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LIST OF SYMBOLS

b Blade semichord
%T Thrust coefficient
Vector of design variables
f(ﬁ Objective function
YF(D) Gradient of objective function or behavior constraints
g(D) Vector of behavior constraints
hs Height of the single cell cross section

[H(BO)] Hessian of objective function or behavior constraints

I Mass moment of inertia of the blade in flapping

J Mass polar moment of inertia of the rotor

[ Length of the elastic portion of the blade

t Thickness of the cross section

VZ K Peak-to-peak value of the 4/rev vertical hub shears, nondimensionalized

P through division by 2021p/2

Offset between the elastic axis and the aerodynamic center, positive for

aerodynamic center ahead of the elastic axis

X1 Offset between the elastic axis and the center of gravity, positive for
center of gravity ahead of the elastic axis

Distance between leading edge and internal wall in double cell cross section

% Chordwise length of the cross section
Blade Lock number
K Real part of hover stability eigenvalue for the k-th mode

Tip sweep angle, positive for backward sweep
Advance ratio

Rotor solidity

Rotor angular velocity

DAE >y X X

1. INTRODUCTION AND PROBLEM STATEMENT

One of the most cost effective solutions to the problem of vibration in rotor-
craft is to design rotor blades with an inherently low vibration level. This can be
accomplished by aeroelastic tailoring the blade, using structural optimization. This
implies that the blade mass and stiffness distributions and its geometry are deter-
mined in such a manner that the vibration levels at the rotor hub are minimized.
Using this approach vibrations are reduced directly at their source, i.e., the rotor.

A thorough review of the literature concerning the use of optimum design tech-
niques in dynamic problems, and particularly in helicopter rotor blade dynamic
design, is presented in ref. (1). A more recent survey has been presented by
Friedmann (ref. 2). These reviews reveal the existence of a very limited amount of
work devoted to the structural optimization of rotor blades for vibration reduction.

In another recent survey Miura (ref. 3) states that it is not unreasonable to
pursue design optimization in areas, such as helicopter vibration reduction, in which
reliable prediction capabilities do not exist yet. Better optimization technology
can be developed and implemented in highly modular computer codes so that new,
improved analysis codes can be easily incorporated as they become available, and the
optimization program can work with the best predictive capability available at any
particular time.
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When the mass and stiffness distributions of the blade are changed to reduce the
vibration levels it is very important to be sure that no degradation of the aero-
elastic stability occurs. This is even more important when tip sweep is added as a
design variable because of its powerful influence on both blade response and stabil-
ity (ref. 4). Prudence mandates the introduction of aeroelastic stability
constraints in the optimum design process. This complicates the design problem
because a fully coupled aeroelastic stability and response analysis has to be com-
bined with the structural optimization program. Only a few studies having this capa-
bility are available (refs. 1,5,6). In refs. (1,5,6) the objective was the
minimization of the 4/rev oscillatory vertical hub shears at an advance ratio y =
0.3. The aercelastic stability constraints required that the fundamental fregquencies
in flap, lag, and torsion fall between pre-assigned upper and lower bounds.

In a study by Peters et al. (ref. 7) two different objective functions were used
to minimize blade weight in one case, and the discrepancy between desired and actual
natural frequencies of the blade. A simplified forced response analysis leads the
authors to conclude that the objective functions used in the study are "adequate" for
vibration reduction purposes, but no comprehensive aeroelastic analysis is performed,
and no stability constraints are imposed on the design.

Davis and Weller (ref. 8) used structural optimization techniques to solve four
different dynamic problems, namely: (a) maximization of the in-plane structural
damping of a bearingless rotor with elastomeric dampers; (b) placement of blade
natural frequencies; (c) minimization of the vibratory hub shears using a simplified
rotor aerodynamic model; and (d) minimization of certain rotor vibration indices.
The rotor analysis codes were directly coupled to the optimization codes. No
aeroelastic stability constraints were considered.

