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INTRODUCTION AND PRESENTATION PLAN 

The purpose of this presentation is to update the status report on optimization by decomposi- 
tion research under way at NASA LaRC given at the predecessor meeting of this symposium 
in 1984. The update is focused on three developments: completion of a large scale demonstra- 
tion of hierarchic decomposition applied to a transport aircraft, determination that the top- 
down decomposition is limited to hierarchic systems, and a proposed new algorithm for op- 
timization by decomposition applicable to non-hierarchic systems. ( Fig. 1 .) 

LIMITATIONS OF THE APPROACH. 

NON-HIERARCHIC SYSTEMS: ATTRIBUTES A SOLUTION SHOULD HAVE. 

A NEW ALGORITHM PROPOSED AS A SOLUTION. 

CONCLUSIONS. 

HIERARCHIC COMPOSITION APPLIED TO TRANSPORT AIRCRAFT. 

Figure 1 



OPTIMIZATION BY LINEAR DECOMPOSITION: ITS USEFULNESS AND 
LIMITATIONS 

Parent Linear estimate of daughter 

Implementation and application experience with optimization by linear decomposition has 
been reported several times since introduction of the concept in ref.1. The concept applies to 
systems amenable to a hierarchic representation as shown in Fig.2a. In such applications, the 
general flow of information takes the analysis results from a parent to the daughters, and the 
optimization results and their sensitivity to the parameters received as parent output are trans- 
mitted back to the parent as seen in Fig.2b. This approach was successful in formulating struc- 
tural optimization by substructuring in ref.2, and in solving a very large multidisciplinary op- 
timization problem related to a transport aircraft design reported in ref.3 and summarized in 
the next three figures. 
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A TRANSPORT AIRCRAFT CONFIGURATION 

A version of the LlOl 1 was used as a test case in ref.3. The configuration and its finite-element 
model representation are shown in Fig.3. The objective function was the block fuel consump- 
tion for a particular mission profile, the constraints were drawn from structures, and aircraft 
performance, and the design variables were cross-sectional dimensions of stiffened wing 
covers, stiffness-equivalent wing cover membrane element thicknesses, and the airfoil depth- 
to-chord ratio at the three decomposition levels shown in the next figure. There were more 
than 1000 design variables, constraints, and elastic degrees of freedom in the finite-element 
analysis, so the problem was quite large as far as nonlinear programing optimization is con- 
cerned. 

Typical transport (L1011) and its finitelelement model 

Objective: minimize fuel used for a given mission 
Large, multidisciplinary problem 

and performance 

dimensions to airfoil depth 

1950 constraints for structures, aerodynamics, 

1303 design variables from detailed stringer 
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TRANSPORT AIRCRAFT LINEAR DECOMPOSITION 

The objective function and system performance are represented in box 1 on the top of the 
hierarchy shown in Fig.4 that also displays the type of information transmitted between the 
levels. The mid-level consists of the wing box represented by an assembly of rods and 
membrane elements, the latter having orthotropic stiffnesses to account for their stringer- 
sheet construction. The stringer-sheet detailed dimensions were recognized as design vari- 
ables at the lowest level where each wing cover panel was considered as a separate optimiza- 
tion problem. 
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SAMPLE OF TRANSPORT AIRCRAFT RESULTS 

Test optimizations were performed from design points deliberately initialized away from the 
existing LlOll design in both feasible and infeasible directions. Two typical results shown in 
Fig.5 indicate convergence at a quite fast rate to the same results very close to the existing 
design. Since the subject design was well established and previously optimized by other means, 
the convergence to the existing design constituted a positive test of the method which 
demonstrated that it is possible to link mathematically a design detail at the bottom of the 
hierarchy to the system performance at the top in a large problem. 

Several other examples of multilevel optimization are reviewed in ref.4 of this symposium. 
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MANY SYSTEMS ARE NOT HIERARCHIC IN NATURE 

An example of a system not amenable to a hierarchic decomposition just discussed is a net- 
work system whose generic example is shown in Fig.6a. Each box labeled CA k for Contribut- 
ing Analysis represents an analysis module contributing to the entire system analysis. A CA 
may be associated with a particular aspect of the system behavior or may represent a physical 
subsystem. In either case, it is treated as a black box converting input into output. The input 
consists of outputs from the other CA’s, and of the design variables and constants prescribed 
externally to the system. 

