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ABSTRACT 

Independent Modal Space Control (IMSC) is a technique that is often used for 
the control of large order structural systems. The pertinent optimization 
problem in the simultaneous design and control of structures is a min - min 
problem that minimizes with respect to the structural design variables, the 
minimum value of the performance index with respect to the control forces ob- 
tained using the IMSC technique. The minimization process requires derivatives 
of eigenvalues and eigenvectors with respect to the design variables. These 
derivatives can be computed by a rather involved analytical procedure or a 
relatively simple finite difference procedure. This paper examines the computer 
cost effectiveness of these two procedures for the derivative calculations. 

INTRODUCTION 

One of the objectives of structural control is to suppress undesirable 
motion resulting from some unavoidable excitation such as onboard machinery or 
docking maneuvers. In active control the motion of structure i s  sensed and 
suitable forces are applied to reduce and ultimately eliminate the undesirable 
motion. In optimal control the forces are applied such that a preselected 
performance index is minimized. The solution of the optimal control problem 
requires the solution of the matrix Ricatti equation. Because of the difficul- 
ties encountered in numerical computations, the solution of the matrix Ricatti 
equation is not feasible for large order systems. For large order systems, an 
alternate method known as the Independent Modal Space Control (IMSC) [l] is more 
sui tab1 e. 

En the IMSC method, the control forces are specified in the modal spac 
instead of in the physical space. Also by suitably choosing the modal contro 
forces, each mode of vibration is controlled independently of the other modes 
The performance index is assumed to be of the form 

a. 

J =  Jr 
r = l  

where a. is the number of modes controlled and Jr is the performance index 
associated with the r-th mode and has the definition 

0 

where 

rl = t / u  
r r r ’  



w 
tfie control effort. 
in the modal space and vice versa. 

is the frequency of the rth mode and Rr>O is the penalty parameter imposed on 
A higher value o f  Rr will result in a smaller control force 

The modal coordinates E,, r = 1, . . . a .  are related to the displacement vector u, 
by the relation 

u xg (4) 

where X is the modal matrix, having as its columns the eigenvectors, obtained by 
the solution of the eigenvalue problem 

K X = w2 M X  ( 5 )  

5, and qr satisfy the constraint equations 

2 
F; (t) + w 5 (t) = (t) 
r r r  cr 

5, (0) = tr0 

Z c = X F  T where ( 7 )  

is the modal control vector. Minimization of Jr in Eq. (2) w i t h  t h e  d i f f e r e n t i a l  
constraint equations given by Eqs. (6) leads to a 2 x 2 matrix Ricatti equation 
that can be solved analytically for tf m .  

For this case, the control force is given by [2] 

1/2 - wr (-wr + (u: + R;') ) + R-r1]1/2 ir(t) 
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and the solution of the closed loop modal equations (6) for the controlled modes 
gives 

-alt 
Er(t) = e (al cos et + p1 sin et) 

with 
a l = X  o r r  

e = ('d), 
- 

u1 - E,, 

- f22 A r -  - - 
2wr 

- f22 - - - R;1k22 f21 - - 

kEl - - k12 = - w r r  R + ( r r  w2 R2 + Rr)l12 

1/2 1/2 
+ R r )  1 kZ2 = (Rr - 2w2 r r  R2 + 2wr Rr (w2 r r  R2 

( 9 )  

Substitution o f  Eqs. (9) through (18) into Eq. (2) followed by its integration 
with tf = 00 yields 

2 w 
(19) - r  Jr - - 2 (E I11 + I22 + I22) 



w i t h  

, JZ2 = 1 + - k12 k22 
’ J12 - 2 w2 R 

k:2 
2 Jll = 1 + 

*r Rr *r Rr r r  

2 2 
E = J l l  al + J22 a2 + J12 al a2 

G 2 J l l  a1 p1 + 2 J 22 a2 82 + J12 (a1 @ 2 + a2 $1) 

- 1 - - +  
I11 al 4 a12 + €I2 

1 + -  al 

4 a l  
2 

= -  
I22 4 aI2 + 8 
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Simultaneous Design and Control 

The process of simultaneous design and control of structures is a min - min 
problem that minimizes with respect to the structural design variables the minimum 
value of the performance index with respect to the control forces. 

The minimum value of the performance index with respect to control forces is 
given by Eq. (1) wherein J can be evaluated from Eqs. (8) through (29). In the 
process of minimization $f this minimum value of the performance index, its 
derivatives with respect to the design variables are required. These derivatives 
can be evaluated explicitly by a laborious, even though straightforward 
differentiation of Eqs. (8) through (29) with respect to the design variables 
provided the derivatives of the eigenvalues wr and the eigenvectors x , r = 1, 
2. . .n ,  are available. The other alternative is to calculate the derivafives of J 
with respect to the design variables by using say the forward difference scheme. 
The latter is easily programmable since no explicit derivatives of the eigenvalues 
and eigenvectors with respect to the design variables are then required. The 
thrust of this paper is a comparison of the computational cost and the efficiency 
of the two procedures for calculating the derivatives of the performance index. 

Before we elaborate on this comparison however, we will digress and discuss 
the calculation of the derivatives of the eigenvalues and eigenvectors using t h e  
well known Nelson's method [3]. 

I Derivatives o f  Eigenvalues and Eigenvectors with Respect to the Design Variables 

Purely from a computer programming point of view the simplest and the most 
straightforward though not necessarily the most efficient way to compute the 
derivatives of eigenvalues and eigenvectors is by using finite differences i n  
particular the forward difference scheme with an appropriate step size [4]. The 
main disadvantage o f  the forward difference scheme is that it requires the 
solution of an eigenvalue problem once for each design variable. This could be a 
computationally expensive process. Furthermore, to obtain an accurate value of 
the computed derivatives, the eigenvalue problems need to be solved with a high 
degree of precision. 