More recent work has also addressed the minimum weight design of rotor blades
with frequency constraints (ref. 9) as well as the vibration reduction problem in
forward flight by using optimaTly placed tuning masses (ref. 10) without enforcing
aeroelastic response analysis to obtain the vibratory loads. Such studies are useful
since they contribute towards the overall understanding of the problem; however, the
possibility exists that such an approach may not produce reliable designs. A very
detailed combined experimental and theoretical study (ref., 11), aimed at experimental
verification of helicopter blade designs optimized for vibration reduction, indicated
the need for using the dynamic loading on the blade, obtained from the aeroelastic
response, in the optimization process.

A serious problem encountered in the direct coupling of a comprehensive
aeroelastic stability and response code with an optimization, or nonlinear mathemati-
cal programming code is the very large computation effort required for the solution.
This problem can be alleviated by constructing an approximate, computationally easier
to solve, optimization problem (ref. 12). The approximate problems converge to the
solution of the original, exact optimization problems.

One typical method of constructing the approximate problem is to expand the
objective function and the behavior constraints in first or second order Taylor
series in terms of the design varjables, and in the neighborhood of the current
design (ref. 12). This method originated in the field of static structural analysis,
in which the gradient information required to construct the Taylor series expansions
can be obtained at a fraction of the cost of one analysis, through implicit differen-
tiation (ref. 13). This is difficult to achieve in helicopter aeroelastic optimiza-
tion, and the gradient information has to be constructed using expensive-to-compute
finite difference approximations. References (1,5,6) utilized an expensive approach
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based on finite differences for generating approximations to the objective function
and aeroelastic constraints. The generation of the approximate problem was cumber-
some and had to be carried out in an interactive manner, during the optimization pro-
cess. It is also possible to construct approximate problems using derivatives, or
the sensitivity of the objective function. This approach was successfully used in a
recent, comprehensive optimization study by Lim and Chopra (ref. 14).

This paper has three main objectives:

1. To describe a new formulation of the structural optimization problem for a heli-
copter rotor blade in forward flight. The objective is the minimization of the
n/rev vertical hub shears. The behavior constraints express mathematically the
requirements that the blade be aeroelastically stable, that its natural frequen-
cies fall between preassigned upper and lower bounds, and that the autorotation
performance not be degraded during the aeroelastic tailoring process. A new for-
mulation of the approximate problem allows increases in efficiency, in the
complete solution of the optimum design problem, of at least one order of magni-
tude, compared with existing procedures.

2. To present results obtained by letting the fip sweep angle be one of the design
variables in the optimization procedure. Tip sweep has a powerful influence on
the dynamic behavior the blade, and when included in the aeroelastic tailoring
process, can lead to further reductions in blade vibration levels.

3. To describe some ongoing work being carried out at UCLA on the structural
optimization of rotor blades with straight and swept tips.

Finally it should be noted that a considerable amount of additional results per-
taining to the first two objectives of this paper can be found in refs. (15)-(18).

2. AEROELASTIC STABILITY AND RESPONSE ANALYSIS

This section describes briefly the aeroelastic stabiiity and response analysis
and the procedure used to calculate the vertical hub shears, that is, the analysis
portion of the optimum design process. The equations of motion of the straight blade
are similar to those derived in ref. (19). The modeling of the swept tip is
described in ref. (4). The equations describe the coupled flap-lag-torsional motion
of a flexible, homogeneous, isotropic blade, modeled as a Bernoulli-Euler beam
undergoing small strains and moderate deflections. Geometrically nonlinear terms are
present in the structural, inertia, and aerodynamic operators, due to nonlinear beam
kinematics. The inertia loads are obtained using D'Alembert's principle. Quasi-
steady strip theory, with uniform inflow, is used to derive the aerodynamic Tloads.
Stali and compressibility effects are not included. In the modeling of the swept tip
the independence principle is assumed to apply, that is, the aerodynamic loads depend
only on the component of the flow contained in the plane of the cross section, and
radial flow effects are neglected (ref. 4).