A specific example for a system like this is given in Fig.6b showing a schematic of an actively 
controlled, flexible wing described in r e f 5  Although one would tend to place the PERFOR- 
MANCE at the system level, the presence of the lateral link between AERODYNAMICS and 
STRUCTURES and the two-way flow of information along other links preclude decomposi- 
tion of this system into a top-down, hierarchic structure because one cannot limit the inputs 
received by a daughter to those from one parent only. Conversely, it is no longer possible to 
have a unique channel of influence between a daughter and the corresponding parent because 
part of the daughter influence may be channeled through another daughter. 

Hence, another way of decomposition must be found for network systems and this inspires a 
non-hierarchic approach. The remainder of this paper presents a new algorithm derived from 
that approach. The algorithm addresses large design problems in which each CA may, typical- 
ly, be tended by a group of engineers within a framework of design organization. In that set- 
ting, it is recognized that organizational and human cooperation issues are as important as the 
mathematical computational aspects of the problem. 

Performance 

Aerodynam Active control 

Figure 6 
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SYSTEM 0 PTI M IZATl ON PR OB LE M DE FI NlTlO N 

An optimization problem for the system presented in Fig.6 is defined in Fig.7. It calls for find- 
ing a set of design variables X that minimizes an objective function F(Y,X,P) subject to con- 
straints g(Y,X,P). The F and the g functions are assumed to be computed within the ap- 
propriate CA’s from the behavior variables Y which are the unknowns in each CA, e.g, dis- 
placements in a stiffness-based finite-element analysis. The constants are denoted by P. 

If the system optimization were to be solved as a single problem, the procedure schematic 
might look like the one at the bottom of Fig.7. 
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NEED FOR A NEW PROCEDURE FOR NETWORK SYSTEM OPTIMIZATION 

For a large application, the single optimization problem approach is obviously impractical. It 
needs to be replaced by a procedure specifically tailored to meet: the requirements of an en- 
gineering design organization it is intended for. Experience with computational support 
needed in industrial design processes suggests that at least the following major requirements 
be met. (Fig.8.) 

PROCEDURE SHOULD DEFINE A SYSTEM FEASIBLE IN ALL ITS PARTS 
AND ASPECTS, IMPROVED IN ITS PERFORMANCE OVER THE INITIAL 
STATE. 

SHOULD BE MODULAR AND DIVIDED TO THE GREATEST EXTENT 
POSSIBLE INTO CLEARLY SEPARATEDTASKS ASSIGNEDTOSPECIALTY 
GROUPS THAT MAKE UP A DESIGN ORGANIZATION WHICH MAY BE 
GEOGRAPHICALLY DISPERSED. 

SYSTEM ANALYSIS, SENSITIVITY ANALYSIS, AND OPTIMIZATION 

SYSTEM ANALYSIS REPETITIONS SHOULD BE AS FEW AS POSSIBLE. 

EACH GROUP SHOULD BE QUANTITATIVELY INFORMED ABOUT THE 
INFLUENCE THEIR DESIGN DECISIONS HAVE ON THE OTHER GROUPS’ 
TASKS AND ON THE SYSTEM OBJECTIVES WHILE RETAINING 
RES PONS1 BI LlTY FOR ITS RESULTS. 

AND OPTIMIZATION, AND USE OF OTHER SOURCES OF INFORMATION 
IN LIEU OF CALCULATIONS, SHOULD BE ADMISSIBLE IN EACH GROUP’S 
TASK. 

GROUPS SHOULD BE ABLE TO DO THEIR WORK CONCURRENTLY TO 

SPECIALIZED METHODS IN ANALYSIS, SENSITIVITY ANALYSIS, 

THE GREATEST EXTENT POSSIBLE. 

AND SUPPORTED. 

ENTIRE TASK AND ADJUSTABLE TOTHE DEPTH OF DETAIL CONSISTENT 
WITH THE DESIGN STAGE. 

HUMAN JUDGMENT AND INTERVENTION SHOULD BE ACCOMMODATED 

PROCEDURE SHOULD BE OPEN-ENDED REGARDING THE SIZE OF THE 

Figure 8 

59 



NEW ALGORITHM DERIVES FROM SUBSPACE OPTIMIZATION METHOD 

It should be possible to meet the above requirements by following an approach suggested by 
the well-known method of subspace optimizations (SSO). The method changes a subset of the 
design variable vector at a time, while holding the remainder of the vector constant. The 
univariate search is its ultimate implementation. However, the conventional subspace op- 
timization technique requires repetition of the full system analysis for each subspace that may 
be cost-prohibitive in large systems. Also, it does not provide for concurrent execution of' the 
separate subspace optimizations - a feature regarded as essential for applications in engineer - 
ing design process. Therefore, the technique must be modified to reduce computational cos! 
and to allow for concurrent optimizations. 

