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THE ELECTRON BEAM INSTABILITY REVISITED: GROWTH ABOVE AND BELOW fp
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Physics & Astronomy Dept., The University of Iowa, Iowa, USA

ABSTRACT

The growth of electrostatic waves near the plasma frequen-

cy fp due to an unstable electron beam is investigated by

solving the unmagnetized electrostatic dispersion equation
numerically. These numerical solutions are compared with

analytic theories for reactive (or fluid-type) and kinetic ver-

sions of the beam instability, and for the O'Neil/Malmberg

connection of the beam and Langmuir modes. Conditions

for growth significantly above or below f_ are given. Three

general results given are found: (1) The unstable waves do

not grow on a mode with Langmuir dispersion except in the

limit of a very dilute beam with growth on O'Neil/Malm-
berg's connected mode. (2) The properties of the unstable

mode depend strongly on beam parameters such as beam

density, speed and temperature. (3) The frequency of max-

imum growth frequently lies significantly above or below fp,
and differs significantly from that predicted by the Lang-

muir dispersion relation. These results imply important
consequences for theories of strong turbulence and non-

linear wave-wave processes, and observational identification

of fp from observed wave frequencies.

1. INTRODUCTION

Electrostatic waves excited near the electron plasma fre.
quency fp by electron beams are of widespread interest

in plasma physics; specific applications include planetary

foreshocks (Ref. 1), strong Langmuir turbulence (Ref. 2)

and pulsar magnetospheres (papers this volume). Theoret-
ical concepts for these electron "beam instabilities" have

changed relatively little since their initial development
(Refs. 3-5), in part because most research effort has been

concentrated on the non-linear and strong turbulence evo-
lution of the waves. This paper is, however, specifically

concerned with the linear properties of the waves and the
instabilities themselves.

The two primary characterizations of the beam instability

are due to Bohm and Gross (Ref. 3) and Briggs (Ref. 4),

and to O'Neil and Malmberg (Ref. 5). This first character-

ization corresponds to the physical growth mechanism of

the waves: viz. the reactive (or non-resonant or fluid-like)
and kinetic (or resonant or resistive) instabilities in which

growth occurs due to particle bunching or by inverse Lan-

dau damping, respectively. These different growth mecha-

nisms imply different wave spectra for the two instabilities

(e.g, Ref. 6). The second characterization (Ref. 5) corre-
sponds to the dispersive character of the growing mode: the

waves might be "beam modes" with wr "_ k v_, or might lie

on a mode with approximately Langmuir dispersion formed
after connection of the ordinary Langmuir mode and the

beam mode. Although analytic theory (Ref. 7) implies
that the reactive instability occurs on a beam mode, the
detailed connection between these two characterizations of

the beam instability is not clear. One aim of this paper

is to clarify the connection between these two character-

izations of the beam instability. This is done by solving

the exact electrostatic unmagnetized dispersion equation

numerically, and comparing the numerical solutions with

analytic solutions. It is shown that the reactive instability
does tend to occur on the beam mode, but that the insta-

bility becomes kinetic on a modified extension of the beam

mode (the 'modified- beam mode') long before the O'Neil

and Malmberg connection between the Langmuir mode and

the beam mode takes place. The unstable mode is shown to

be intrinsically beam-associated (i.e., dependent on beam

parameters, at least) unless the beam is extremely dilute,

i.e., relative beam densities nb/no,£10-4; that is, growth
does not usually occur on a normal mode of the plasma

in the absence of the beam, such as the Langmuir mode.

Consequently, there is no a priori reason for growth to oc-

cur above fp at Langmuir-like frequencies. Conditions for

reactive or kinetic growth well above and well below fp, as
observed in the Earth's foreshock (Refs. 8, 9) are therefore
investigated here.

Previous numerical investigations of this dispersion equa-
tion (e.g., Ref. 10) have paid relatively little attention to

the dispersive characteristics of the growing waves. Yet the
detailed dispersion relation of the waves is vital in theo-

retical descriptions of non-linear wave processes and strong

turbulence phenomena (e.g., Ref. 2): differences between

the actual dispersion relation and the assumed dispersion
relation imply differences in the governing equations for the
wave fields and possible kinematic difficulties for the wave

processes, as discussed in Section 4 below. This paper pro-

ceeds as follows: Section 2 contains a brief description of
previous analytic theory, while Section 3 contains the re-

sults of the paper. A more complete version of this work is
described in Ref. 6.