The spatial dependence of the partial differential equations of motion of the
blade is eliminated by using a Galerkin method of weighted residuals (ref. 19).
This results in a finite element discretization. Cubic interpolation polynomials are
used for the modeling of flap and lag bending, quadratic interpolation polynomials
for the modeling of torsion. The resulting finite elements have a total of 11
degrees of freedom: displacement and slope at each end of the element, for flap and

148



lag bending, rotation at each end of the element and at a mid-element node, for tor-
sion. The axial degree of freedom is eliminated by making the assumption that the
blade is inextensional. The partial differential equations of motion of the blade
are thus transformed into a set of nonlinear, coupled, ordinary differential
equations with periodic coefficients. A modal coordinate transformation is per-
formed to reduce the number of degrees of freedom. Six rotating coupled blade nor-
mal modes are used to perform the modal coordinate transformation. The coupled modes
are calculated for a root pitch angle equal to the collective pitch.

In forward flight, the equilibrium position of the blade is time dependent, and
is obtained by solving a sequence of linear, periodic response problems, using quasi-
linearization. The stability of the system is determined using Floquet theory. A
special, implicit formulation of quasilinearization (ref. 20) which reduces con-
siderably the implementation effort is used. The algebraic expressions that define
the aerodynamic loads are not expanded explicitly. They are coded separately in the
computer program and combined numerically during the solution procedure.
Quasilinearization is a Newton-Raphson type procedure, and the derivative matrices
that are required by the algorithm are computed using finite different approxima-
tions.

The overall helicopter trim procedure used in this study is a propulsive trim
procedure identical to that used in ref. (21).

The calculation of the hub loads, consisting of forces and moments, is performed
using the direct force integration method. The response of the blade is obtained
from the aeroelastic response calculation code; thus the hub loads are obtained from
a spanwise integration of the inertia and aerodynamic loads distributed along the
blade. Details on the hub loads calculations can be found in refs. 15-18.

3. FORMULATION OF THE OPTIMUM DESIGN PROBLEM
The optimization problem is cast in nonlinear mathematical programming form.

Thus the objective is to minimize a functiog £(D) of a vector D of design variables,
subject to a certain number of constraints g(D) < O:

minimize f(B) (1)
subject to:
§(@) so (2)

To reduce the computational requirements, the computer program performing the
aeroelastic analysis is not connected directly to the optimization program. Instead,
the optimization is conducted on an approximate problem, which reproduces the charac-
teristics of the actual problem in a neighborhood of the current design, and which is
continuously updated as the optimization progresses.

An effective method of building an approximate problem is to expand the objective

function and the behavior constraints in Taylor series in terms of the design
variables (ref. 9):

FB) = F(By) + VF(B,)sB + % sBT[H(Bo)]sB (3)
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design, and VF(D,) and [H( are respectively the gradient and he Hessian matrix
at the current désign. The Hessian matrix is the matrix of the second partial
derivatives of the objective function with respect to the design variables. The
perturbation vector 8D is defined as

3-8 -3, ®)

where F(ﬁ) is taken to be %nglobjective or constraint function, B. is the current
0

The most expensive function to evaluate is the objective function. The cost of
one evaluation of the objective function is two orders of magnitude higher than the
total cost of evaluating the behavior constraints. No analytic expressions for the
gradients are available for the objective function, and finite difference approxima-
tions are required for the construction of the derivative information in Eq. (3).
Therefore, if n design variables are used in the optimization, n additional aero-
elastic analyses are required to compute the gradient, and an additional n(n+l1)/2 for
the calculation of the Hessian, making the cost of building the Taylor series approx-
imation to the objective function extremely high. For this reason an alternative
approximation technique, introduced by Vanderplaats [22,23], was used in this study.

This alternative technique is based on the idea of approximating the gradient and
the Hessian in Eq. (3), not by using small finite difference steps, but by using
whatever design information is available at the time. Eq. (3) can be rewritten, in
expanded form, as (refs. 22,23).