The algorithm implementing the above modifications will be presented as a "walk through", 
with a rationale for each step given as the steps unfold, building toward a complete flowchart. 
(Fig. 9 .) 

CONVENTIONAL SUBSPACE OPTIMIZATION METHOD MANIPULATES 
ONE SUBSET OF DESIGN VARIABLES AT A TIME, HOLDING THE OTHER 
SUBSETS CONSTANT. 

UNIVARIATE SEARCH IS THE ULTIMATE OF THE ABOVE. 

IN THE PROPOSED ALGORITHM, SUBSPACE OPTIMIZATION METHOD IS 
MODIFIED TO ELIMINATE THE NEED FOR FULL ANALYSIS FOR EACH 
SUBSPACE, TO ALLOW CONCURRENT OPTIMIZATIONS IN SUBSPACES, 
AND TO MEET OTHER SPECIFIED REQUIREMENTS. 

Figure 9 



SYSTEM ANALYSIS 

The system optimization procedure begins with a system analysis (SA) presented in Fig.10. 
The superscripts identify the CA’s and the corresponding partitions of Y and X. In the most 
general case, the system may be fully coupled, so that each CA sends its output Y to input in 
every other CA. However, in most practical cases, a particular CA transmits some of its Y ele- 
ments to some of the other CA’s. If there are two-way couplings and if the CA’s involved are 
non-linear, the SA requires iterations for its solution. A typical example is an iteration be- 
tween nonlinear aerodynamic and structural analyses to converge the aerodynamic loads and 
structural displacements of an elastic wing. 

In most applications, the CA’s are simply computer programs, but they may also represent ex- 
periments, graphs, look-up tables, or even guesstimates, in other words, a CA may be any source 
of information producing output in response to an input presented to it. 
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Figure 10 
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SYSTEM SENSITIVITY ANALYSIS 

Following the SA, we perform a system sensitivity analysis (SSA) to compute the system sen- 
sitivity derivatives (SSD). These derivatives are defined in Fig.11, Eq.1. Each derivative is a 
measure of the influence of a particular design variable X on a particular behavior variable Y. 
It is crucially important to have these influences computed to fully account for the couplings 
among the CA's. This may be accomplished per ref.6, by computing for each CA the partial 
sensitivity derivatives of its output w.r.t. its input, the input including the Y's received from 
the other CA's and those X variables which are directly input into that CA. Any sensitivity 
analysis techniques appropriate for the nature of a particular CA may be used in this opera- 
tion, including finite difference procedures, although analytical and semi-analytical methods 
are preferred for their efficiency and accuracy. It is important for the organization of this phase 
of the sensitivity analysis that the partial sensitivity derivatives may be computed concurrent- 
ly for all the CA's. 

The partial derivatives enter the matrix of coefficients and the right hand side vectors of a set 
of simultaneous, linear, algebraic equations termed Global Sensitivity Equations (GSE) in 
ref.6 and shown in Fig. 11, Eq.2. Solution of these equations yields a vector of the system sen- 
sitivity derivatives for each design variable X represented on the right hand side. Having the 
derivatives of Y with respect to X available, enables one to also obtain the derivatives of the 
F and g functions with respect to X by simple postprocessing. These derivatives measure the 
first order influence of each design variable on the objective function and all constraints in the 
system, even though the influences may be indirect. As we will see later, this capability plays 
a key role in decomposing the system for optimization purposes while retaining a degree of 
coupling. 
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ORGANIZATION OF SEPARATE SUBSPACE OPTIMIZATIONS (SSO) 

For optimization purposes it is necessary to partition the vector X into subsets to be used in 
the separate optimizations replacing the large, original problem. The intent is to have each 
separate optimization involve only one CA. The allocation of the X partitions (subsets) to the 
corresponding separate optimization problems must be unique, and may be accomplished by 
heuristics augmented with the sensitivity information carried by the system sensitivity deriva- 
tives. The derivatives may be used to rank the variables X in order of the degree of their in- 
fluence on the constraints and contributions to the objective function computed in each CA. 
This information, used judiciously, should guide the allocation decisions. For instance, under 
that approach we might find an X variable representing the cross-sectional area of a wing spar 
cap as the most influential on the wing strength constraints, hence that X would be allocated 
to the structural optimization. On the other hand, the X governing the wing span might be 
found to exert a strong influence on both the wing strength and aerodynamic constraints and 
so, in keeping with tradition, it might be judgmentally assigned to the aerodynamic optimiza- 
tion. (Fig. 12.) 

ONECA 

SUBSETOFX 
SINGLE CUMULATIVE CONSTRAINT REPRESENTING ALL CONSTRAINTS 
DERIVED FROM CA. 