2. RELEVANT ANALYTIC THEORY

Given the longitudinal part of the unmagnetized, spatially

homogeneous dielectric tensor K L = 1+ Ki + Ke +K,, where

the subscripts, i, e, and b refer to the contributions of ions,

Proceedings of the Joint Varenna-Abastumani International School & Workshop on Plasma Astrophysics, held in Varenna, Italy,
24 Aug.-3 Sept. 1988 (ESA SP-285, Vol. L Dec. 1988).

https://ntrs.nasa.gov/search.jsp?R=19890015546 2020-03-20T01:38:40+00:00Z



54 I H CAIRNS

background electrons and beam dectrons, respectively, the
dispersion equation is K L = O. Assuming that all species
have Maxwellian distributions, Ka is of the form

i) (i)g.= , k-V- )-

where@ is related to the Friede-Conte function, and wp_, Va

and _ are the angular plasma frequency, thermal speed
and drift velocity of species a, respectively. Writing w =

wr + i7, a wave is said to be resonant with species a if

_,, = (w,.-k.go)/v_ k V,, _ 1. The beam instability is said

to be resonant if _ < 2, corresponding to the distribution

function of species a at the phase velocity of the wave being

2% of its value at v, = v_.

The reactive instability is derived by ignoring Im K,, (i.e.,

Im Ka = 0), whence the dispersion equation is a real

equation for a complex variable w, thereby implying the

presence of complex conjugate solutions (Ref. 7). Ignor-

ing Im K,, corresponds to ignoring Landau (and inverse
Landau) damping; growth is instead due to particle bunch-

ing. Assuming I_bl >> 1 (non-resonant) one finds complex
conjugate roots with maximum growth with wp = k_- _.

w,. = k " V_b(1 -- 1. nb )i'_ x/_ ( nb )}_ ,  tT .o ) , (2)

The kinetic instability is usually derived by ignoring

Re(Ks, Ki), assuming I_bl <<1 (resonant), and taking

Im Kb (3)

with w_ determined by the equation Re K_ = O. Growth
is then due intrinsically to inverse Landau damping, with

maximum growth rate

_e nb , Vb ,2 (4)7k = n--:t_) _p

where e = exp(1), on the Langmuir mode. A commonly

used criterion (e.g., Ref. 7) for determining whether the

instability is reactive or kinetic is

_oo Vbp=( )i _bb >1 (5)

or P < 1, respectively. A more accurate empirical criterion

is given below.

O'Neil and Malmberg's (Ref. 5) criterion for whether the

instability is on the beam-mode or on the connected

Langmuir-beam mode is

s = 2_IP < 1.47 (6)

or s > 1.47, respectively. Gary's results (Ref. 10) and the
results below verify this criterion empirically.

3. SUMMARY OF RESULTS

3.1 Reactive/kinetic, beam/Langmuir-beam, and disper-
sion relations

Figure 1 shows the evolution of the dispersion curves for
a beam with fixed relative density nb/no = 10 -3 and drift

speed vb/V_ = 10 as the beam temperature T,/T_ is var-

ied (TdTi = 3 is fixed). The two complex conjugate roots

corresponding to the reactive instability are clearly visi-

ble in Figure l(a), together with their beam dispersion
wr '_' kvb and non-resonant character. It is clear that

the reactive/kinetic transition takes place long before the
O'Neil and Malmberg (Ref. 5) connection of the Langrnuir

and beam mode takes place in Figure l(f); furthermore,

the instability does not take place on the pure Langmuir

mode, or on a mode with Langmuir-like dispersion until

greater beam temperatures than those in Figure l(f) are
reached. The following changes occur as Tb increases in