OF = UF, 8D, + UF,8D, +..ut UF 8D + 3(H, 602 + Hyp6D5 4.t H_6D2)
+ Hy,8D 6D, + H 36D 8D, +...+ H) 6D 6D
+ Hy38D,805 +oout Ho_\ (6D, 6D, (5)
In which
OF = F(B) - F(B). = F - Fo (6)
and
VF. = WF.(B,) ; Hij = Hij(b’o) (7)

Assuge that a baseline design B. has been analyzed to give FO, and that other designs
31, 2""’Bk have been previougly analyzed, to provide Fl’FZ""Fk’ Let

sb’i = 31. - B, i=1,2,.00,k (8)

and

AF

]
-
1
-n

i=1,2,...,k (9)
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If k designs are available, Eq. (5) can be written k times. The unknowns of the
resulting linear system are VF,, VF,,...,V,, and H,., H.,,...,H, If the designs are
linearly independent, the systém f quatiohs (5) w*}l p}gvide a$? the coefficients
required for the quadratic polynomial approximation Eq. (3). If all the_designs are
very closely spaced, the solution to the gradient and Hessian matrix at B.. Equation
(3) will then represent a truncated Taylor series expansion of F, valid iR a neigh-
borhood of D,. If the designs are dispersed in the design space, Eq. (3) will simply
be a quadratQC polynomial approximation, defined over a wider region of the design
space.

An important characteristic of this technique is that the system of equations (5)
can be written with less than 2 equations. If at least n + 1 designs are available,
the solution of the system will provide a linear portion of the approximation, Eq.
(3). An approximate optimization can be conducted, based on this linear approxima-
tion. The resulting optimum is then analyzed precisely and provides an additional
design: a system of n + 2 equations (5) can then be written. Its solution will pro-
vide a new approximation, Eq. (5), with all the linear terms plus one pair of quadra-
tic terms of the symmetric Hessian matrix. The process can then be repeated, with
each new approximate optimum providing an additional design point to increase the
number of terms in the quadratic approximation to objective function and behavior
constraints,

One iteration of the optimum design process thus consists of the following six
steps:

1. Calculation of the blade properties, including natural frequencies and mode
shapes;

2. Aeroelastic analysis in hover;

3. Aeroelastic analysis in forward flight, including calculation of hub loads;

4, Calculation of objective function and behavior constraints;

5. Calculation of a new approximation (linear or incomplete quadratic) to objective
function and behavior constraints;

6. Solution of the approximate constrained optimization problem, using the feasible
direction code CONMIN (refs. 24,25) to obtain a new, improved blade design.

The process is terminated when a feasible, optimum design has been reached, or
arbitrarily, when the improvement in the design is considered "adequate'.

The first n + 1 iterations of the procedure are not true optimization iterations
because steps 5 and 6 above are not performed. In fact, these initial iterations are
used to generate a sufficient number of designs to build at least an initial linear
approximation to objective function and behavior constraints.

Side constraints are placed on the design variables to prevent them from
reaching impractical values which violate practical, physical constraints. Thus all
the thicknesses and distances are assumed to be nonnegative numbers.

Three different types of behavior constraints are placed on the design.

1. Frequency placement constraints. The fundamental frequencies in flap, lag and
torsion are required to fall between preassigned upper and lower bounds. if w is
one of the three frequencies, and w, and w, are the preassigned lower and upper
bound respectively, the frequency p*acemeng constraint is expressed mathemati-
cally in the form:
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N

9@) =5 - 150 (10)
“
W2
9B =1-5 <0 (11)
“L

Equations (10) and (11), written for each of the three fundamental frequencies of
the blade, provide a total of six behavior constraints. Furthermore, the frequen-
cies are also constrained so as to be sufficiently removed from the n/rev fre-
quencies.

2. Aeroelastic stability constraints. The blade is required to be aeroelastically
stable in hover. No constraints are placed on the stability in forward flight
because all the blade configurations considered in this optimization study are
soft-in-plane blade configurations, and the effect of forward flight 1s usually
stabilizing for this type of blades (ref. 21). The aeroelastic stability
constraints are expressed mathematically in the form:

g(D) = g, <0 k=1,2,c0.,m (12)

If m modes are used to perform the modal coordinate transformation in the solu-
tion of the equations of motion, there are m constraint equations like Eq. (12),
where the quantify {, is the real part of the hover stability eigenvalue for the
k-th mode. As indicﬁted in the results section, in some cases more stringent
aeroelastic constraints were also imposed.