CARRIED OUT BY A GROUP OF SPECIALISTS, E.G., WING PLANFORM 
OPTIMIZATION - AERODYNAMICS GROUP. 

Figure 12 
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CUMULATIVE CONSTRAINT 

The cumulative constraint represents by a single number all the g’s computed from the CA as- 
sociated with the SSO. The cumulative constraint is formulated as a Kreisselmeier-Steinhauser 
function (KS function), Eq.1, per ref.7. The derivatives of the KS function with respect to a g 
are obtained analytically and combined in a chain differentiation with the derivatives of the g 
with respect to X to yield the derivatives of the cumulative constraint with respect to X, Eq.2. 

Knowing the system solution, its sensitivity to design variables, and having organized the design 
variables and CA’s in separate optimization problems, we may now begin the optimizations. 
(Fig. 13.) 

Kreisselmeier-Stein hauser function: 
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SUBSPACE OPTIMIZATION (SSO) 

The subspace optimizations are temporarily decoupled and executed concurrently - their cou- 
pling will be restored in the coordination problem. Here, we focus on one particular, k-th, 
sso. 

In the SSO, we want to reduce violation of the cumulative constraint of the k-th SSO at the 
least penalty of the system objective function increase, or, if the cumulative constraint is al- 
ready satisfied, we want to reduce the system objective function as much as possible without 
violating that constraint. Remembering that we operate on a part of a system, we want to do 
the above while contributing to the reductions of the violated cumulative constraints in the 
other SSO’s and without causing violation of the satisfied cumulative constraints in the other 
SSO’S. 

Recognizing that the cumulative constraint of the k-th SSO is going to get a similar considera- 
tion in the other, concurrently executed SSO’s, we need to aim at reducing the violated cumula- 
tive constraint by only a fraction, counting on the other SSO’s to reduce the remainder of the 
violation. By the same token, we may even allow the cumulative constraint to remain violated, 
provided that violation is offset by influence of the other SSO’s. 

Formally, all the above is expressed by a formulation shown in Fig.14. When the SSO’s are 
concluded, the results are new X’s, new values of the C’s, and a new value of F. 

k min F(X ) subject to 
C p ,  CpOsp (l-rkp)+ ( l - s  P P  ) t k ; p = l , N S S  

k k k  x p x  ‘ X ”  

If CAk contributes to F indirectly, then 

F = Fo + 2 (dFiidX F) AX F 
i 

Ck from CAk using Y = Yo+c (dY/dX:)AXk 
for coupling inputs i 

Cp , p f k, from Cp= CpO + 

r P P  , t are constants; variables in coordination problem k k  
sp is a “switch’koefficient, 0 or 1 

Figure 14 
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COMMENTS ON SUBSPACE OPTIMIZATION FORMULATION - COEFFICIENTS r 

Owing to the system sensitivity derivatives, we are in a position to account for the influence 
we exert on the objective function of the system while performing an SSO, even if that SSO 
has no direct influence on that function. By the same means, we are able to consider the ef- 
fect of the decisions taken in one SSO on the constraints in the other SSO’s. This cross -in- ‘ 

fluence is represented bv linear extrapolations and is the kev feature of the proposed ap- 
poach. It enables all participants in design of a complex svste m to work in concert toward im- 
proving the des ign - of the entire svstem while remaining on the familiar mounds of their own 
specialty d o m m  

In a system, the p-th violated cumulative constraint may be satisfied not only by the X-setting 
decisions taken in the p-th SSO but also by such decisions taken in the other SSO’s owing to 
the couplings among the CA’s. For instance, overstress in a wing spar may be reduced partial- 
ly by spar cap resizing (structural SSO) and partially by decreasing the wing aspect ratio 
(aerodynamic configuration SSO). To account for this, we introduce coefficients r to repre- 
sent the “responsibility” assigned to the k-th SSO for reducing the violation of the cumulative 
constraint of the p-th SSO. For this purposes, the violated constraint value normalized to unity 
is divided into fractions r pk . The superscript identifies the constraint and the subscript points 
to the SSO responsible for its partial reduction. Of course, all the rpk fractions must add up 
to unity when summed over k for a given p - that requirement is built into the coordination 
problem (to be defined later) in which these coefficients appear as variables. For each cumula- 
tive constraint there are NSS coefficients rpk , so for NSS cumulative constraints we have a 
total of NSS such coefficients. It is logical to use the sensitivity information to initialize the 
r coefficients making them proportional to the degree of influence exerted by the k-th SSO on 
the p-th cumulative constraint. That initialization is discussed in the Appendix. (Fig. 15.) 
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COMMENTS ON SUBSPACE OPTIMIZATION FORMULATION - COEFFICIENTS t. 

