises are:

absolutes.abs_div

absolutes.poe_abe

absolutes.abs_div

is an axiom

absolutes.pos_abs

is the conclusion of the proof

absolutes.poe_abe_proof

Proof absolutes.poe_abe_proof (which is PROVED) establishes

absolutes.pos_abs

Its premises are:

absolutes.abs_ax

absolutes.abs_ax

has already been justified

arithmetics.div_mon2

is the conclusion of the proof

arithmetics.div_mon2_proof

Proof arithmetics.div_mon2_proof (which is PROVED) establishes

arithmetics.div_mon2

Its premises are:
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arithmetic s. div_mon

arithmetics.div_mon

has already been justified

absolutes.abs_axO

has already been justified

algorithm.C3

is an axiom

The proof chain is complete

The axioms and assumptions at the base are:

absolutes.abs_ax

absolutes.abs_div

algorithm.Algl

algorithm.Alg2

algorithm.Alg3

algorithm.CO_a,

algorithm.CO_c

algorithm.C3

algorithm.S2_ax

arithmetics.mult_ax

arithmetics.mult_mon

arithmetics.quotient_ax

arithmetics.quotient_axl

arithmetics.quotient_ax2

natinduction.induction_m

natprops.diff_ax

natprops.natpos

natprops.pred_ax

eigmaprops.bounded_ax

sigmaprops.sigma_ax

sums .mean_ax

BUmS. stl.__ax

C.2 Clock Synchronization Condition S1

An extract from the proof chain for TheoremA in the specification is given

below. The full proof chain listing contains over 3100 lines and enumerates
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158 proofs and 48 axioms. As discussed in the text, the proof chain is

apparently circular. The circularity is an artifact of the inductive nature of

the proof.

Proof chain for formula Theorem_l in module algorithm

algorithm.Theorem_l

is the conclusion of the proof

main. Theorem_l_proof

Proof main. Theorem_l_proof (which is PROVED) establishes

algorithm.Theorem_l

Its premises are:

main.basis

main.ind_step

natinduction.mod_induction

clock-props.S1A_lemma

********* approximately 3000 lines omitted *********

The proof chain is complete

The axioms and assumptions at the base are:

absolutes.abs_ax

absolutes.abs_div

algorithm.AO

algorithm.A2

algorithm.A2_aux

algorithm.Alg!

algorithm.Alg2

algor_thm.Alg3

algorithm.CO_a

algorithm.CO_b

algorithm.CO_c

algorithm.C2

algorithm. C3

algorithm. C4
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algorithm. C5

algorithm.C6

alEorithm. S1Adef

algorithm.S1Cdef

algorithm.S2_ax

arithmetics.half_ax

arithmetics.multi

arithmetics.mult_ax

arithmetics.mult_mon

arithmetics.quotient_ax

arithmetics.quotient_axl

arithmetics.quotient_ax2

clocks.Al

clocks.clockdef

clocks.gc_ax

clocks.rho_pos

clocks.zero_correction

functionprops.extensionality
natinduction.induction2

natinduction.induction_m

natprops.diff_ax

natprops.natpos

natprops.pred_ax

sigmaprops.bounded_ax

sigmaprops.revsigma_ax

sigmaprops, siEma_ax

sums. me an_ax

sums. su_I_ax

time.C1

time.Rdef

time. Sdef

time.T_sup_ax

time.posR

time.posS

The proof chain is circular. The directly circluar formulas are:

algorithm. Theorem_l
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absolutes : MODULE

EXPORTING abs

THEORY

a. b. w. x. y. z: VAR number

abs: function[number -> number]

abs_ax: AXIOM abs(a) = IF a < 0 THEN -a ELSE a END IF

abe_times : AXIOM abe (a,b) = abe (a) * abe (b)

abs_div: AXIOH b /= 0 IMPLIES abs(a / b) m abe(a) / abe(b)

abs_axO : LEI_A 0 ,_ abs (0)

abs_axl: LEMMA 0 <= abe(x)

abs_ax2: LEM_A abs (x + y) ,= abe(x) + abe(y)

abs_ax2b: LEMMA abs(x + y + z) <= abe(x) + abe(y) + abs(z)

abs_ax2c : LEM_

abs(w + x + y + z) <= abe(w) + abe(x) + abe(y) + abe(z)

abs_ax3: LE_ abe (-x) = abe (x)

abs_ax4: LEM]_ abs(x - y) = abs(y - x)

abs_ax5 : LEI,94A

0 <= x AND x <= z AND 0 <= y AND y <= z IMPLIES abe(x - y) <= z

abs_ax6: LEMMA abs(x) <= y IMPLIES -y <= x AND x <= y

abs_ax7: LEMMA abs(x) = abs(abs(x))

abs_axe: LEM_A abeCx - y) <= absCx) + abs(y)

poe_abe: LE_[A 0 <= x IMPLIES abs(x) = x

PROOF
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abs_proofO: PROVE abs_axO FROM abs_ax {a <- O}

abs_proofl: PROVE abs_axl FROM abs_ax {a <- x}

abs_proof2: PROVE abs_ax2 FROM

ab.__ Ca <- x + y), ab.__ Ca <- x). ab.__ Ca <- 7)

abs_proof2b: PROVE abs_ax2b FROM

abs_ax2 {y <- y + z}, abs_ax2 ix <- y. y <- z}

abs_proof2c: PROVE abs_ax2c FROM

abs_ax2 Ix <- w, y <- x + y + z}0 abs_ax2b

abs_proof3: PROVE abs_ax3 FROM abs_ax Ca <- x}, abs_ax Ca <- -x}

abs_proof4: PROVE abs_ax4 FROM

ab.__ {a <- x - Y}. abs__ {a <- 7 - x}

abe_proofS: PROVE abs_ax6 FROM abs_ax Ca <- x - y}

abs_proof6: PROVE abs_ax6 FROM abs_ax Ca <- x}

abs_proof7: PROVE abs_ax7 FROM abs_axl, abs_ax Ca <- abs(x)}

abs_proof8: PROVE abs_ax8 FROM

abs__ Ca <- x - 7). abs__ Ca <- x), abs__ Ca <- Y)

pos_abs_proof: PROVE pos_abs FROM abs_ax Ca <- x}

END absolutes
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arithmetics : MODULE

USING absolutes

EXPORTING mult, half WITH absolutes

THEOKY

a, b, c, U o v, w, x, y, z: V_ number

mult: function[number, number -> number]

half : function[number -> Lumber]

C* .................................................. *)

quotient_e.x: AXIOM y /= 0 IMPLIES x / y = x * (i / y)

quotient_axl: AXIOM x /= 0 IMPLIES x / x = 1

quotient_ax2: AXIOM z > 0 IMPLIES 1 / z > 0

C* .................................................. *)

dlv_timee: LE_L_ y /= 0 IMPLIES (x / y) * z = (x * z) / y

div_dietr: LEMMA z /= 0 IMPLIES x / z + y / z = (x + y) / z

abe_ally2: LEMMA y • 0 IMPLIES abe(x / y) = abe(x) / y

div_mon: LEMMA x < y AND z • 0 IMPLIES x / z < y / z

div_mon2: LEMMA x <= y AND z • 0 IMPLIES x / z <= y / z

div_prod: LE_ y • 0 AND a < x * y I_PLIES a / y < x

dlv_prod2: LD_A y • 0 AND a <= x * y IMPLIES a / y <= x

cancellatlon: LEE_ y /= 0 IMPLIES (y * x) / y = x

C* .................................................. *)

mult_ax: AXIOM multCx, y) = x * y

multi: AXIOM x >= 0 AND y >= 0 IMPLIES mult(x, y) >= 0
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eult_mon: AXIOM x < y AND z • 0 IMPLIES mult(x, z) < mult(y, z)

(* .................................................. *)

mult_mon2: LE_MA x <= y AND z • 0 IMPLIES multCx, z) <= multCy, z)

¢Lucellation_mult: LEMMA y /= 0 IMPLIES mult(x, y) / y = x

multO: LEMMA y = 0 IMPLIES mult(x, y) = 0

mult_dlv: LEMMA y /= 0 IMPLIES mult(x / y, y) = x

C* .................................................. *)

half ax: AXIOM halfCx) = x I 2

C* .................................................. *)

times_half: LEMMA 2 * half Cx) = x

half2: LEMMA half(x) ÷ halfCx) m x

half3: LE2_qA 2 * mult(half(x), y) " mult(x, y)

mult2: LEMMA 2 * (mult(x, y)) = mult((2 * x), y)

mult3: LEMMA mult(x, y + z) - mult(x, y) + mult(x, z)

mult4: LI_iA 0 <= x AND y <- z IMPLIES mult(x, y) <= mult(x, z)

rearrange : LEMMA

absCx - y)
<= abs(x - (U ÷ V)) ÷ abs(y - (w + z)) + abs(u ÷ v - (w ÷ z))

rearrange_e.lt : LEMMA

abs(x - y) <= abs(x - (u * v)) + abs(u - v) * abs(y - (w * v))

PROOF

dlv_tlmes_proof: PROVE dlv_tlmes FROM

quotlent_ax, quotient_ax {x <- X * z}

dlv_dlstr_proof: PROVE div_distr FROM

quotlent_ax {y <- z)°

quotient_ax {x <- y, y <- z},

quotlent_ax {x <- x + y. y <- z}
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abs_div2_proof: PROVE abs_div2 FROM

abs_dlv {L <- x. b <- y}. poa_aba {x <- y}

quotient_muir: LE34MA y /= 0 IMPLIES x / y - mult(x. 1 / y)

quotlent_mult_proof : PROVE quotient_muir FROM

quotient_ax, mult_ax {y <- 1 / y}

div_mon_proof: PROVE div_mon FROM

mult_mon {z <- 1 / z},

quotlent_mult {y <- z}.