3. Autorotation constraints. The autorotation constraint expresses the requirement
that possible mass redistributions produced in the optimization process do not
degrade the autorotation properties of the rotor. The most convenient autorota-
tion constraint 1is one which restricts variations of the polar mass moment of
inertia of the rotor (ref. 26, pp. 346-364). Therefore, the autorotation
constraint is expressed mathematically in the form:

gy = 1 - 6?%35 <0 (13)

The constraint equation (13) requires that the mass polar moment of inertia J of
the rotor maintain, during the optimization, at least 90% of its initial value JO.

Therefore, a total of thirteen behavior constraint equations are placed on the design
variables.

4. RESULTS

The basic blade configuration considered in this study is a soft-in-plane hinge-
less blade, shown in Figure 1, which is part of a four bladed rotor. The uncoupled
fundamental lag, flap, and torsion frequencies, for zero tip sweep, are 0.732/rev,
1.125/rev, and 3.17/rev respectively. The Lock number is vy = 5.5, the thrust coef-
ficient C; = 0.005, and the rotor solidity ¢ = 0.07. For the swept tip configur-
ations, tEe outermost 10% of the blade is swept. The blade precone angle Bp, the
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root offset e,, the offset x, between the elastic axis and the aerodynamic center,
and the offsel X, between thé elastic axis and the cross sectional center of gravity
are all set to zéro, unless specified otherwise. The modal coordinate transformation
is based on the six lowest frequency, rotating, coupled modes of the blade. In aill
cases the six modes were one torsion, two lag, and three flap modes. The blades
were modeled using 5 finite elements, with nodes at 0%, 22.5%, 45%, 67.5%, 90% and
100% of the span. Selected results are presented here. Numerous additional results
can be found in refs. (15)-(18).

Two types of cross sections are considered in this study, namely a single cell,
rectangular cross section, and a double cell cross section. Both cross sections are
shown in Figure 2. Up to five, and up to nine independent design parameters can be
specified for the single cell and the double cell cross section respectively (ref.
16). In this study the cross sectional design parameters are linked in such a way as
to reduce the number of independent design parameters to two, for both the single and
the double cell cross sections. The first independent design variable is the
thickness t, of all the elements of which both cross sections are composed. The
second 1nde6endent design variable is the chordwise width x, for both cross sections.
In the single cell cross section the ratio between the width x, and the height hS is
kept constant, with x,/h_ = 4.5. 1In the double cell cross sec@ion the internal wall
is placed halfway betaeeﬁ the leading edge and the rear wall, so that x, = x,/2. The
outside wall of the double cell cross section has the shape of a NACA 0612 a?rfoil.
The properties of both cross sections are presented in ref. (16).

As a preliminary to the optimization studies, the effect of tip sweep on the
peak-to-peak values of the 4/rev vertical hub shears was investigated.

Figure 3 shows the peak-to-peak value Vzpx of the vertical hub shears as a func-
tion of the tip sweep angle A, for four different values of the advance ratio u, for
the soft-in-plane blade configuration. Figure 3 shows that tip sweep may or may not
be beneficial for the soft-in-plane configuration, depending on the advance ratio and
the tip sweep angle. At an advance ratio yu = 0.3 the oscillatory loads rapidly
increase with tip sweep. At u = 0.4, instead, tip sweep has a beneficial effect.
Based on the results of this preliminary investigation, the advance ratio at which
the 4/rev vertical hub shears are minimized was set at y = 0.4.

t
hg I B | R —
INBOARD SEGMENT
ROTOR HUB
PITCH CHANGE BEARING
X2
OUTBOARD SEGMENT
ty
SWEPT TIP \ 6
PITCH LINK
SWASH PLATE ._—-]x1

X2
Figure 1: Swept tip hingeless rotor Figure 2: Single and double cell
blade model. cross sections.
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the

1.

2.

Nondimensional value

Three optimization studies were conducted using the general procedure outlined in
previous section, namely:

Optimization of a completely straight blade, having a two-cell cross section.
The objective function is the peak-to-peak value of the 4/rev vertical hub shears
at an advance ratio p = 0.4.