Extending this reasoning to the case of the p-th cumulative constraint being critical for the 
given X, we should account for the possibility of further reducing the objective function by let- 
ting that constraint become somewhat violated in the p-th SSO, provided that the violation 
will be offset by oversatisfaction of that constraint in the k-th SSO. For example, should we 
find the wing spar stress constraint at zero (critical) in the structural SSO, we may let the stress 
rise above the allowable value thus reducing the spar cross-sectional area and weight, if we in- 
struct the aerodynamic SSO to offset that violation by oversatisfying the same constraint by 
reducing the wing aspect ratio at the price of the induced drag increase. If the wing spar weight 
reduction more than offsets the induced drag increase with respect to a measure of the aircraft 
performance, then this is a positive trade-off the procedure ought to be able to recognize. To 
account for that type of trade-offs, we introduce the coefficients tpk whose number equals 
NSS2 . For the p-th cumulative constraint, the sum of these coefficients over k must be zero, 
to keep the constraint in the critical, but not violated, status. This condition is enforced in the 
coordination problem where the coefficients t appear as variables. (Fig. 16.) 

SSOI SSO* S S O ~  S S O ~  

Figure 16 
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COMMENTS ON SUBSPACE OPTIMIZATION FORMULATION - COEFFICIENTS s 

Coefficient sp is a switch. It is set to 1 if the corresponding Cp is violated at the outset of the 
system optimization procedure and stays at 1 until the Cp is driven to a critical status (zero 
value). Then, the coefficient sp is reset to 0 and stays at 0 until the system optimization pro- 
cedure terminates. Thus, the s coefficient enables the term containing rpk and disables the 
term containing tpk while the Cp violation is in the process of being reduced and vice versa 
after that violation has been eliminated. There is one coefficient sp per Cp for the total of 
NSS coefficients s. 

In summary, Eq.2 in Fig.14 works as follows. When the p-th cumulative constraint is found 
violated, its value Cpo is a positive number to be driven toward zero. This is done by dividing 
that number into fractions proportional to the r coefficients and by reducing each fraction 
toward zero independently in each separate SSO. The coefficients t set to zero and turned off 
by the s-switch do not interfere with that process. When the p-th cumulative constraint is 
reduced to zero (attains critical status), it is allowed to be violated in some SSO’s and over- 
satisfied in other SSO’s, provided that the violations and oversatisfactions are beneficial to the 
objective function and that they balance to zero so that the Cp critical status is preserved. This 
phase is controlled by the t coefficients while the r coefficients are turned off by the s-switch. 
(Fig. 17.) 

C b  0 at the outset of the 
System Optimization Procedure 
and 

Cp was never reduced to - e 0 since then 
and 

C b  0 in the last SA 

I Otherwise, sp= 0 
Figure 17 



COMMENTS ON SUBSPACE OPTIMIZATIONS - CA AND EXTRAPOLATIONS 

from extrapolations 

In the k-th SSO, the cumulative constraint ck is evaluated from the g values obtained from 
the CAk associated with that SSO while explicit form extrapolations are used to evaluate the 
other Cp’s where p is not equal to k. That affords flexibility in choosing the ways each SSO is 
to be carried out - no uniformity is required at all. Optimization methods specialized for a 
particular discipline or a physical subsystem may be used, e.g., the optimality criteria for struc- 
tural optimization. By the same token, a variety of techniques are admissible, such as the use 
of approximate, gradient-based analyses in the optimization loop, reciprocal variable replace- 
ments, etc. Instead of the direct extrapolation of C, one may also improve accuracy by first ex- 
trapolating the g’s using their derivatives w.r.t. X and, then, substitute the new g’s into the KS 
function to obtain a new C. 

Judgmental intervention by the engineers into the optimization process is entirely acceptable 
too. 

Regardless of the procedure, the SSO involves a CA representing the high accuracy knowledge 
and a set of extrapolations representing the approximate, first-order accuracy knowledge about 
the cross-influences on the other SSO’s and on the system objective. Using an aerodynamic 
wing planform optimization as an example of an SSO, a group of aerodynamicists would 
proceed with their customary task while agreeing to include as an augmentation of that task a 
package of simple extrapolation formulas to inform them about the effects of their decisions 
on strength, control, performance, etc. (Fig. 18.) 
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Figure 18 
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OPTIMUM SENSITIVITY ANALYSES (OSA) 

The SSO’s were executed with the constant coefficients r and t with unique subsets of X but 
with a common system objective function F. Consequently, the constrained minimum of F so 
obtained is a function of the constants r and t, and its derivatives with respect to r and t exist 
in the sense of refs. 8 and 9. Per ref.9, the derivatives are computed from the expressions shown 
below using the gradient information for the F and C functions. The gradient information with 
respect to the X’s is available at the conclusion of the SSO’s, provided that a gradient-guided 
optimizer was used in these optimizations. The gradients with respect to the r’s and t’s are 
trivial to obtain owing to the simplicity of Eq.2 in Fig.14. 