quotlent_mult {x <- y. y <- z},

quotient_ax2

div_mon2_proof: PROVE div_mon2 FROM div_mon

dlv mult: LEMMA y • 0 AND a < mult(x, y) IMPLIES a / y < x

d±v_mult proof: PROVE div_mult FROM

dlv_mon {z 4- y. x 4- a. y 4- mult(x° y)}. cancellation_muir

div_mult2: LID54A y • 0 AND a 4= mult(x, y) IMPLIES a / y 4= x

dlv_mult2_proof: PROVE dlv_mult2 FROM

dlv_mon {z <- y, x <- a, y 4- mult(x, y)}, cancellatlon_mult

dlv_prod_proof : PROVE dlv_prod FROM dlv_mult, mult_ax

div_prod2_proof: PROVE dlv_prod2 FROM dlv_mult2, mult_ax

cancellatlon_proof: PROVE cancellation FROM

div_tlmes {x <- y. z 4- x). quotlent axl {x <- y}

mult_mon2_proof: PROVE mult_mon2 FROM mult_mon

cancellatlon_mult_proof: PROVE cancellatlon_mult FROM

cancellation, mult_ax

multO_proof: PROVE mult0 FROM mult_ax {y <- O}

mult_dlv_proof: PROVE mult_dlv FROM

mult_ax (x <- x / y}. div_tlmes {z <- y}, cancellation

tlmes_half_proof: PROVE tlmes_half FROM

half_ax, div_tlmes {y 4- 2. z <- 2}. cancellation {y <- 2}
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half2_proof: PROVE half2 FROM times_half

half3_proof: PROVE half3 FROM mult2 {x <- half(x)}, times_half

•ultR_proof: PROVE mult2 FROM mult_ax, mult_ax {x <- 2 * x}

mult3_proof : PROVE mult3 FROM

mult_ax, mult_ax {y <- z}, mult_ax {y <- y + z}

mult4_proof: PROVE mult4 FROM mult3 {z <- z - y}, multl {y <- z - y}

rearrangel : LEMMA

x- y _ (x- (u*v)) + (w * z- y) + (u÷ v- (w ÷ z))

rearrangel_proof: PROVE rearrange!

rearranEe2 : LEMMA

abs(Cx- (u÷ v)) + (w ÷ z- y) * (u÷v- (w + z)))
,c= absCx - (u + v)) ÷ absCy - Cw+ z)) * absCu + v - Cw÷ z))

rearrange2_proof: PROVE rearrange2 FROM

abs_ax2b {x <- x - (u + v). y <- u + v - (w + z). z <- w ÷ z - y),

abs_ax3 {x <- w + z - y}

rearrange_proof: PROVE rearrange FROM rearrange1, rearrange2

rearrange_e/t_proof: PROVE rearrange_alt FROM rearrange {z <- v}

END arithmetics
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natprops : MODULE

EXPORTING pred. dlff

THEORY

i, m, n: VAR nat

pred: functlon[nat -> nat]

natpos: AXIOM n >= 0

pred_ax: AXIOM n /= 0 IMPLIES pred(n) _ n - I

diff: functlon[nat, nat -> nat]

diff_ax: AXIOM n >- m IMPLIES dlff(n, m) - n - m

pred_le_a: LEM_ pred(n + 1) = n

diff_w-ero: LEMMA n • m IMPLIES dill(n, m) • O

pred_diff: LE_4A n • m IMPLIES pred(diff(n, m)) - dill(n, m + 1)

dtffl: LEMMA n >-- m IMPLIES diff(n + 1, m + 1) = dill(n, m)

dlff_dlff : LEMMA

n >= m AND n >= i AND m >= i

IMPLIES diff(dlff(n, i). dill(m, i)) - dlff(n, m)

dlff_plus: LEMMA n >-- m IMPLIES m + dlff(n, m) = n

dlff_Ineq: LEMMA

n >= m AND n >-- i AND m >= i IMPLIES dill(n, i) >-- dlff(m, i)

PROOF

pred_lemma_proof: PROVE pred_lena FROM pred_ax {n <- n + 1}. natpos

dill_zero_proof : PROVE dill_zero FROM diff_ax

pred_diff_proof : PROVE pred_dlff FROM

pred_ax {n <- dlff(n, m)}. dlff_ax, dlff ax {m <- m + I}

dlffl_proof: PROVE dlffl FROM
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di_f_axo di._f_ax (n <- n + I, m <- m + I)

dill_dill_proof: PROVE diff_dlff FROM

diff_ax.

dlff_ax{n <- m. m <- i}.
dif__ax {n <- diff(n. I). m <- diff(m, i)}

dill_plus_proof: PROVE diff_plus FROM diff_ax

dlff_ineq_proof: PROVE dlff_Ineq FROM

dl_f_ax {m <- i}. dlff_a,x (n <- m. m <- i}

END natprops
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functionprops : MODULE

THEORY

F, G: VAR functlon[nat -> number]

x : VAR nat

extenslonallty: _IO_ (FORALL x : F(x) = G(x)) IMPLIES F = G

END functlonprops
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natinduction: MODULE

USING natprops

THEORY

t, _0, tl, i2, i3, J, m, n: VARnat

prop. A, B: VAR functlon[nat -> bool]

prop2: VARfunctlon[nat. nat -> boo1]

induction_m: AXIOM

(prop(m) AND (FOP_LL i : i )= m AND prop(1) IMPLIES prop(l ÷ I)))

IMPLIES (FORALL n : n >= m IMPLIES prop(n))

Induction2: AXIOM

(FOPALL iO : prop2(i0. 0))

AND (FOEALL J :

(FORALL il : prop2(il. J))

IMPLIES (FORALL 12 : prop2(12. J + I)))

IMPLIES (FOPALL 13, n : prop2(13, n))

mod_Inductlon_m: LEMMA

(FORALL J : J >= m AND A(J + 1) IMPLIES A(J))

AND ((A(m) IMPLIES BCm))

AND (FOP.ALL i :

i >= m AND A(I ÷ I) AND B(1) IMPLIES B(I + I)))

IMPLIES (FORALL n : n >= m AND A(n) IMPLIES B(n))

induction: LENMA

(prop(O) AND (FORALL t : prop(1) IMPLIES prop(l + 1)))

IMPLIES (FORALL n : prop(n))

mod_lnduction: LEMMA

(FOP.ALL J : A(J + 1) IMPLIES A(J))

AND (CA(O) IMPLIES B(O))

AND (FORALL I : A(i + I) AND B(1) IMPLIES B(I + I)))

IMPLIES (FORALL n : A(n) IMPLIES B(n))

induction1: LEMMA

(prop(1) AND (FOP.ALL i : i >= ! AND prop(1) IMPLIES prop(l + I)))

IMPLIES (FORALL n : n >= ! IMPLIES prop(n))

mod_tnductlonl: LEMNA
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(FORALL j : J >= 1 AND A(J + I) IMPLIES A(J))

A.D ((A(1)IMPLIESS(1))
AND (FORALL i :

i >= I AND A(i * I) AND B(1) IMPLIES B(i ÷ I)))

IMPLIES (FORALL n : n >= I AND A(n) IMPLIES B(n))

PROOF

$od_m_proof: PROVE mod_inductlon_m {i <- l©pl, J <- i} FROM

inductlon_m {prop <- (LAMBDA i -> bool : A(1) IMPLIES B(1))}

inductlon_proof: PROVE induction {i <- l@pl} FROM

inductlon_m {m <- O}, natpos

mod_Induction_proof: PROVEmod_Inductlon {I <- 10pl. J <- J@pl) FROM

mod_inductlon_m {m <- O}. natpos

inductlon1_proof: PROVE inductlonl {i <- iQpl} FROM

induction_m {m <- 1}

mod_inductionl_proof: PROVE mod_inductionl {i <- i@pl. J <- _@pl) FROM

mod_inductlon_m {m <- I}

END natinductlon
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sums : MODULE

USING arithmetics, natprops, itgmaprops

EXPORTING sum. mean

THEORY

i. J. k. n. pp. qq. rr: VAR nat

x. y. z: VAR number

F. G: VAR function[nat -> number]

sum: function[nat, nat. function[nat -> number] -> number]

mean: function[nat, nat. function[nat -> number] -> number]

sum_ax : AXIOM

sum(i.J. F)
= IF i <= J + ! THEN siEma(i, diff(J + I. i). F) ELSE O END IF

mean_ax : AXIOM

-eanCi. J. F)
= IF i <= J THEN sum(i. J. F) / (J + I - i) ELSE O END IF

mean_lemma : LEMMA

neanCi, J, F)

=IFl<ffiJ

THEN siEma(i , diff(J + I, i), F) / (J + I - I)
ELSE 0

END IF

spilt_sum: LEMMA

i <ffiJ + ! AND i <ffik + I AND k <= J

IMPLIES sumCi, J. F) ffisumCi, k. F) + sum(k + I. J, F)

spilt_mean: LEMMA

i <= J AND i <= k + I AND k <= J

IMPLIES mean(l, J, F)

= (sum(i. ko F) + ,um(k + I. Jo F)) I (J - i + I)

su__bound: LE/_

i <= J + I AND (FOIIALL pp : _ <ffi pp AND pp <ffi J IMPLIES FCpp) < x)
IMPLIES 8um(i. J. F) <ffi x * (J - i + 1)
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mean_bound: LIDRA

<= J AND (FOPALL pp : i _- pp AND pp (= J IMPLIES F(pp) • x)

IMPLIES mean(l° J. F) < x

mean_const : LEMMA

i <= J IMPLIES x = meanCl. J. (LAMBDA qq -> number : x))

nean_mult : LEMMA

mean(i, J, F) * x - mean(t0 J0 (LAMBDA qq -> number : F(qq) * x))

mean_sum: LEMMA

meanCi, J, F) + leanCi, J. G)

= meanC1° J0 (LAMBDA qq -> number : FCqq) ÷ GCqq)))

mean_dill : LEMMA

meanCi. J. F) - meanCi. J, G)

= meanCi. J. (LAMBDA qq-> number : FCqq) -GCqq)))

abs_mean: LEMMA

absCmeanCi° J. F)) <= meanCi, J o (_D* qq-> number : absCFCqq))))

rearrange_sum: LEMMA
i <= J IMPLIES x + meanCi. J. F) - (y * meanCi. J. G))

= meanCi, J. (LAMBDA qq -> number : x + FCqq) - (y + GCqq))))