The design variables are defined at three distinct cross sections of the blade:
the root section, the tip section, and the cross section at the 67.5% span, for a
total of six independent design variables. The 67.5% station, at which two
design variables are defined, is the junction section between the third and the
fourth finite element. The blade properties are assumed to vary linearly between
two consecutive stations at which the design variables are specified.

Optimization of a completely straight blade, having a single cell cross section.
As in the previous case, the objective function is the peak-to-peak value of the
4/rev vertical hub shears at an advance ratio y = 0.4.

As in Case 1, the design variables are defined at three distinct cross sections
of the blade: the root section, the tip section, and the cross section at the
67.5% span, for a total of six independent design variables.

The cross section is rectangular, therefore doubly symmetric. Because leading
edge masses have not been used in this particular example, the center of gravity
and the aerodynamic center are located on the elastic axis of the blade - which
is taken to be coincident with the pitch axis. Therefore the associated offsets
are equal to zero.

Straight blade with a swept tip. The objective function is the peak-to-peak
value of the 4/rev vertical hub shears divided by the thrust coefficient CT, at

\Y; Ve k
Zpk p
.02

o
)
|

Baseline

.015

.01

Nondimensional value
o
—
T

.005

0111:[11||lx|111

0 5 10 A 0 5 10 15
Tip Sweep angle (degrees) Step number

Figure 3: Effect of tip sweep on the Figure 4: Case 1 - Iteration history
peak-to-peak value of the vertical hub of the objective function.
shears, soft-in-plane blade configuration.
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an advance ratio p = 0.4. This particular choice of objective function is an
attempt to compensate for the inaccuracy of the trim program, which neglects the
torsional deformation of the blade and thus overestimates the thrust that the
rotor is actually capable of developing.

The outermost 10% of the blade is swept, with the sweep angle being a design
variable of the optimization procedure. The cross section is rectangular, and
therefore the offsets x; and x, are equal to zero. The cross sectional design
variables are designed és in Cése 2. Therefore a total of seven design
variables is used in this case.

The initial blade configuration, for all three cases, is the baseline soft-in-
plane configuration.

Optimization Case 1

The iteration history of the objective function for case 1 is shown in Fig. 4.
It should be noted that for all three optimization cases, design n is defined as the
design produced at the end of the optimization step n. Step 0 and the first six
steps are not true optimization steps: they are required to obtain enough infor-
mation to build linear approximations to the objective function and behavior
constraints. Step 0 is the analysis of the baseline design. In steps 1 through 6
each of the six design variables is perturbed, one at a time. Because the pertur-
bations were relatively small - 1% of the baseline value - the linear approximations
obtained at the end of step 6 can be considered as gradients calculated using forward
flight difference approximations.

Step 7 1s the first true optimization step and consists of the solution of a
l1inear optimization problem. Move 1imits were placed on the design variables, which
could not change by more than 25% of the baseline value. The optimization continues
for three additional steps (8-10). Each new proposed design is analyzed precisely
and is used to improve the polynomial approximations to objective function and behav-
ior constraints. The diagonal of the Hessian matrix is built first, as more function
evaluations become available. (The term "Hessian" is used in this section with the
general meaning of "matrix coefficients of the quadratic terms at the approxima-
tion"). Figure 4 shows that, after reaching a minimum at step 8, the objective func-
tion slightly oscillates.

As the constrained optimum of the approximate problem, the approximate flap
damping constraint for the first flap mode was active. In most helicopter blades the
first flap mode tends to be highly damped, and a precise analysis of the proposed
design showed that this indeed was the case, and that the precise first flap stabi-
lity constraint was satisfied. The constraint was therefore reformulated as

Cep - 0.3¢0 (14)

The subsequent optimization steps were performed with this new form of the con-
straint, which prevents the approximate constraint from becoming critical. Two more
steps (11 and 12) are performed with the relaxed flap constraint. The design of step
12 is a local, unconstrained minimum of the approximate problem. The corresponding
blade is such that a reduction of 54.3% is achieved in the objective function, com-
pared with the baseline configuration. The design suggested by the optimizer for
step 13 is practically the same as that for step 12. A different design was instead
arbitrarily selected for step 13. This design was "close" to that of step 12, and
was selected for the only purpose of adding one design to the design data base and to
try to improve the accuracy of the approximations in the neighborhood of design 12 -
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with the design of step 13 the full diagonal of the Hessian can be built. Step 14 is
the last optimization step, and it produces a value of the objective function that is
slightly higher than the minimum of step 12. The optimization was arbitrarily
stopped at this point. All1 the designs generated during the optimization were
feasible. Iteration histories on the design variables are presented in refs.
(15)-(17), and for conciseness are not repeated here.