Figures l(b) through (d): (1) the complex conjugacy of
the beam roots disappears, (2) the dispersion curve of the

growing mode consists of a portion with beam-type disper-
sion wr .,, k Vb for wavenumbers smaller than some k. and

slowly-varying dispersion w_ ... A for k > k., where A is of

order wp. (3) The wavenumber km and real frequency wm
corresponding to maximum growth increase with Tb, corre-

sponding to the peak in the growth rate curve (as a function

of wavenumber) moving continuously towards and along the

Wr "_ A portion of the dispersion curve. The instability is

marginally resonant in Figure l(b) and strongly resonant

by Figure l(c), corresponding to a kinetic instability. By

Figure l(d) the portion of the growing mode with beam
dispersion (i.e., small wavenumbers) is heavily damped, as

is the Langmuir mode for higher wavenumbers. In contrast,

the Langmuir mode at small wavenumbers, and the modi-

fied beam mode at larger wavenumbers are lightly damped

or growing. As Tb increases further, the two lightly damped

and two heavily damped portions of these modes connect,
leading to O'Neil and MMmberg's 'Langmuir-beam' mode

(Gary's terminology) upon which the instability is found,
and a heavily damped mode of no further interest. This
connection is shown in Figures l(e) and (f). For complete-
ness note that a progression of figures analogous to Fig-

ure 1 could also be constructed by either decreasing the

beam density or decreasing the beam speed, keeping other

parameters constant.

The strong modification of the beam root's dispersive char-
acteristics as the instability becomes resonant (and so ki-

netic rather than reactive) necessitates a clarification of

terminology: (1) Portions of dispersion relations with wr "_
kvo are called 'beam' type. (2) Due to its origin with the

beam the strongly modified mode (Figures X(b)-(e)), on

which growth occurs following modification of the complex

conjugate beam mode, is called the "modified-beam" mode.

(3) The connected O'Neil and Malmberg mode is called the

"Langmuir-beam" mode following Gary (Ref. 10). With
this terminology the instability is resonant (kinetic) on the

modified-beam mode and Langmuir-beam mode, and non-

resonant (reactive) on the beam mode. These identifica-
tions of the reactive and kinetic instabilities are consistent

with the variations in the maximum growth rate 7,- as a

function of relative beam density nb/no in equations (2)

and (4). Finally, values of P corresponding to the reactive
instability are P>_6, while the kinetic instability is strongly

resonant when P%2. Reactive growth occurs on a beam

mode which strongly obeys beam-type dispersion. Quali-

tatively, the modified-beam mode's dispersion curve con-

sists of a beam-type portion at low wavenumbers and a
portion for which w_ varies slowly; it is inappropriate to

approximate the modified-beam mode with the Langmuir

dispersion relation, particularly as the maximum growth

rateusually occurs below fp.

The dispersion relation, near where the growth rate is max-
imum, of the Langmuir-beam mode is also often consider-

ably different from the Langmuir dispersion relation (Fig-

ures l(f) and 2). Figure 2 shows the dispersion relation near
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maximum growth for beams with various beam densities

nb/no but constant beam speed vb/Ve = 10 and tempera-

ture Tb/T¢ = 1; the Langmuir-beam connection takes place

near rib�no = 5 x 10 -4. Stringent conditions on rib�no are

apparent for the dispersion relation to be closely Langmuir-
like: nb/no should be at least a factor of 10 less than that

beam density satisfying the O'Neil and Malmberg criterion
(6), i.e., nb/no < 5 x 10 -5. This rule should be of great
practical importance: for the above warm, relatively small

velocity beam one requires nb/no < 5 x 10 -5, and for faster,

colder beams one requires even more dilute beams; however,
in most laboratory and space science applications (e.g., the
Earth's foreshock, but not Type III solar radio bursts) one
expects nb/no>_10 -3.

This sub-section may be summarized as follows: (1) The
unstable waves do not have the Langmuir dispersion rela-

tion, except in the limit of a very dilute beam with growth

on the Langmuir-beam mode: n_/no < 5 x 10 -5 for vb/V_

._10 and T,/T_%l. (2) In most applications growth should

occur on the beam mode (reactive) or modified-beam mode

(kinetic). (3) The properties of the unstable waves depend

strongly on the beam parameters, such as beam density,
speed, and temperature. (4) The frequency of maximum

growth frequently lies either significantly below or above fv,
and is significantly different from the frequency predicted

by the Langmuir dispersion relation.