PROOF

mean_le_ma_proof: PROVE ,nean_le,,ma FROM mean_ax, sum_ax

(, .................................................................. ,)

split_sum_proof: PROVE split_sum FROM

|uR ix,

,um_ax {J <- k},
lum__ {i <- k + I}.
split_sigma {n <- dlffCJ + 1. i), m <- diffCk + 1, i). i <- i},

diff_dlff {n <- J + I. m <- k + I),

dlff_plus {n <- k + I. m <- i},

dlff_Ineq {n <- J + 1, ,_ <- k + I}

split_mean_proof: PROVE split_meanFROM split_sum, mes.n_ax

(, .................................................................. ,)

sigma_bound2: LEMMA

n • 0 AND (FORALL k : i <= k AND k <= i + pred(n) I_LIES F(k) < x)
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IMPLIES slgma(l, n. F) < mult(x, n)

stgma_bound2_proof: PROVE sigma_bound2 (k <- kQpl} FROM

sigma_bound, mult_ax {y <- n}

sum_bound_od: LEMMA

i <= J AND (FORALL pp : i <= pp AND pp <= J IMPLIES FCpp) < x)

IMPLIES ,um(l. J. F) < mult(x. CJ + 1 - 1))

sum_bound_rood_proof: PROVE sum_boundDnod {pp <- kOp2} FROM

Bllm_sx,

slgma_bound2 {n <- dlff(J + 1. I). I <- I}.

pred_dlff {n <- J + 1. m <- i}.

dJ.tt_ax {n <- J + 1. m <- t}.
dlff_ax {n <- J + 1, m <- i + 1}

sum_bound1 : LEMMA

I <= j AND (FORALL pp : i <= pp AND pp <= J IMPLIES F(pp) < x)

IMPLIES sum(1. J. F) < x * (J - i + 1)

sum_bound1_proof: PROVE sum_bound1 {pp <- ppQpl} FROM

sum bound_modo lault_ax {y <- J + I - t)

aum_boundO : LEMMA

i = J + 1 AND (FORALL pp : t <= pp AND pp <= J IMPLIES F(pp) < x)

IMPLIES sum(l, J, F) <ffi mult(x° (J + I - I))

8um_botmdO.proof : PROVE sum_boundO FROM

sum_eLX {i <- J + 1},

dlff_ax {n <- J + 1. m <- J + 1}.

mlgma_ax {i <- J + 1. n <- 0},

=ul_O{y<- j + I - i}

mum bound2 : LEMMA

I <= J + I AND (FORALL pp : I <= pp AND pp <= J IMPLI_-S F(pp) • x)

IMPLIES num(l. J. F) <= mult(x. (J ÷ 1 - I))

uum_bound2_proof: PROVE sum_bound2 {pp <- ppQpl} FROM

sum_bound_rood, sum_boundO

sum_bound_proof: PROVE sum_bound {pp <- pp@pl} FROM

sum_bound2, muZt_ax {y <- J ÷ I - t}

mean_bound_proof: PROVE mean_bound (pp <- ppepl} FROM

eum_boumdl, mean_ax, dlv_prod {a <- sum(l. J. F). y <- J - 1 + I}
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mean_const_proof: PROVE mean_const FROM

mean lemma {F <- (LAMBDA qq -> number : x)}.

.lgma_const {n <- diff(J * 1. i). i <- l}.

diff_ax {n <- J + 1. m <- i}.

cancellation {y <- I + 1 - t}

sum_mult : LEM/_

sum(l, J, F) * x = sum(l. J, (LAMBDA qq -> number : F(qq) * x))

sum_mult_proof: PROVE sum_mult FROM

i11N__x o

sum_ax {F <- (_DA qq -> number : F(qq) * x)}.

rood_sigma_muir {t <- t, n <- dtffCJ + 1, t)}

mean_muir_proof: PROVE mean_mult FROM

ReRll_Itx.

me_n_ax {F <- (LAMBDA qq -> number : F(qq) * x)}.

lum_NUlt,

dtv_times {x <- sum(t, J. F@p3). y <- J + 1 - 1. z <- x}

* .................................................................. *)

mean_sum_proof: PROVE mean_sum FROM

mean_lemma {F <- (LA/4BDA qq -> number : F(qq) + G(qq))}.

mean_lemma,

mean_lemma {F <- G},

slgma_sum {n <- dlff(J + I, i). I <- i}.

dlv_dlstr

{x <- slgma(l, dlffCJ + I, i), F),

y <- stgma(l, dlff(J + I, 1), G).

z<-J+1-1}

mean_dirt_proof : PROVE mean_dirt FROM

mean_muir {F <- G. x <- -1}.

mean_sum {G <- (LAMBDA qq-> number : G(qq) * -1)}

abs_sum : LE/_L_

absCsum(l. J. F)) <ffi sum(l. J, (LAMBDA qq-> number : abs(F(qq))))
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abs_sum_proof : PROVE abs_sum FROM

stm_ax {F <- (LAMBDA qq -> number : abs(F(qq)))}.

stgma_abs {n <- diff(J + 1. t). t <- t}.
abs_axO

abs_mean_proof: PROVE abs_mean FROM

me all_Bx.

mean_ax {F <- (LAMBDA qq -> number : abs(F(qq)))}.

abs_sum o

abs_divR {x <- sum(l. J, F) o y <- J + 1 - i}.

div_mon2

{x <- abs(aum(i.J. F)).
y <- sum(i. J. F@p2),

z<- J + i-i}.
abs_uO

rearrange_sub : LEMMA

± <= J IMPLIES x + mean(i. J. F)

meanCi. I. (IAMBDA qq -> number : x ÷ FCqq)))

rearrange_sub_proof: PROVE rearrange_sub FROM

mean_const, mean_sum {G <- (IAMBDA qq -> number : x)}

rearrange_sum_proof: PROVE rearrange_sum FROM

re arrange_sub.

rearrange_sub {x <- y. F <- G}.

mean_dill

{F <- (LAMBDA pp -> number : x + F@c(pp)).

G <- (LAMBDA pp -> number : y + G@c(pp))}

END sums
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sigmaprops : MODULE

USING arithmetics, natprops, functionprops, natinductton

EXPORTING sigma

THEORY

l, l l, i2, J, k, 1: VAR nat

F, G: VAR function[nat -> number]

n. m, ram. nn, qq: VAR nat

x. y: VAR number

sigma: function[nat, nat. function[nat -> number] -> number]

slgma_ax: AXIOM

sigma(l, n, F)

=IFn-O

THEN O

ELSE F(i + pred(n)) + Bigma(i. pred(n). F)

END IF

sigma_const: LEMMA sigma(i, n. (LAMBDA qq -> number : x)) - n * x

sigma_mult : LEMMA

sigma(i, n, (LAMBDA qq -> number : x * F(qq))) = x • sigma(i, n, F)

rood_sigma_muir : LEMMA

sigma(i, n, (LAMBDA qq -> number : F(qq) * x)) = slgma(i, n, F) * x

sigma_sum : LEMMA

slgma(i, n, F) + sigma(i, n, G)

= ,igmaCi. n. (LAMBDA qq -> number : F(qq) + G(qq)))

split_sigma: LEMMA

n >-- m IMPLIES sigma(i, n, F)

= ligma(i, a. F) + sigma(i + m. dill(n, m). F)

jigma_abs : LEMMA

abs (sigma(i. n. F))

<= sigma(i, n, (IAMBDA qq -> number : abs(F(qq))))
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Blgma_bound: LE/_IA

n • 0 AND (FOPALL k : i <= k AND k <= I + pred(n) IMPLIES F(k) < x)
IMPLIES si81a(lo n. F) < n * x

bounded: function[nat, nat, function[nat -> number], number -> boo1]

bounded_ax : AXIOM

n • O IMPLIES (bounded(l, n, F, x)

= (FOPALL k : i <= k AND k <= i + pred(n) IMPLIES F(k) < x))

revstgma: function[nat, nat. function[nat -> number] -> number]

revslgma_ax: AXIOM

revslgma(l, n, F)

= IF n = O THEN 0 ELSE F(i) + revslgma(l + I. pred(n), F) END IF

at_na_rev: LEMMA algma(t, n. F) = revslgma(l, n, F)

PROOF

slgma_const_basls: LEMMA algsa[io Oo (LAMBDA qq -> number : x)) = O

sc_basls_proof: PROVE slgma_const_basls FROM

slgma_ax{n <- O, F <- (LANBDA qq -> number : x)}

slgma_const_etep: LE2_

slgma(l, n, (LA34BDA qq -> number : x)) = n * x

IMPLIES algma(l, n + I, (LAt_DA qq -> number : x)) = (n + I) * x

sc_step_proof: PROVE slgma_const_step FROM

slgma_ax {n <- n + I, F <- (LAMBDA qq -> number : x)}, pred_lemma

sc_proof: PROVEslgma_const FROM

induction

{prop <- (LA_DAnn -> bool :

sigma(l, nn, (LAMBDA qq -> number : x)) - nn * x)}.
slgma_const_basls,

slgma_const_step {n <- 1@pl}

(* .................................................................. *)

elgma_mult basls : LE2_iA

slgma(l. O, (LAMBDA qq -> number : x * F(qq))) = x * slgma(l. O. F)

em_basls_proof: PROVE slgma_mult_basis FROM
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,tgma__ {n <- 0}.
stg_a_ax {n <- O, F <- (LAMBDA qq -> number : x * F(qq))}

slgma_mult_step: LE_{A

slgma(l, n. CLAMBDA qq -> number : x * FCqq))) = x * stgma(t, n, F)

IMPLIES slgma(l, n + 1. (LAMBDA qq -> number : x * F(qq)))

= x * stgma(l, n + 1. F)

sin_step_proof: PROVE slgma_mult_step FROM

sigma_ax {n <- n + I. F <- (LAMBDA qq -> number : x * F(qq))}.

sigma_ax{n <- n + i}.

pred_lemma

sin_proof: PROVE slgma_mult FROM
inductlon

{prop <- (LAMBDA nn -> bool :

slgma(i, nn. (LAMBDA qq -> number : x * F(qq)))

ffix * slgma(l, nn. F))}.

sigma_muir_basts.
slgma_mult_step {n <- 10pi}

* .................................................................. *)

mod_slgma_mult_proof: PROVE mod_slgma_mult FROM

slgma_mult.

extenslonallty
{F <- (LA_DA qq -> number : x * F(qq)).

G <- (LAMBDA qq -> number : F(qq) * x)}

slgma_sum_basls : LEMMA

slgmaCl, o. F) + slgma(l. O. G)

= slgma(i. O° (LAMBDA qq -> number : F(qq) + G(qq)))

ss_basls_proof: PROVE slgma_sum_basls FROM

slgma_ax {n <- O° F <- (LAMBDA qq -> number : F(qq) ÷ G(qq))}.

slgma_ax {n <- O° F <- (LAMBDA qq -> number : C(qq))}.