Optimization Case 2

The iteration history of the objective function for case 2 is shown in Fig. 5.
Steps 0 through 6 are not true optimization steps. These steps are required to
generate enough designs to construct at least linear approximations to objective
function and behavior constraints. The design at step 0 is the baseline blade
design. The designs analyzed in steps 1 through 6 are obtained by changing one
design variable at the time. Since the change in each variable was equal to 10% of
its baseline value, the resulting linear approximations to objective functions and
behavior constraints cannot be strictly considered as gradients.

The first true optimization step is step 7, which consists of a iinear, con-
strained optimization problem. A reduction of 37.6% is achieved, compared with the
baseline design. In the next step the objective function increases slightly.

Because this behavior is somewhat similar to the one observed in case 1, the optimi-
zation was arbitrarily concluded as this point, and restarted with a new set of beha-
vior constraints.

The aeroelastic stability constraints used in case 1, and up to this point in
case 2, consist of requiring that the blade be aeroelastically stable in hover. It
is prudent to require that the optimization process do not degrade too much the sta-
bility margin of the baseline design. The optimization was thus restarted from step
9 with these more stringent behavior constraints. The aeroelastic constraints of Eq.
(12) are reformulated as

C

k

g(D) =1 - raxr— < 0 K =1,2,c00,m (15)
0.95C,

Equation (15) expresses the requirement that the loss of stability of a given mode
should not exceed 5% of the baseline value CkB‘

The optimization is not restarted with a new calculation of an initial linear
approximation. Rather, the previous designs are reused to provide the initial
approximation for the new case. While designs 0 through 8 were all feasible with
respect to the old set of behavior constraints, some of these designs are now
feasible with respect to the tightened aeroelastic stability constraints. In par-
ticular, design 8, which becomes the initial design for the second phase of this
optimization, is infeasible.

The first design produced by the optimizer with the new set of constraints is
feasible with respect to the approximate behavior constraints. When this design is
analyzed precisely, it proves to be infeasible with respect to the exact behavior
constraints. The successive design (step 10) is feasible with respect to both the
approximate and the exact behavior constraints. The next design (step 11) is again
feasible with respect to the approximate, but not the exact behavior constraints. In
steps 9 through 11 the objective function is constantly at a value higher than the
basetine value and does not show any signs of convergence to the optimum. In other
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words, the optimizer does not seem to be able to produce a feasible design that
improves on the baseline design, which satisfies the new constraint equations, Eq.

(15).

The apparently erratic behavior of the objective function required a recon-
sideration of the optimization strategy which, starting from step 14, was modified,
and tighter move 1imits were enforced, in a selective manner. This modified approach
finally yields design 16 which represents a reduction in peak-to-peak value of the
4/rev vertical hub shears to 16.6% compared to the baseline value. Thus the imposi-
tion of aeroelastic constraints reduces the gains in the objective function by more

than 50%.

Optimization Case 3
Figure 6 shows the iteration history of the objective function for case 3, which

is the peak-to-peak value of the 4/rev vertical hub shears divided by the thrust
coefficient CT‘ The tightened aeroelastic constraints of Eq. (15) are enforced.

Design 0 is the baseline soft-in-plane straight blade configuration. The first
seven steps are not true optimization steps. As in cases 1 and 2, they provide
enough precise values of the objective function and behavior constraints to build at
least a linear approximation of objective and constraints. In the designs 1 through
7 each of the seven design variables is perturbed, one at a time. Design 7 is the
only swept blade design. Designs 0 through 6 are straight blade designs and are
identical to the corresponding designs of case 2. Thus these designs are not re-
analyzed to derive the results of Figure 3, and need not be recalculated.