Once the derivatives of F are available, the F function may be approximated in terms of r’s 
and t’s by’means of a linear extrapolation shown in Fig.19. The extrapolation will be useful in 
formulation of a coordination problem. 

Shorthand: z r or t 
Lagrange multipliers h from 

-I 
h [VkCTVkC ] vkcTvkF (1) 

d( 1 . C = { C  P }; where Vk = 
d X k ’  

Optimum sensitivity derivative of F 
simplifies to 

i o  aF because - az i 
Extrapolation of F w.r.t. the z’s 

Figure 19 



COORDINATION OPTIMIZATION PROBLEM (COP) 

In the coordination problem we seek new values of the coefficients r and t, adjusted so as to 
further reduce the objective F. In view of the linear extrapolation of F introduced in the pre- 
vious figure, the problem is a simple case of linearprogramming shownlbelow.’The constraints 
in Eq.2 represent the division of responsibility for the constraint violation reduction allocated 
to various SSO’s, and the constraints in Eq.3 pertain to the constraint violation-oversatisfac- 
tion trades among the SSO’s. Since the t’s may be positive and negative, they would have to 
be expressed as differences of positive variables, if a standard form of linear programing were 
used to solve the problem. The move limits in Eq.5 and 6 may be needed due to nonlinearities 
of the original problem. 

Execution of the COP follows every round of the SSO’s in an iterative fashion. In the first COP 
execution, the r’s may be initialized as suggested in the Appendix and the t’s are initialized to 
zero. In every subsequent execution, the r’s and t’s are initialized to the terminal values from 
the previous COP execution. Judgmental intervention into the setting of the new r’s and t’s is 
quite acceptable, indeed, anticipated as a result of a teamwork among the groups responsible 
for the individual SSO’s. 

The result of the COP execution is a new set of the r’s and t’s to be used in the next SSO’s. The 
adjustment of the r’s and t’s to the new values amounts to a reassignment of the responsibility 
for eliminating the constraint violations among the SSO’s and to issuing a new set of instruc- 
tions about trading the constraint violations-oversatisfactions among these SSO’s. The ex- 
pected result is a reduced value of F in the next round of SSO’s. (Fig. 20.) 

P P  min F ( r k ,  t k )  

F = Fo+ 
P 

subject to: C r k = I  P 

k 

O S r k 5 l  P 

L P  < t P < U P  tk - k - tk 

Figure 20 
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SYSTEM OPTIMIZATION PROCEDURE - BIRD EYE VIEW 

/ Not satisfied 5 ............................ System sensitivity analysis: 

These operations form an iterative procedure shown below in a Chapin-format flowchart, 
The Appendix provides more detail on the r initialization, special provisions forthe case of an in- 
feasibility remaining at the conclusion of the SSO's, and the usage of the coefficients r, t, and 
s. (Fig.21.) 

/ / No Yes 
Allocate X's to SSO's; init. r's 5 1 Subspace optimizations (SSO's) 5 Update X's, F, C's 

/, Optimum sensitivity analysis (OSA) 

Start 
Initialization of X, r's and t's; 

v j  System analysis SA I 
I / I  - - I 

y/1 Termination criteria 

I / I  I 

Coordination optimization problem 
(COP). Update r's, t's 

I / I  = 1 

Satisfied 

Concurrent 
operations 

- - 

Figure 21 
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DEMERITS AND MERITS 

The procedure proposed has not been tested yet, but some demerit/merit remarks 
(demerits first to end on a positive) may be offered on the basis of experience with other 
decomposition-based algorithms. (Fig.22.) 

DEMERITS 

-LINEARIZATION MAY REQUIRE NARROW MOVE LIMITS. 

-ACTIVE CONSTRAINT SWITCHING MAY CAUSE ERRORS IN OPTIMUM 
SENSITIVITY DERIVATIVES. 

MERITS 

-EFFICIENCY: NO FULL SYSTEM ANALYSIS FOR EACH SUBSPACE. 

-COUPLINGS REDUCED TO SENSITIVITY ANALYSIS AND LP OPTIMIZA- 
TION. 