,igma__x{n <- o}

sigma_sum_step : LEMMA

slgma(l, n. F) + slgme(l, n. G)

= slgma(l, n, (LAMBDA qq -> number : F(qq) + G(qq)))

IMPLIES slgma(i, n + I. F) + slgma(l, n + I. G)

= sigma(i, n ÷ 1. (LAMBDA qq -> number : F(qq) + G(qq)))

n_step_proof: PROVE sigma_sum_step FROM
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sigma_e.x (n <- n + Io F <- (LA]4BDA qq -> number : F(qq) + G(qq))}.

slgma_ax {n <- n + I. F <- (LAMBDA qq -> mmbsr : G(qq))}.

slgma_ax {n <- n + 1},

pred_le:ma

H_proof: PROVE sigma_sum FRON
induction

{prop <- (LANBDA nn -> bool :

sigma(l, nn. F) + sigma(t, nn. G)

= stgmaCt, nn. (IA_DA qq -> number : FCqq) + G(qq))))}.

sigma_sum_basis.

sigma_sum_step {n <- t@pl}

split_sigma_basis : LE_4A

stgma(l, n. F) = sigma(l. O. F) + slgma(l, diff(n. 0). F)

split_basts_proof: PROVE split_sigma_basis FROM

slgma_ax, slgma_Lx {n <- 0}. dlff_ax {m <- 0}. natpos

split_sigma_step: LE_dA

(n >= m IMPLIES slgma(t, n, F)
= slgma(l, m. F) + slgma(l + z, diff(n, m). F))

INPLIES (n >= m + 1

IMPLIES stgma(t, n. F)

= sigma(l, m + 1. F) + stgma(l + m + 1. diff(n, m + 1). F))

split_step_proof: PROVE split_sigma_step FROM

slgma_ax {n <- a + 1}°

slgma_rev {i <- i + m + 1. n <- dlff(n, m + 1)}.

revstgma_ax {1 <- t + m. n <- dill(no m)},

slgms_rev {i <- i + m. n <- dlff(n, n)}.

pred_lemma {n <- m}.

pred_diff.

dill_zero.

natpos {n <- m}

split_proof: PROVE split_sigma FRON
induction

]1 <- R,

prop <- (LA3_DA nn -> bool :

II >m Iln

IMPLIES slgma(l, n, F)

= slgma(l, nn. F) + slgma(l + nn. dlffCn, nn). F))}.

split_slgma_basls.

split_sigma_step {m <- t@pl)
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$1gma_abs_basls : LE}4MA
abs(nlgma(i. O, F))

<-- siEma(1, O. (LAMBDA qq -> number : absCFCqq))))

sa_basls_proof: PROVE slgma_abs_basls FROM

slgma_ax {n <- 0}.

slgma_ax {n <- O, F <- (LAMBDA qq -> number : abs(F(qq)))}.

abs_axO

sigma_abs_step : LEMMA
LbsCnlguCi, n. F))

<= slgma(i, n° (IAMBDA qq -> number : abs(F(qq))))

IMPLIES abs(slgma(i, n + I, F))

<ffislgmaCi, n + I. (LAMBDA qq -> number : abs(F(qq))))

sa_step_proof: PROVE sigma_aba_step FROtd

slgma_ax {n <- n + 1}.

eIEms_ax {n <- n + I. F <- (LAMBDA qq -> number : abs(F(qq)))}.

aba_ax2 {x <- F(I + n), y <- slEma(l, n, F)},

natpos.

pred_lemma

sa_proof: PROVE slgma_abs FROM
induction

{prop <- (LAMBDA nn -> bool :

absCslgmaCi, nn. F))

<= slgma(i, nno (_DA qq -> number • abs(F(qq)))))}.

algma_abs_basls.

slgma_abs_step {n <- t¢p1}

bounded_lemma: LEMMA

n • O AND bounded(i, n ÷ i, F. x) IMPLIES bounded(i, n. F. x)

bounded_proof: PROVE bounded_lemma FROM
bounded_ax {k <- kCpl}0

bounded_ax {n <- n + I. k <- kQpl).

pred_le_a.

pred_ax

sigma_bound_basis : LENRA

bounded(i. 1. F. x) IMPLIES slgma(i, I, F) < x



Sigmaprops 185

-,b_buis_proof: PROVE slg:a_bound_buis FROM

bounded_ax {n <- 1o k <- 1},

slpe__ {n <- o}.
.igma_ax{n <- I},

pred_ax {n <- I}

air_sigma_bound_step : LEM_

n • 0 AND bounded(l, n + 1, F. x) AND slpa(t, n. F) < mult(n, x)

IMPLIES sigma(l, n + 1. F) < x + mult(n, x)

alt_sb_step_proof: PROVE air_sigma_bound_step FROM

bounded_ax {n <- n + 1, k <- t + n},

sigma_ax{n <- n + I}.
pred_lemma,

natpos

sigma_bound_step: LE_MA

n • 0 AND bounded(l, n ÷ 1, F, x) AND sigma(t, n, F) < n * x

IMPLIES stgma(l, n + 1. F) • (n + 1) * x

sb_step_proof : PROVE sigma_bound_step FROM

air_sigma_bound_step, mult_ax {x •- no y •- z}

sb: LEPTA n > 0 AND bounded(t, n, F, x) IMPLIES sigma(i, n, F) • n * x

sb_proof: PRDVE sb FROM

mod_induct I on 1

{A <- (LAMBDA nn -> bool : bounded(l, nn. F. x)).

B <- (IAMBDA mm -> bool : slgma(l, me. F) • me , x)}.

bounded_lemma {n <- Jepl}.

slgma_bound_bas is.

sigma_bound_step {n <- llDp1}

sigma_bound_proof: PROVE sigma_bound {k <- kQp2} FROM sb, bounded_ax

stgmal: LEMMI stgma(:[, n + 1. F) = F(I) + slgmaCt + 1, n, F)

slgmal_buis: LEM24A slgma(i. I. F) - F(1) + slgma(i + 1. O. F)

slb_proof : PROVE slgmal_basls FROM

slgma_Lx{n <- o},
sigma_Lx {i <- i + 1. n <- 0}.

stgma_e.x {n <- 1},

pred_ax {n <- 1}



186 Appendix D. Plain EHDM Specification Listings

81gmal_etep: LE_4A

slgma(l, n + 1. F) = F(1) + slpa(l + I. n. F)

IMPLIES slgma(l, n + 2, F) '= F(1) + algmaCl + I, n + I, F)

sis_proof : PROVE stgmal_xtep FROM

slgma_ax{I <- I + I, n <- n + I},
.lgma_Lx {n <- n + 2}.
pred_lemma.

pred_lemma {n <- n + I}.

natpos

slgmal_proof: PROVE slgmal FROM

induction

{prop <- (LAMBDA nn -> bool :

sigma(l, nn + I, F) ,,F(1) + slgma(l ÷ I, nno F))},

slgmal_basis.

.tgmal_step {n <- tlDp1}

slgma_rev_basls: LEMMA slgma(l. O, F) = revslgma(l. O. F)

srb_proof: PROVE slgma_rev_buls FROM

stgma_ax {n <- 0}. revslgma_ax {n <- O}

atgma_rev_step : LEM_A

(FORALL tl : sigma(t1, n. F) = revitgma(tl, n. F))

IMPLIES (FORALL 12 : etgma(t2, n + 1. F) - revstgma(t2, n + 1. F))

xrp_proof: PROVE slgma_rev_etep {11 <- 12 + I} FROM

revslgma_ax {i <- 12, n <- n + I},

.igm_l {i <- 12}.
pred_lemma.

natpos

slgma_rev_proof : PROVE stgma_rev FROM
induction2

'{11 <- t1@p3.
13 <- t,

prop2 <- (LAHBDA I. nn -> bool :

slgmaCl, nn, F) = revslgma(l, nn. F))}.

81gma_rev_basls {t <- tOQp1}.

stgma_rev_wtep {t2 <- t2@pl, n <-J@pl}

END slgmaprops
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time : MODULE

USING arithmetics

EXPORTING clock-time, realtime, period, R. S. T_ZER0. T_sup. in_R_interval.

ln_S_interval WITH arithmetics

THEOEY

clocktime: TYPE IS number

realtime: TYPE IS number

period: TYPE IS nat

R, S: clock-time(* Synchronizing periods *)

posR: AXIOM 0 < R

posS: AXIOM 0 < S

Cl: AXIOM R >= 3 * S

SinR: LEM_ S < R

I : VAR period

T_sup: functlon[perlod -> clocktime]

T_ZERO : clocktlme

T_sup_ax: AXIOM T_sup(1) - T_ZERO + i * R

T_next: LEMMA T_sup(i+l) ffiT_sup(1) + R

To TI. T2. PI: VAR clocktime

in_R_Interval: functlon[clocktlme, period -> boolean]

Rdef: AXIOM in_R_interval(T, i)

ffi(EXISTS PI : 0 <= PI AND PI <= R AND T - T_sup(i) + PI)

Ti_in_R: LEMMA In_R_interval(T_sup(1). i)

in_S_interval: function[clocktime, perlod -> boolean]
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Sdef: AXIOM tn_S_lnterval(T, l)

= (EXISTS PI : 0 <= PI AND PI <- S AND T - T_sup(i) + R - S + PI)

inRS: LEMMA in_S_lnterval(T, i) IMPLIES in_R_interval(T, i)

Tl_in_S: LEMMA in_S_interval(T_sup(i + 1), i)

in_S_lemma: LEMMA

in_S_interval(Tl, i) AND in_S_interval(T2, i) IMPLIES abs(T1 - T2) <= S

PROOF

SlnR_proof: PROVE SinR FROM C1. posS. posR

Tl_proof: PROVE Ti_in_R FROM Rdef {T <- T_sup(i). PI <- 0}. abs_axO, posR

inRS_proof: PROVE inRS FROM Sdef, Rdef {PI <- R - S + PI@p1}. SinR

T_next_proof: prove T_next from T_sup_ax. T_sup_ax{l<-l+l}

Ti_in_S_proof: PROVE Ti_in_S FROM Sdef{PI<-S, T<-

T_sup(l+l)). posS. T_next

in_S_proof: PROVE in_S_lemma FROM

Sdef {T <- T1}. Sdef {T <- T2}. abs_ax5 {x <- PI@p1. y <- PIQp2. z <- S}

END time
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clocks : MODULE

USING time

EXPORTING proc. clock, rho. Corr. adjusted, rt. nonfaulty

WITH time

THEORY

proc: TYPE IS nat

p: VAR proc

clock: function[proc, clocktime-> realtime]