3.2 Growth significantly above and below fp

Figures 1 and 2 show that the frequency of maximum

growth for the beam instability often lies below fp, despite
the conventional belief (due to the idea that growth oc-

curs on the unmodified Langmuir mode) that growth oc-

curs above fp. Effective growth well above or below fp
is due to the strong dependence on beam parameters of

the dispersion relations of the beam, modified-beam and

Langmuir-beam (unless the beam is very dilute) modes,
and the non-Langmuir nature of these modes' dispersion

relations. Figure 3 illustrates the roles of beam speed, tem-

perature and density in determining the real frequency at

maximum growth wm (Ref. 9). Growth significantly be-

low wp generally (except as in Figure 2) requires growth

to occur on the beam (reactive) or modified-beam (kinetic)

modes. For high beam speeds (vb/V_ > 20) wm becomes
approximately constant, equal to w, say, and dependent

only on nb/no. For fixed beam density and temperature,
decreasing the beam speed causes Wm to increase above w,

once va/V_%lO, and subsequently to decrease towards zero

frequency once vs/Ve %2, provided the beam temperature is
sufficiently small. This increase in Wm above w, increases

with decreasing rib�no until nn/no " 1O-s. Increasing the
beam density corresponds to moving the entire curve in

Figure 3, especially w,, to lower frequencies: note that

for nn/no:_lO -a ,w,%0.99wp. For warm beams (e.g., the

dashed curves) damping overcomes growth before Wm can

increase substantially above w,, and certainly before wm

decreases towards zero frequency. This Figure provides a

natural explanation for waves observed at frequencies sig-

nificantly above and below w v in the Earth's foreshock (see
Refs. 8, 9).

There are therefore two primary ways to obtain growth sig-
nificantly below wv: dense beams or cold, slow, relatively

dilute beams. Growth significantly above wr requires rela-

tively slow (2%vb/Vt%lO) and dilute (since otherwise w, is
well below wt) beams which may be either cold or warm.

Detailed conditions for reactive or kinetic growth well above
or below w v are given in Ref. 9.

4. DISCUSSION

Due to length restrictions the discussion is restricted to

the following two points: (A) The results of this pa-

per indicate that, due to the assumption of the Langrnuir
dispersion relation in derivations of the Zakharov equa-

tions (e.g., Ref. 2), and the neglect of particle bunching

effects therein, the Zakharov equations are valid only un-

der stringent circumstances: ns/no%lO -4 for vb/V_ > 10

and Ts/T_%IO. (B) The generally non-Langmuir disper-

sion relations, and tendancy for maximum growth to oc-

cur below wp, of waves growing by the beam instability

imply kinematic difficulties for non-linear wave processes.
For example, frequency and wavevector conservation for the

Langmuir wave decay L ---+L' + S (L denotes the electron

.plasma wave, while S is an ion acoustic wave) is impossi-

ble when nb/no>_lO -a since wm is below wv, yet w_ (the

backward propagating wave) is greater than Wp (Ref. 6). A
more detailed discussion is given in Ref. 6.
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Figure 1. Plots of the dispersion relation and growth rate for the growing mode (full line),

damped beam mode (dashed line), Langmuir mode (dotted line), and Langmuir-beam

mode (dash-dot line) for various beam temperatures. For parts (a) to (f) Tb/T, equa/s

0.017, 0.067, 0.33, 1.0, 1.5, and 1.67, respectively. The fixed beam parameters are

nb/no = 10 -s, ,b/V, = 10, and Te/Ti = 3.
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Figure 2. The dispersion relation of the Langmuir-beam

mode as a function of rib�no: 5 × 10 -4 (full

line), 10 -4 (dashed), 5 × 10 -5 (dash-dot), and

10 -5 (dotted). Here vb/V_ = 10, Tb/T, = 1,

and T,/Ti = 3. Connection of the Langmuir

and beam modes occurs near nb/no = 5 x 10 -4.

The mode has the dispersive characteristics of

the Langmuir mode for rib�no < 10 -s.
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The frequency of maximum growth, win, as a

function of vb/V, for nb/n o = 10 -2 and various

beam temperatures. For high beam speeds tOm

is approximately constant, equal to w,, and pri-

marily dependent only on the beam density. If

the beam is sufficiently cold, oJ,,_ first increases

above and then decreases below w, as vb/Ve de-
creases.