-MODULARITY 

3PEClALlZED METHODS ADMISSIBLE IN SENSITIVITY AND SUB- 
SPACE 0 PTI MlZATlO NS. 

GROUPS. 
S U B S P A C E  OPTIMIZATIONS MAY CORRESPOND TO SPECIALTY 

-GROUPS COMMUNICATION PRECISELY DEFINED. 

-CONCURRENT SENSITIVITY ANALYSES AND SUBSPACE OPTIMIZA- 
TIONS. 

-HUMAN JUDGMENT AND INTERVENTION ADMISSIBLE. 

-RECURSIVITY: ANY CA MAY BE A COUPLED SYSTEM ITSELF. 

Figure 22 
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ALTERNATIVE: LINEAR PROGRAMING WITH RESPECT TO X 

An obvious alternative to this procedure is to use the system sensitivity derivatives as a 
basis for linearizing the entire system optimization problem with respect to X without decom- 
posing it into the subspace optimizations (SSO’s), thus eliminating the coordination optimiza- 
tion (COP) and the optimum sensitivity analyses (OSA) needed for it. That would reduce the 
flowchart to the one shown below. 

This alternative is attractive for its simplicity, and the experience reported in ref.10 with a 
similar scheme has been encouraging. However, the alternative forces the use of approximate 
information across the board while the procedure proposed herein allows the optimization to 
access exact analysis directly and relies on the linear extrapolation only insofar as the evalua- 
tion of the coupling effects is concerned, hence, its convergence is expected to be faster. Also, 
the alternative loses the advantage of being able to use specialized methods and human judg- 
ment in the subspace optimizations and the managerial convenience of having these optimiza- 
tions performed by the groups into which a design organization splits naturally. (Fig. 23.) 
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CONCLUSIONS 

Optimization of a large and complex engineering system has been considered in a design or- 
ganization setting that requires the work be divided among the groups of specialists repre- 
senting disciplines and physical subsystems. Each group’s task may be coupled to any other so 
that the system is laterally coupled (a network system) and its optimization problem does not 
lend itself to the hierarchic decomposition previously introduced in the literature. 

A new, non-hierarchic decomposition is formulated for this system optimization. Its in- 
gredients are system analysis, system sensitivity analysis, temporarily decoupled optimizations 
performed in the design subspaces corresponding to the disciplines and subsystems, and a coor- 
dination optimization concerned with the distribution of responsibility for the constraint satis - 
faction and design trades among the disciplines and subsystems. The approach amounts to a 
variation of the well-known method of subspace optimization modified so that the analysis of 
the entire system is eliminated from the subspace optimization and the subspace optimiza- 
tions may be performed concurrently. It is evident that for convex problems each iteration of 
the procedure improves the design in terms of either reducing the constraint violations or 
reducing the objective function if the constraints are satisfied. However, the procedure is 
based, in effect, on a linearization approach to a problem that may be, in the general case, non- 
linear, hence no problem independent assertions can be made regarding the procedure con- 
vergence. 

No operational experience with the procedure is available as yet, hence this presentation is in- 
tended to be a blueprint for research development and it suggests a set of specifications for 
consideration in other developments addressing the same problem. (Fig. 24.) 

FOR LATERALLY COUPLED (NETWORK) SYSTEM. 

IT IS BASED ON SYSTEM ANALYSIS, SENSITIVITY, INTERDISCIPLINARY 
SHARING OF THE RESPONSIBILITY FOR CONSTRAINT SATISFACTION, 
AND SEPARATE, TEMPORARILY DECOUPLED, CONCURRENT 
0 PTI MIZATIONS. 

FORMULATED AS LINEAR PROGRAMMING. 

NEW, NON-HIERARCHIC DECOMPOSITION HAS BEEN FORMULATED 

THE COUPLING IS REPRESENTED IN A COORDINATION PROBLEM 

LINEARIZATION ERRORS ARE A POTENTIAL DRAWBACK. 

PROPOSED PROCEDURE IS RECURSIVE. 

IT IS COMPATIBLE WITH DIVISION OF DESIGN ORGANIZATION INTO 
SPECIALTY GROUPS. 

METHODS. 
IT ALLOWS THE USE OF SPECIALIZED ANALYSIS AND OPTIMIZATION 

PROPOSED PROCEDURE AWAITS IMPLEMENTATION AND TESTING. 