Corr: function[proc, period-> clocktime]

zero_correction: AXIOM Corr(p. O) = 0

l: VAR period

T. TO, T1. T2. TN: VAR clock'time

adjusted: function[proc, period, clocktime-> clock-time] =

(IAt_DA p. i, T -> clocktlme : T + Corr(p. i))

rt : functlon[proc, period, clocktlme -> realtime]

clockdef: AXIOM rt(p, i. T) = clock(p, adJusted(p, i, T))

goodclock: functlon[proc, clocktime, clocktlme -> boo1]

rho : number

rho_poe: AXIOM half(rho) >= 0

rho small: AXIOM half(rho) < 1

gc_ax : AXIOM

goodclock(p, TO. TN)

= (FOIL%LL TI, T2 :

TO <= TI AND TO <= T2 AND TI <= TN AND TO <= TN

IMPLIES abs(clock(p. TI) - clock(p, T2) - (TI - T2))

< mult(half(rho), abs(Tl - T2)))
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monotonicity: THEOREM

goodclock(p, TO, TN)

AND TO <= TI AND TO <= T2 AND TI <= TN AND T2 <= TN

IMPLIES (TI > T2 IMPLIES clock(p, TI) • clock(p, T2))

nonlaulty: function[proc, period-> boolean]

AI: AXIOM nonfaulty(p, i)

= goodclock(p,

adJusted(p. O, T_eup(O)),

adjusted(p, t, T_eupCi + I)))

PROOF

x, y: VAR number

diminish: LID4MAx • 0 IMPLIES mult(half(rho)o x) <= x

I

dlminish_proof: PROVE diminish FROM

mult_mon {X <- half(rho), y <- I, Z <- X},

rho_small,

mult_ax {x <- 1, y <- x)

monoproof: PROVE monotonlcity FROM

gc__x0

diminish {x <- abs(Tl - T2)},

abs_ax {a <- clock(p, TI) - clock(p, T2) - (TI - T2)).

abs_ax {a <- TI - T2}

END clocks
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algorithm: MODULE

USING clocks, sums

EXPORTING Sigma, Delta, Deltal. Delta2, D2b_, skew, S1A, SIC, 52,

delta, eps. deltaOo n. m WITH clocks

THEORY

T, TO, TI, X. PI: VAR clocktlme

1 : VAR period

p, q, r: VAR proc

Veltal: function[proc, period -> clocktlme]

Delta2. D2bar: function[proc, proc° period-> clocktime]

m, 11: proc

eps, deltaO, delta: realtime

Sigma, Delta: clocktime

CO_a: AXIOM n > 0

CO_b: AXIOM 0 <= m AND m < n

CO_c: AXIOM Delta • 0

C2: AXIOM S >= SiEma

C3: AXIOM SIEma >= Delta

C4: AXIOM Delta >= delta + eps ÷ mult(half(rho). S)

C5: AXIOM delta >= deltsO + rho * R

C6: AXIOM delta

>= 2 * (eps + rho * S) + 2 * m * Delta / (n - m)

+ n * rho * R / (n - m)

+ rho * Delta

+ n * rho * Sigma / (n - m)
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C2and3: LEMMADelta <= S

AIEI: AXIOM Corr(p, i + 1) = Corr(p, i) + Deltal(p, i)

Alg2: AXIOM

Deltal(p, i) = meau(1, n, (LAMBDA r -> number : D2bar(r, p, i)))

Alg3: AXIOM

D2bar(r, p. i)

= IF r /= p AND abs(Velta2(r, p. i)) < Delta

THEN Delta2(r. p, i)
ELSE 0

END IF

clock_prop: LEMHArt(p. i + I, T) = rt(p, i, T + Deltal(p, i))

D2bar_prop: LEMMAabs(D2bar(p. q, i)) < Delta

skew: functlon[proc, proc. clocktime, period -> clocktlme] =

(1AMBDA p, q, T, i -> clocktlme : absCrt(p, i, T) - rt(q. I, T)))

S1A: function(period -> boo1]

S1Adef: AXIOM

SIA(1)

= (FORALL r : (m + 1 <= r AND r <= n) IMPLIES nonfaulty(r, t))

SIC: function[proc, proc. period -> bool]

S1Cdef: AXIOM

slc(p, q, l)

= (nonfaulty(p. i) AND non_aulty( q, i) AND ln_R_interval(T, l)

IMPLIES skew(p, q, T. t) <= delta)

SlC_lemma: LEMMA SiC(p, q, l) IMPLIES SiC(q, p, i)

S2: functton[proc, period -> bool]

S2_ax: AXIOM S2(p, 1) = (abs(Corr(p. i + 1) - Corr(p. t)) < Sigma)

AO: AXIOM skew(p, q, T_eup(O), O) • deltaO

A2: AXIOM nonfaulty(p, i)

AND nonfaulty(q, i) AND SIC(p, q, i) AND S2(p, l)

IMPLIES abs(Delta2(q0 p, i)) <= S

AND (EXISTS TO :

in_S_lnterval(TO. I)
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AND abs(rt(p. 1, TO + Delta2(q. p, i)) - rt(q. t. TO))

< epe)

A2_aux: AXIOM Delta2(p. po 1) = 0

Theorem_l: THEOREM S1A(i) IMPLIES SIC(p, q, t)

Theorem_2: THEOREM S2(p, i)

PROOF

C2and3_proof: PROVE C2snd3 FROM C2. C3

clock_proof: PROVE clock_prop FROM

clockdef {T <- T + Deltal(p. i)}, cloekdef {i <- i ÷ I}. Algl

D2bar_prop_proof: PROVE D2bar_prop FROM

Alg3 {r <- p. p <- q}. CO_c. abs_axO

S1C_lemma_proof: PROVE SlC_lemma FROM

S1Cdef.

SlCdef {p <- q, q <- p}.

abs_ax4 {x <- rt(q. t. T@pI). y <- rt(p. t. TQp1)}

Theorem_2_proof: PROVE Theorem_2 FROM

S2_ax,

Algl,

V2bar_prop {p <- ppQpT, q <- p).

Alg2,

CO_a,

CO_c,

mecn_bound

{i <- 1,

<- no

x <- Delta,

F <- (LAMBDA r -> number : abs(DRbar(r, p. I)))).

abe_mean

{i <- 1.

J <-n.

F <- (LAMBDA r -> number : D2bar(r. p, I))}.

C3

END algorithm



194 Appendix D. Plain EHDM Specification Listings

clock'props : MODULE

USING clocks, algorithm, natinduction

THEORY

T, TO, T1, T2, TN, PI: VAR clocktlme

p, q: VAR proc

I: VARperlod

upper_bound: LEMMA

ln_SJnterval(T, l) AND abs(PI) <= R - S

IMPLIES adjusted(p, i, T + PI) <= adjusted(p, i + 1. T_sup(t + 2))

lower_bound: LID_[A

0 <= PI IMPLIES adjusted(p, O, T_sup(O))

<= adjusted(p, l, T_sup(i) ÷ PI)

lower_bound2: LD_[A

ln_S_interval(T, l) AND abs(PI) <= H - S

IMPLIES adjusted(p, O. T_sup(O)) <= adjusted(p, i. T + PI)

adJ_always_pos: LID{_ adjusted(p, i, T_sup(i)) >= T_ZERO

nonfx: LEM_A nonfaulty(p. I + 1) I}_PLIES nonfaulty(p0 i)

SIA_lemma: LEMMA SIA(I + I) IMPLIES SIA(1)

PROOF

12R: LID_IAT_sup(I + 2) = T_sup(1) + 2 * R

12R_proof: PROVE 12R FROM T_sup_ax {i <- i + 2}. T_sup_ax

upper_bound_proof: PROVE upper_bound FROM

Sdef.

12R,

abs_ax6 {x <- PI, y <- R - S},

S2_ax,

Theorem_2,

abe_axe {x <- Corr(p, i + i) - Corr(p, I), y <- Sigma},

C2
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basis: LEMMA adjusted(p, O, T_sup(O)) >= T_ZERO

basis_proof: PROVE basis FROM zero_correction, T_sup_ax {i <- O}

small_shift: LEMMA Corr(p, i + 1) - Corr(p, i) >= -R

small_shift_proof: PROVE small_shift FROM

S2_ax,

Theorem_2,

abs_ax {a <- Corr(p, i + 1) - Corr(p. t)},

C2,

SInR

inductive_step: LEMMA

adJueted(p, i, T_sup(1)) >= T_ZERO

IMPLIES adjusted(po i + I, T_eup(i + I)) >= T_ZERO

tnd_proof: PROVE inductive_step FROM small_shift. T_next

adJ_pos_proof: PROVE adJ_always_pos FROM

induction

{n <- i,

prop <- (LAMBDA i -> bool : adjusted(p, i, T_eup(1)) >= T_ZERO)},

basis,

inductive_step {I <- i@pl}

lower_bound_proof: PROVE lower_bound FROM

adJ_always_pos, T_sup_ax {i <- 0), zero_correction

lower_bound2_proof: PROVE lower_bound2 FROM

lower_bound {PI <- T - T_sup(1) + PI@c},

Sdef,

abs_ax {a <- PI}.

SInR

gc_prop: LEMMA

goodclock(p, TO, TN) AND TO <= T AND T <- TN

IMPLIES goodclock(p, TO, T)

gc_proof: PROvE gc_prop FROM

gc_ax {TI <- Tl@p20 T2 <- T2@p2}o gc_ax {TN <- T}

bounds: LIDS_A

adjusted(p, O, T_sup(O)) <= adjusted(p, i, T_sup(i + 1))

AND adjusted(p, i, T_sup(i + I))

<= adJusted(p, i + I, T_eup(i ÷ 2))
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bounds_proof: PROVE bounds FROM

upper_bound {PI <- O, T <- T_sup(l + I)},

lower_bound2 {pT <- O, T <- T_sup(i + 1)},
abe_axO,

S:LnR,

Tl_ln_S

nonfx_proof: PROVE nonfx FROM
A1 {:I.<- i + 1}.