Thus the optimization process of case 3 begins without the need for any precise
analyses, in the sense that the eight precise analyses required to start the proce-
dure were already available from previous parts of this study and could be directly
reutilized. The ability to make use of previously analyzed designs, even if not very
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close to the expected optimum in the design space of the current problem, is one of
the most important features of the optimization algorithm used in this study.

The first true optimization step, step 8, produces a design with a reduction of
27.2% of the objective function with respect to the baseline straight blade. This
also corresponds to a reduction of 14.5% with respect to the best swept tip design
obtained without applying formal optimization techniques, that is design 7. When
analyzed precisely, the design proves feasible, with no constraints active. Compared
with the final result of case 2, in which the blade is straight, the use of tip sweep
as an additional design variable allows a further reduction of the objective function
of almost 10%.

The next two steps (9 and 10) produce much higher values of the objective func-
tion. Starting from step 11 the "modified" strategy previously outlined is employed.
The next two steps (11 and 12) provide considerable reductions of the objective func-
tion, but the best design is still design 8. The optimization is arbitrarily stopped
at this point, both for cost reasons, and because the design appears to converge
towards design 8.

The iteration histories of the thickness tl, the chordwise extension of the spar,
and the tip sweep angle A are shown in Figs. 7, 8, and 9 , respectively. The tip
sweep angle corresponding to the best design is A = 9°,

Next, it is relevant to comment on the computational requirements encountered in
this study. The results were obtained on an IBM 3090-200 computer. Each precise
aeroelastic analysis required three to four iterations of quasilinearization (ref.
16). Each iteration of quasilinearization required 80-110 CPU seconds for a straight
blade and 140-180 CPU seconds for a swept tip blade. Because a variable step,
Adams-Bashforth technique was used to integrate the equations of motion (ref. 4), the
exact CPU time required to complete an iteration of quasilinearization was problem
dependent.
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The remaining portions of a complete optimization step, namely the calculation of
the cross sectional properties of the blade, the calculation of the vertical hub
shears from the aeroelastic response of the blade, the derivation of the polynomial
approximations to objective function and behavior constraints, and the solution of
the approximate constrained optimization problem, required an average total 1-2 CPU
seconds.

5. ONGOING EXTENSION OF THE RESEARCH ON ROTOR BLADE
OPTIMIZATION WITH AEROELASTIC CONSTRAINTS

Ongoing research at UCLA is aimed at extending the work described in the pre-
vious sections in several directions. First, more efficient means of generating the
approximate problem are being considered wusing intermediate design variables repre-
senting cross-sectional stiffness properties. Next, the structural model of the
blade is being improved by replacing the isotropic structural blade model by a model
which i1s capable of modeling a composite rotor blade with multicell cross sections.
A more accurate representation of the unsteady aerodynamic loads is also being
pursued. Finally alternative choices for the objective functions are also being con-
sidered so that the muiltidisciplinary nature of our current optimization capability
is enhanced.

6. CONCLUDING REMARKS
The main conclusions obtained in the present study are summarized below. Their
application to the structural optimization of a helicopter blade should be 1imited by

the assumptions used in obtaining the numerical results presented in this study.

1. The optimum design procedure described in this study is very efficient, and can
produce improved designs with a very limited number of precise analyses. The
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method of constructing the approximate problem is such that previously conducted
aeroelastic analyses can be reused in a new optimization problem. For example,
if an optimization study is preceded by a parametric study in which the effect of
various combinations of blade design parameters is examined, all the aeroelastic
analyses performed for the parametric study can be reutilized in the optimization
study. This is not possible when the approximate problem is built from Taylor
series expansions.

2. The results of the optimization are quite sensitive to the aeroelastic stability
margins required of the blade. In the optimization of case 2, changing the aero-
leastic stability constraints from simply requiring that the blade be stable in
hover, to requiring that the stability margins be maintained during the course of
the optimization, reduced the gains in n/rev vibration levels by more than 50%.

3. The introduction of tip sweep can reduce the n/rev vertical hub shears beyond the
level that can be obtained by just modifying the mass and stiffness distributions
of the blade.
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