Figure 24 

75 



APPENDIX 

Initialization of the r Coefficients 

The coefficients may be initialized on the basis of the sensitivity information so as to assign a 
greater responsibility for a cumulative constraint satisfaction to those SSO’s that have rela- 
tively greater influence on that constraint. From the system sensitivity analysis (SSA) we know 
the derivatives of the cumulative constraints in each SSO. For the k-th SSO we have 

The above derivatives collected for all SSO’s form a matrix 

Consider the p-th column of the above matrix and select 

Repeating the above for k = 1 + NSS, we assemble thq aPk7s in a vector normalized such that 

This vector has an element equal to a unity at the location where the maximal apk appeared 
and elements smaller than unity everywhere else. The vector is now scaled so that its elements 
add up to unity and renamed a vector of the coefficients rPk 

Elements of the above vector of length NSS may be used as initial values for the rPk coeffi- 
cients. The total number of the r coefficients for p = 1 -+ NSS is NSS2. 

Failure of Finding a Feasible Design in an SSO 

The procedure requires that each SSO ends with a feasible solution because the optimum sen- 
sitivity analysis that follows it is meaningful only at a constrained optimum. Because of the use 
of the move limits required by linearization it may not be possible to meet that requirement 
when beginning with an infeasible initial design. 

In the above case, one possible way to circumvent the difficulty is to use a constraint relaxa- 
tion technique described in ref.11. The technique temporarily relaxes the violated constraints 
to bring them to a critical state and thus satisfies the formalism of a constrained minimum. The 
relaxation is gradually removed in the subsequent iterations to yield design feasible in  a true, 
physical sense. 
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Another solution readily available in the procedure itself is to reset temporarily an appropriate 
coefficient t to remove the offending constraint violation. That arbitrary resetting will have the 
same effect as the technique from ref. 11 and it will cause a violation of the constraint that re- 
quires that all the tpk coefficients summed over k add up to zero in the coordination optimiza- 
tion problem (COP). This violation will force a resetting of the t coefficients in the process of 
solving the COP toward satisfying the violated cumulative constraint by a collective influence 
of all the SSO’s that affect it. 

The r, t, and s Coefficients in System Optimization Procedure 

With the entire System Optimization Procedure laid out in a flowchart format, it may be il- 
luminating to elaborate on the way the procedure is controlled by the coefficients r, t, and s. 

The simplest situation occurs when a Cp lis found satisfied after the first SA. Then, its sp is set 
to 0 and that, in conjunction with its tPk ’s that always are initialized to 0, makes the SSO’s to 
treat that constraint as an ordinary inequality constraint with 0 on the right hand side. It is like- 
ly that in at least one SSO that constraint will become critical. If so, its tPk ’s will be adjusted 
in the COP and the adjusted values will be used in the next SSO’s. If the constraint never be- 
comes active in any SSO, its t pk ’s remain dormant at the initial setting of 0. 

If a Cp is found critical after the first SA, its s p is set to 0 and in the next SSO’s it is treated 
as an inequality constraint with 0 on the right hand side. Subsequently, its tPk ’s will be adjusted 
in the COP, and the adjusted values will be used in the next SSO’s. 

If a Cp is found violated after the first SA, its sp is set to 1 and its r pk ’s initial values will be 
used in the SSO’s. Had the SSO’s operated on accurate information only, the constraint would 
have been driven to a critical status after the f i s t  execution of the SSO’s and there would be 
no need to adjust its rpk ’s in the next COP. However, due to the approximation errors incurred 
in the SSO’s one cannot rule out that a Cp predicted satisfied or critical in the SSO’s may turn 
out to be still violated after the next execution of the SA (this may occur also due to inability 
of finding a feasible design, as discussed in the preceding section of this Appendix). To prepare 
for that eventuality two actions are taken: the Optimum Sensitivity Derivatives w.r.t. all the r 
and t coefficients corresponding to that constraint are computed in the next OSA, and the con- 
straint rpk ’s are adjusted in the subsequent COP. 

If the SA in the next pass reveals that the Cp is still violated, then the adjusted values of its rpk 
’s will be used in the next SSO to further improve the constraint satisfaction. If the Cp is found 
satisfied, then it undergoes the treatment described above for a satisfied or critical constraint. 

It is apparent from the above that the COP is never executed with a full set of NSS2 variables 
r and NSS2 variables t because the s-switch makes the rPk and tPk mutually exclusive. That 
reduces the dimensionality of the COP. 

On the other hand, the OSA is carried out for each SSO for a full set of the r’s and a full set of 
the t’s, at least at the beginning of the procedure until all the s-switches settle in their final set- 
tings. Using the full sets of r’s and t’s in OSA does not pose a computational cost problem since 
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the partial derivatives w.r.t. these coefficients are trivial to obtain. 
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