A1.

gc_prop

{TO <- adjusted(p, O, T_sup(O)),

TI_ <- adJusted(p. I + 1. T_sup(l + 2)),

T <- adJusted(p, i. T_sup(l + 1))},
bounds

SIA_lemma_proof: PROVE SIA_lemma FROM

SIAdef.

SIAdef {1 <- i + 1. r <- r©p1},

nonfx {p <- r@p1)

END clockprops
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lemmal : MODULE

USING algorithm, leama2

THEORY

p, q: VARproc

i: VAR period

lemmaldef: LEMMA

SIC(p, q. i)

AND S2(p. i) AND nonfaulty(p, i + I) AND nonfaulty(q, i + I)

IMPLIES abs(Delta2(q, p. i)) < Delta

PROOF

lemmal_proof: PROVE lemmaldef FROM

A2,

lemma2c {PI <- Delta2(q, p. i), T <- TO@pl},

SICdef {T <- TO@pl}.

abs__x4 {x <- rt(p° i. TOOpI). Y <- rt(q. i. TO©pl)).

Ibs_x4

{x <- rt(p. i. T0@pl + PI@p2),

y <- rt(po i, TOCpI) * PI@p2}.

abs_Lx2b {x <- yOp5 - xOpS. y <- yOp4 - xQp4. z <- x@p5 - y@p4}°

nORfX,

nonfx (p <- q},

InRS {T <- TO@pl}.

mult4 {x <- half(rho)° y <- abs(Delta2(q, p. i)). z <- S}o

rho_pos.
c4

END lemmal
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lemma2 : MODULE

USING algorithm, clockprops

THEORY

p, q, r: VAR proc

i: VARperlod

T: VAR clocl_ime

PI, PHI: VAR realtlme

lemma2def: LEMMA

nonfaulty(p, i + 1)

AND adjusted(p, i, T) <= adjusted(p, t + 1. T_sup(l + 2))

AND adjusted(p, O, T_sup(O)) <= adjusted(p, i, T)

AND adjusted(p, i, T + PI)

<= adjusted(p, i + 1, T_sup(i + 2))

AND adjusted(p, O, T_sup(O)) <= adjusted(p, $, T + PI)

IMPLIES abs(rt(p, i, T + PI) - (rt(p, i, T) + PI))

• mult(half(rho), abs(PI))

lemma2a: LEMMA

nonfaulty(p, i + 1)

AND abs(PI + PHI) <= R - S

AND abs(PHI) <= R - S AND in_S_tnterval(T, i)

IMPLIES abs(rt(p, i, T + PHI + PI) - (rt(p, i, T + PHI) + PI))

< mult(half(rho), abs(PI))

lemma2b: LEMMA

nonfaulty(p, i ÷ I)

AND abs(PHI) <= S AND abs(Pl) <= S AND in_S_Interva/(T, i)

IMPLIES abs(rt(p, i. T + PHI + PI) - (rt(p. i, T + PHI) + PI))

< mult(half(rho), abs(PI))

lemma2c: LEMMA

nonfaulty(p, i + 1) AND abs(PI) <= S AND ln_S_interval(T, i)

IMPLIES abs(rt(p. 1, T + PI) - (rt(p, i, T) + PI))

< mult(half(rho), abm(PI))

lemma2d: LEMMA

nonfaulty(p, t) AND 0 <= PI AND PI <= R

IMPLIES abs(rt(p, i, T_sup(l) + PI) - (rt(p, l, T_sup(i)) + PI))
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< mult (half (rho), PI)

PROOF

lemma2_proof: PROVE lemma2def FROM

AI {i<-i+ 1}.
gc_ax

{TO <- adjusted(p, O. T_sup(O)).

TN <- adjusted(p, i + I. T_sup(i + 2)),

T2 <- adjusted(p, i, T).

TI <- adjusted(p, i, T + PI)},

clockdef.

clockdef {T <- T + Pl}

lemma2a_proof: PROVE lemma2a FROM
lemma2def {T <- T + PHI},

upper_bound {PI <- PHI + PI}.

lower_bound2 {PI <- PHI + PI}.

upper_bound {PI <- PHI},

lower_bound2 {PI <- PHI}

lemma2b_proof: PROVE lemma2b FROM
lemma2a.

abs_e.xl {x <- PI}o

abs_ax2 {x <- PHI. y <- PI},
CI,

posS.

posR

lemma2c_proof: PROVE lemma2c FROM lemma2b {PHI <- 0}. abs_cxO, posS

lemma2d_proof: PROVE lemma2d FROM
A1.

8c_ax
{TO <- adjusted(p, O, T_sup(O)),

TN <- adjusted(p, i, T_sup(i ÷ I)),

TI <- adjusted(p, i, T_sup(1) + Pl),

T2 <- adjusted(p, i. T_sup(1))},

clockdef {T <- T_sup(1)}0

clockdef {T <- T_sup(1) + PI},

posR.
pos_abs {x <- PI),

lower_bound,

lower_bound {Pl <- 0},

T_next

END lemma2
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1emma3 : MODULE

USING algorithm, lemma2

THEORY

p, q: VARproc

1: VARpertod

T, TO, T1, T2: VAR clockl;tme

PI: VAR realttme

lemmaBdef: LEMMA

stc(p, q. i)
AND S2(p. i)

AND nonfaulty(po t + 1)

AND nonfaulty(q, t + 1) AND tn_S_tnterval(T, t)

IMPLIES abs(rt(p, t° T + Delta2(q. p. i)) - rt(q, t. T))
• eps + rho * S

PROOF

lemma3_proof: PROVE lelma3def FROM

A2.

rearrange_air

{x <- rt(p. i, T + Delta2(q° p. i)).

y <- rt(q. i. T),

u <- rt(p, 1, TOQpl + Delta2(q. p, t)).

v <- T - TO@pI.

w <- rt(q, 1, TO@p1)}.

lemma2b {T <- TOQp1, PHI <- Delta2(q. p, t). PI <- T - TOOp1},

lemma2c {p <- q. T <- TO@p1. PI <- T - TOQp1}.

nOnfX,

nonfx {p <- q}.

nUlt4 {X <- half(rho). Y <- abs(T - TO@p1). z <- S}.

rhO_pOS0

half3 {x <- rho, y <- S},

mult_ax {x <- rho0 y <- S}.

ln_S_lemma {T1 <- T, T2 <- TO@p1}

END 1emma3
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1emma4 : MODULE

USING algorithm, lenal, lena2, lena3

THEORY

p. q. r: VARproc

t: V_perlod

T: VAR clockttme

lemma4def: LE}.94A

sic(q, r. i)
AND SlC(p, q, 1)

AND SIC(p. r, i)

AND S2(p. i)

AND S2(q. i)

AND S2(r. i)

AND non_aulty(p, t + 1)

AND non_aulty(q, t + 1)

AND non_aulty(r, t + 1) AND ln_S_tnterval(T, t)

IMPLIES abs(rt(p, t. T) + D2bar(r, po t)

- (rt(q. t. T) ÷ D2bar(r. q0 t)))

• 2 * (eps + rho * S + mult(half(rho). Delta))

PROOF

TO, T1. T2: VAR clockttme

PI: VAR realtt_e

u, v, w, x, y, z: V_J_ number

rearrangel: LI_[A x - y = (u - y) - (v - x) + (v - w) - (u - w)

rearrangel_proof: PROVE rearrangel

rearrange2 : LE/4/_
absCCu - y) - (v - x) * (v - w) - (u - w))

<= abs(u - y) + absCv - Z) + absCv - w) + absCu - w)

rearrange2_proof: PROVE rearrange2 FROM

abs_ax2c {w <- (u - y). x <- (x - v). y <- (v - w). z <- (w - U)},

abe_ax3 {x <- (v - x)}.
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aba_ax3 {x <- (u - w) )

rearrange3: LEMMA
abs(x - y) <= abs(u - y) + abs(v - x) + abs(v - w) + abs(u - v)

rearrange3_proof: PROVE rearr_uge3 FROM rearrangel, rearrange2

suble_al : LE/_A

slc(p, r. i)

AND S2(p. i) AND nonfaulty(p, i + I) AND nonfaulty(r, i + 1)

IMPLIES V2bar(r. po i) - Delta2(r. p, i)

8uble_al_proof: PROVE suble_al FROM

lelmaldef {q <- r}, Alg3o A2_aux

lemma2x:

SlC(p. r. i)

AND S2(p, i)
AND non_aulty(po i ÷ I)

AND nonfaulty(ro i + i) AND in_S_interva1(T. _)

IMPLIES abs(rt(p, i. T + Delta2(r. po i))

- (rt(p. i. T) + Delta2(r. p, i)))
< mult (half (rho), Delta)

leaaa2x_proof: PROVE le_a2x FROM

lena2c {PI <- Delta2(r, p, i)},

lemmaldef {q <- r}0
C2and3,

mult4 {x <- half(rho), y <- abs(Delta2(ro p. 1))0 z <- Delta},

rho_pos

le_a4_proof: PROVE lemma4def FROM

rearrange3

{x <- rt(po i, T) + D2bar(r, p, i),

y <- rt(q, i, T) + V2bar(r, q, i),

u <- rt(q, i, T + Velta2(r. q, i)).

v <- rt(p, l, T + Velta2(r. p, l)).

w <- rt(r, i, T)),

sublemmal,

euble_al {p <- q).

le_ma2x,

le_a2x {p <- q},

lemmaSdef (q <- r},

lemma3def {p <- q, q <- r},

S1C_lemme

END lemma4
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lemma5 : MODULE

USING algorithm, clockprops

THEORY

p. q. r: VARproc

T: VAR clocktime

i. J: VARperiod

lemmaSdef: LEMMA

slc(p,q. i)
AND nonfaulty(p, t + I)

AND nonfaulty(q, i + 1) AND in_Sjnterval(T, i)

IMPLIES abs(rt(p, t. T) + D2bar(r. p. i)

- (rt(qo t. T) + D2bar(r. q. t)))

delta + 2 * Delta

PROOF

a. b. x. y: VAR clocktlme

rearrangel: LE_4A (a + x) - (b + y) - (a - b) + x - y

rearrangel_proof : PROVE rearrange1

rearrange2: LI_I_

absCCa + x) - (b + y)) <ffi absCa - b) + absCx) ÷ absCy)

rearranEe2_proof: PROVErearrange2 FROM

rearrange1, abs_ax8, abs_ax2 (x ,- (a - b)° y ,- (x - y))

leuaBproof: PROVE lenaSdef FROM

rearrange2

{a <- rt(p. 1. T).

b <- rt(q. t. T).
x _- D2bar(r. p. i).

y _- D2bar(r° q, i)),

D2bar_prop {p <- r. q <- p).

D2bar_prop {p <- r. q (- q),
triES.

SlCdef.

nollfx,
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lemma6 : MODULE

USING algorithm, clockprop8, lemma2

THEORY

p. q: VAR proc

i: VARperiod

T. PI: VAR clocktine

wuble_a_A: LD_A

nonfaulty(p, i)

AND nonfaulty(q, l) AND in_R_interval(To i)

IMPLIES 8kew(p. qo T. i)

< 8kew(p. q. T_sup(1). i) + rho + R

leama_def: LID{MA

no_aulty(p0 i + 1)
AND nonfaulty(q, i ÷ 1) AND tn_R_interval(T, i + 1)

IMPLIES 8kew(p. q. To i + 1)

< abs(rt(p0 i. T_sup(l + I)) + Deltal(p. i)

- (rt(q. i, T_sup(i + 1)) + Deltal(q. _)))

+ rho * R

÷ rho * Sigma

PROOF

sublemmal: LEMMA
0 <- Pl AND PI <= R IMPLIES 2 * mult(half(rho). Pl) <- rho * R

8ubl_proof: PROVE 8ubleamal FROM

multR {x <- half(rho), y _- R},

times_ball {x ,- rho}.

nult4 {x <- half(rho)0 y <- PIo z <- R}.

rho_pos,

nult_ax {x <- rbo, y <- R}

8ub_A_proof: PROVE 8ublemma_A FROM
Rdef o

rearrange_alt

{x <- rt(p. i, T) o

y <- rt(q. i. T).

u <- rt(p. i. T_sup(i)).
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v <- PI_l,
w <- rtCq. t, T_mupCi))}.

le_a2d {PZ <- Pill}.
lena2d {p <- q. PI <- PIOp1}.

sublenal {PI <- PIQp1}

sublemma2 : LE_4A

skewCp, q, T. i ÷ 1)

= absCrtCp, i. T + DeltalCp. i)) - rtCq. i. T + Deltal(q. 1)))

sub2_proof: PROVE suble_a2 FROM clock_prop, clock_prop {p <- q}

lenae_proof: PROVE lemma6def FROM

sublemma_A{i <- J. + I}.

suble_a2 {T <- T_sup($ + 1)}o

rearrange
{x <- rt(p. t, T_sup(t + 1) + Deltal(p. i)).

y <- rt(q, t0 T_sup(l + 1) + Deltal(q, t)).
u <- rtCp. I. T_sup(i ÷ I)).

v <- Deltal(p. i).

w <- rtCq, i. T_sup(1 + I)).

z <- Deltal(q. i)},

lena2c {T <- T_sup(i + I)° PI <- Deltal(p, i)}o
lemaa2c

{T <- T_supCi + 1).

PI <- Deltal(q, i) o

p <- q}.
Algl.

Algl {p <- q}.
S2 a.Xo

s2__ {p <- q},
Theorem_2,

Theorem_2 {p <- q}o

mult4 {x <- half(rho)o y <- absCDeltal(p.t)) , z <- Sigma},

_ult4 {x <- half(rho), y <- absCDeltal(q.t)) , z <- Sigma},
rho_pos.

Ti_in_S,

C2,

half3 {x <- rho. y <- Sigma}.

mult_ax {x <- rho. y <- Sigma}

END lemma6
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su_ations: MODULE

USING algorithm, sums. lena4, lena5, lena6

THEORY

p0 q. r: VARproc

T: VAR clockti_e

_: VARperiod

culmination: LENYA

S_ACi * l) ANDSICCp, q. t)
IMPLIES (nonfaultyCp. i + 1)

AND nonfaulty(q, i + 1) AND in_R_interval(T, t ÷ 1)

IMPLIES skew(p, q. T. i ÷ I)
(= ((delta+ 2 * Delta) * m

+ 2 * (rho * S + ape

÷ multChalf(rho). Delta))

• (n - ,n))
/n

+ rho * P,

÷ rho * Sigma)

PKOOF

11: LEnA absCrt(p, i. T_supCi + I)) + Delta1(p. i)

- (rt(q. i. T_supCi ÷ 1)) + Deltal(q. i)))

<- mean(1,

no

(I.U4BDA r -> number :

absCrt(p, i. T_eup(i + I)) + D2bar(r. p. L)

- (rt(q0 L. T_supC/ + I)) + D2bar(r, q. L)))))

12: L_L_ abs(rt(p, i. T_sup(i + I)) + Deltal(p, l)

- (rt(q. L. T_supCi ÷ 1)) + Deltal(q. L)))

<- (s,,_C1.
R,
(LAKBDA r -> number :

absCrt(p, i. T_supCl + I)) + V2bar(r. p. L)

- (rt(q. i. T_eupCi + I)) + V2bar(r. q, L)))))

+ sunzCm+ 1.

II,
(IA_DA r -> number :
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/ n

abe(rt(p, 1. T_eup(t + 1)) + D2bar(r, p. 1)

(rt(q, t, T_wup(± + 1))

+ D2bar(r. a., t))))))

13: LD_4A SIA(J. + i)

AND S1C(p. q. 1) AND nonfaulty(p, t + 1) AND nonfaulty(q, t + 1)
IMPLIES sum(1.

R°

(1AMBDA r -> number ':

abe(rt(p. 1. T_eup(l + 1)) + DRbar(r. p. 1)

(rt(q° t. T_sup(1 + 1))

+ V2bar(r. q, 1)))))
<= (delta + 2 * Delta) * n

14: LDO4A SIA(I * 1)

AND S1C(p. q. 1) AND nonfaulty(p, t + 1) AND nonfaulty(q, t + 1)
IMPLIES sum(n + 1.

n,

(LAMBDA r -> number :

abe(rt(p, t, T_eup(l + 1)) ÷ D2bar(r, p. t)

- (rt(q. t, T_eup(t + 1))

• D2bar(r, q. i)))))

<= 2 * (rho * S + ep8 + mult(half(rho), Delta)) * (n - m)

16: LDg_A S1A(t ÷ 1)

AND S1C(p, q. t) AND nonfaulty(p, t + 1) AND nonfaulty(q, t ÷ 1)

IMPLIES abs(rt(p, t. T_|up(t + 1)) + Deltal(p. t)

(rt(q, t. T_sup(t + 1)) + Deltal(q. t)))
<= ((delta + 2 * Delta) * n

+ 2 * (rho * S + epe + nult(half(rho), Delta))
• (n - n))

/n

ll_proof: PROVE 11 FROM

Alg2.

Alg2 {p <- q),

rearrange_Bum
{x <- rt(p° t. T_eup(1 + 1)).

y <- rtCq, 1. T_eup(t + 1)).

F <- (IAHBDA r -> number : D2barCr. p. 1)).

G <- (LAMBDA r -> number : D2bar(r. q. I)),

1<-1.

J <-n),
abs_nean

{t <- 1,

J <- n,
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F <- (LM_DA r -> number :

x@p3 + D2bar(r, p, i) - (y@p3 + D2bar(r, q, I)))},

CO_a

12_proof: PROVE 12 FROM

11,

split_mean

{t <- 1,

J <- zl.

k<-m,

F <- (LA_DA r -> number :

abeCrt(p, i, T_sup(l + I)) + D2bar(r, p. i)

- (rt(q, I, T_sup(l + I)) + D2bar(r, q, I))))),

CO_a,

CO_b

bound_faulty : L_L_

SIA(I + 1)

AND S1C(p, q. t)

AND 1 <- r

AND r <= m AND nonfaulty(p, t + 1) AND non_aulty(q, I + 1)

IMPLIES abs(rt(p, i, T_sup(I + I)) + D2bar(r. p, I)

- (rt(q. 1. T_sup(I + 1)) + D2bar(r, q, 1)))

< delta + 2 * Delta

bound_faulty_proof: PROVE bound_faulty FROM

lemmaSdef {T <- T_sup(1 + 1)}, Tt_tn_S

13_proof: PROVE 13 FROM

sum_bound

{F <- (LAMBDA r -> number :

abs(rt(p, i, T_sup(l + I)) + D2bar(r, p, I)

(rt(q. I, T_sup(i + I)) + V2be.r(r, q, I)))),

x <- delta + 2 * Delta,

1<-1.

J <-=},
bound_faulty {r <- pp@pl).

CO_b

S2_pqr: LE_R_AS2(p, i) AND S2(q. i) AND S2(r, i)

S2_pqr_proof: PROVE S2_pqr FROM

Theorem_R. Theorem_2 {p <- q}, Theorem_2 {p <- r}

bound_nonfaulty: LEMMA

SIA(I + 1)

AND SIC(p, q, 1)
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AND m ÷ 1 <- r

AND r <- n AND nonfaulty(p, t + 1) AND nonfaulty(q, t + 1)

IMPLIES abe(rt(p, t. T_lup(t + 1)) + D2bar(r, p, t)

- (rt(q. to T_eup(t + 1)) + D2bar(r° q. t)))

< 2 * (rho * S + epe + mult(half(rho). Delta))

bound_non_aulty_proof: PROVE bound_nonfaulty FROM

SlAdef {1 <- t + 1)o

SlA_lena.

SIAdef,

_.On.f X,

no_x (p <- q).
Theorem_l {q <- r},

Theorem_l {p <- q, q <- r}.

S2_pqr.

lena4def {T <- T_|up(t + 1)}.

T:Ljn_S

14_proof: PROVE 14 FROM

mum_bound

{F <- (IA_DA r -> number :

abs(rt(p, 1, T_eup(1 + 1)) + D2bar(r, p, t)

- (rt(q, I, T_sup(1 + I)) ÷ D2bar(r, q, 2)))),

x <- 2 * (rho * S + epe + mult(half(rho), Delta)).

t<-m+l,

J <-n},
bound_non_aulty {r <- ppQpl},

CO_b

15_proof : PROVE 15 FROM

12,

13,

14,

dlv_mon2

{x <- aura(l,
Zl.

(IA_DA r -> number :

abe(rt(po t, T_eup(l + 1)) + D2bar(r, p° t)

(rt(q, 1. T_eup(t + 1)) + D2bar(r, q. t)))))

+ sum Cxn + 1,
c,

][1,

(_DA r -> number :

abs(rt(p° t, T_sup(1 + 1)) + D2bar(r, p, 1)

- Crt(q. 1. T_sup(1 + 1)) + D2bar(r. q, 1))))),

y <- (delta + 2 * Delta) * m

+ 2 * Crho * S + epe + ault(half(rho), Delta)) * (n - m),

Z <- n},
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CO_i

culm_proof: PROVE culmination FROM lemma6def. 15. SIAdef {t <- t + 1}

END summations
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Juggle: MODULE

USING algorithm

THEORY

rearrange_delta: LEnA

delta >= 2 * (epe + rho * S) + 2 * n * Delta / (n - n)

÷ n * rho * R / (n - a)

÷ rho * Delta

÷ n * rho * Sigma / (n - a)

IMPLIES delta

>= ((delta + 2 * Delta) * n

+ 2 * (epn + rho * S + nult(half(rho). Delta))

• (,', - a))
/n

÷ rho * R

÷ rho * SIEma

PROOF

a. b. bl. b2. b3, b4, bE. b6. c. x, y: VAR number

distrlb8 : LEMMA

(bl ÷ b2 ÷ b3 + b4 + b5 + be) * e

-bl * c + b2 * c + b3 * c + b4 * c ÷ b6 * c ÷ b6 * c

dietrlb6_proof: PROVE distrlb6

distrtb6_nult: LEMMA

nult((bl + b2 + b3 + b4 + b5 + be). c)

= nult(bl, c) + ault(b2, c) + nult(b3, c) + nult(b4, c)

+ nult(bS, c)

+ mult(b6, c)

dlstrlb6_nult_proof: PROVE distribe_nult FROM

dietrib6.

mult_ax {x <- bl + b2 + b3 + b4 + b6 + b6. y <- c},

nult_ax {x <- bl, y <- c}.

nult_u {x <- b2. y 4- c}.

mult_ax {x <- b3, y <- c},

tult_u {x <- b4. y <- c}.

nult_ax {x <- bSo y <- c}.

nult_ax {x <- be. y <- c}
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nult_Ineql : LEMMA
a >= bl + b2 + b3 + b4 + b6 AND ¢ • 0

IMPLIES nult(a, c)

>= nult(bl, c) + nult(b2, c) + nult(b3, c) + nult(b4, c)

+ mult(b5, c)

nult_tneql_proof: PROVE nult_tneql FROM

dtstrtb6_mult {b6 <- 0}o

mult_mon2 (x <- bl + b2 + b3 + b4 + b6, y <- a. z <- c}.

nult_ax {x <- O, y <- c)

distrlb6_dlv: L_

c > 0 IMPLIES (bl + b2 + b3 + b4 + b5 + b6) / c

= bl I c + b2 1 c + b3 / C + b4 1 c + b5 1 c + b6 / c

reciprocal: LENNJLy /= 0 IMPLIES nult(x. 1 / y) = x / y

reciprocal_proof: PROVE reciprocalFROMquotlent_ax0 nult_ax {y <- l/y}

dlstrlb6_dlv_proof: PROVE dlstrlb6_dlv FROM

dlstrtb6_mult {c <- 1 / c},

reciprocal {x <-

reciprocal {x <-

reciprocal {x <- b2, y <- c},

reclproc_l {x <- b3, y <- c).

reclprocal {x <- b4, y <- c),

reclproceL1 {x <- bS, y <- c},

reciprocal (x <- b6, y <- c}

bl + b2 + b3 + b4 + b5 + b6. y <- c).

hi. y <- c}.

cancel_nult: LEMUR c • 0 AND nult(a, c) >= b IMPLIES a >= b / c

cancel_mult_proof: PROVE cancel_nult FROM

dlv_mon2 (z <- c. X <- b, y <- mult(a, c)}°

cancellatlon_nult {x <- a, y <- c}

mult_lneq2: LEMMA

c • 0 AND nult(a,

IMPLIES a >= bl

c) >= bl + b2 + b3 + b4 + b5 + b6

/ c + b2 / c + b3 / c + b4 / c + b5 / c + bO / c

nult_ineq2_proof: PROVE nult_lneq2 FROM

cancel_nult {b <- bl + b2 + b3 + b4 + b5 + bS}. d18trlb6_dlv

dlstrlb4_dlv : LEMP_

c • 0 IMPLIES bl / c + b2 / c + b3 / c + b4 / c

= (bl + b2 + b3 + b4) / c

dlstrlb4_dlv_proof: PROVE dlstrlb4_dlv FROM
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dAstrlb6_ault {b5 <- O. t_ <- O, ¢ <- 1 / c}.

reciprocal {x <- bl + b2 + b3 + b4. y <- c}.

reciprocal

reciprocal

reciprocal

reciprocal

mult_ax{x

{x <- bl. y <- c).

{x <- b2. y <- c},
{x <- be. y <- +).
{x <- b4, y <- c}.

<-0. y <- 1/c)

|tepl: LEM_A

delta >= 2 * (eps + rho * S) + 2 * m * Delta / (n - a)

+ n * rho * R / (n - •)

+ rho * Delta

+ n * rho * Sigma / (n - •)

IMPLIES•ult(dalta. n - •)

>= •ult(2 * (eps + rho * S). n - •) + 2 * • * Delta
+ n * rho * R

+ ault(rho * Delta. n - •)

+ n * rho * Stgaa

stepl_proof: PROVE step1 FROM

•ult_tneql

{a <- delta.

C <-n-•.

bl <- 2 * (eps + rho * S).
b2 <-

b3 <-

b4 <-

b6 <-

•ult_dtv

•ult_dtv

mult_dtv

CO_b

2 * • * Delta / (n - •),

n* rho* e / (n- :).
rho * Delta.

n * rho * SAga• / (n - •)),

{x <- 2 * • * Delta. y <- n - _},

(x <- n * rho * R. y <- n - •).

{x <- n * rho * Sig=a. y <- n - •}.

step2: LEMMA
• ult(delta, n - a)

>= •ult(2 * (eps + rho * S). n - •) + 2 * • * Delta
+n*rho*R

+ •ult(rho * Delta. n - •)

+ n * rho * Sigma

IMPLIES •ult(dalta. n)

>: •ult(delta. 1) + cult(2 * (eps + rho * S). n - l)

+ 2 * m * Delta

+n*rho*R

+ lult(rho * Delta. n - a)

+ n * rho * Sigma

step2_proof: PROVE step2 FROM
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nult_ax {x <- delta, y <- n - n}.

nult_ax {x <- delta, y <- n}.

nult_ax {x <- delta, y <- n}

step3 : LE}_A
nult (delta. n)

>= nult(delta, n) + nult(2 * (eps + rho * S), n - _)

+ 2 * m * Delta

+n* rho*R

+ nult(rho * Delta, n - n)

+ n * rho * Sigma
IMPLIES delta

>- nult(delta, n) / n + nult(2 * (ep8 + rho * S). n = n) / n
+ 2 * n * Delta / n

+rho* R

+ nult(rho * Delta, n - n) / n

+ rho * Sigma

step3_proof: PROVE steps FRO}4

nult_ineq2
{a <- delta,

C (- n,

bl <- nult(delta, n).

b2 <- nult(2 * (eps + rho * S). n - n).

b3 <- 2 * n * Delta,

b4 <- n * rho * R.

bE <- nult(rho * Delta. n - a).

b6 <- n * rho * Sigma),

cancellation {x <- rho * R. y <- n}.

cancellation {x <- rho * Sigma. y <- n},

CO_a

step4 : LE}_4A

delta >= mult(delta, a) / n + nult(2 * (epe + rho * 8), n - n) / n
+ 2 * n * Delta / n

+ rho * R

+ nult(rho * Delta. n - n) / n

+ rho * Sigma
I]_PLIES delta

>= (nult(delta. m) + nult(2 * (eps + rho * 5). n - a)
+ 2 * n * Delta

+ nult(rho * Delta. n - n))

/n
+ rho * R

+ rho * Sigma

step4_proof: PRDVE etep4 FRDM
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CO_a.

dlstrlb4_dtv

C <- n,
bl <- nult(delta, m),

b2 <- nult(2 * (eps + rho * S). n - m).
b3 <- 2 * a * Delta,

b4 <- ault(rho * Delta. n - a)}

step5 :

delta >= (muir(delta, m) + mult(2 * (ape + rho * S). n - m)
+ 2 * • * Delta

+ mult(rho * Delta. n - l))

/n
+ rho* R

+ rho * Sigma

IMPLIES delta

>= ((delta + 2 * Delta) * n

+ 2 *(epe + rho * S + mult(half(rho). Delta))

• Cn - =))
/n

+ rho * R

+ rho * Sigma

stepS_proof: PROVE step5 FROH

mult_ax {x <- delta, y <- m},

mult_ax (x <- rho * Delta, y <- n - m}.

ault_ax {x <- 2 * (ape + rho * S), y <- n - n}.

half3 {x <- rho. y <- Delta},

nult_ax {x <- rho, y <- Delta}

final: PROVE rearrange_delta FROM atepl, step2, stepS, step4, step5

END Juggle
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main: MODULE

USING nattnductlono algorithm, lsnaS° summations, Juggle

PROOF

p. q. r: VAR proc

t. J. k: VAR period

T: VAR clockttms

basis: LE_L_ S1A(O) IMPLIES SlC(p° q. O)

buls_proof: PROVE basis FROM

S1Adef {1 <- 0}. sublemma_A {1 <- 0}. SXCdef (t <- O}. AO. CS

lnd_step: LEMMA

SIA(1 + 1) AND SIC(p. q. i) IMPLIES SIC(p. q. i + 1)

lnd_proof: PROVE lnd_step FROM

culmination, rearrange_delta. S1Cdef {1 <- 1 + 1}. C6

Theorsm_l_proof: PROVE Theorem_l FROM

basis.

tnd_step {1 <- t@p3}.
aod_tnductlon

{n <- t,

A <- (LAMBDA k -> boo1 : SIA(k)).

B <- (IAMBDA k -> bool : SlC(p. q, k))).
SIA_le_a {t <- JlDI:)3}

END main
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