The eigenvalue w , and the eigenvector xr, of the previous section are obtained by 
the solution of {he eigenvalue problem. 

, 

2 

r = 1, 2 . . . n ,  ( 3 0 )  
2 
r w M xr = K xr, 

I where M and K are the assembled mass and stiffness matrices respectively of the 
finite-element model of the structure. The mode shape xr is normalized with 
respect to the mass matrix M as 

T - I 
'r 's - 'rs 



wherein 6rs i s  t he  Kronecker de l ta .  D i f f e r e n t i a t i n g  Eqs. $30) and (31) w i t h  
respect  t o  a design v a r i a b l e  p f o r  a p a r t i c u l a r  e igenpai r  (wr,xr) w i t h  d i s t i n c t  
eigenvalues one ob ta ins  j 

T dxr l x T  
‘z r (dpj)”r xr M - = -  

dPj 

(32) 

(33) 

where use has been made o f  the  symmetry o f  the  mass m a t r i x  M. 

fo l lowed by the  use o f  Eq. (31) t o  y i e l d  

T To ob ta in  the  d e r i v a t i v e s  o f  eigenvalues, Eq. (32) i s  p r e m u l t i p l i e d  by xr 

J J J 

To ob ta in  the  d e r i v a t i v e s  o f  the  eigenvector x Eqs. (32) and (33) are com- 
r, bined as 

Equations (35) cou ld  be solved f o r  both the  ei9envalue and the  e igenvector  
d e r i v a t i v e s  except t h a t  t he  p r i n c i p a l  minor K - or i s  s ingu la r .  To circumvent 
t h i s  apparent d i f f i c u l t y ,  Nelson [SI proposed a method t h a t  t empora r i l y  imposes 
the  normal iza t ion  equat ion (31) by the  requirement t h a t  t he  l a r g e s t  component o f  
t he  eigenvector be equal t o  one. I f  the  re-normal ized eigenvector i s  denoted by 
x and i t  i s  assumed t h a t  i t s  l a r g e s t  component i s  t he  m-th one, then Eq. (31) i s  
r g p l  aced by 

xrm = 1 
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l and Eq. (33)  i s  rep laced by 

dXrm = o (37)  
dP j 

For ;; Eq. (32 )  reduces t o  
r, 

Equation (37)  i s  now used t o  reduce the  or+r o f  Eqs. (38)  by d e l e t i n g  the  m-th 
row and m-th column. When the  eigenvalue wr i s  d i s t i n c t ,  t he  reduced system i s  
no t  s ingu la r  and can be solved by a standard technique f o r  t he  de r i va t i ve -vec to r  
dir/dpj. The requ i red  vectors  xr and dx /dp. are then obta ined from xr and 
dxr/dp. by the  f o l l o w i n g  e a s i l y  v e r i f i e d  r e f a t i d n s  

I J 

(40)  - -T d:, 
x r [ i r T  dpj 'r - + 2 x r M  -1 dPj 

- =  
r 

dP j 

I n  f i n i t e  element computer codes t h a t  e x p l o i t  t h e  s p a r s i t y  s t r u c t u r e  o f  _the K 
and M matr ices,  i t  may be inconvenient  t o  ob ta in  t h e  re-normal ized vector ,  x by 
s e t t i n g  the  l a r g e s t  component t o  u n i t y .  Such a scheme necess i ta tes  the  r e c a l c t l a -  
t i o n  o f  the  s p a r s i t y  s t ruc tu re .  Instead, i t  i s  more convenient t o  ob ta in  the  
re-normal ized eigenvector,  xr by s e t t i n g  

x r n  = 1  (41) 

where n i s  t h e  order  of t he  mat r ices  K and M. 

t he  design v a r i a b l e  p .  can a l so  be ca l cu la ted  by the  forward d i f f g r e n c e  scheme 
As mentioned prev ious ly ,  t he  d e r i v a t i v e  o f  t h e  eigenvector x w i t h  respect  t o  

J 



where (x ) 

accuracy of the forward difference scheme relative to Nelson's analytical method, 
an error measure is defined as 

is the eigenvector calculated at pj+h. In order to assess the 
pj+h 

axri axri 2 
E ( h ) =  5 ( F ) A -  ( F ) F  

(43) 

where are the elgenvector derlvatlves by the analyti- 

scheme respectlvely. The error E I s  summed over 
all the components o f  the elgenvector, over the mode shapes controlled and over 
a l l  the deslgn varlables. 

Application to a Stiffened Composite Plate 

A laminated composite square plate reinforced by two stiffeners placed 
symmetrically with respect to the laminate midplane along the two centerlines of 
the plate is considered. As in reference [6] the plate is discretized using a 
mesh of 8 noded isoparametri c, shear deformable pl ate bending el ements. Assuming 
the plate is simply-supported along all its four edges, the resultingfinite- 
element model has a respectable (from control engineer's point of view) 127 
degrees o f  freedom and thirteen design variables consisting of five discrete fiber 
orientations and eight continuous stiffener cross-sectional areas. 

Table 1 provides an assessment of the error E as a function of the step size h 
for the finite difference derivative calculations. As expected, the error 
decreases with a decrease in h and then begins to increase as a result of machine 
roundoff. 

A comparison was made of the computational cost for the calculation of the 
eigenvector derivatives using .Nelson's method and the f i n i t e  difference scheme. 
Using Nelson's method to compute the gradient of the three eigenvectors with 
respect to the thirteen design variables the required CPU time was 17.2 seconds. 
To compute the eigenvector gradients using forward differences several eigenval ue 
problems need to be solved. Using subspace iteration in conjunction with the 
Jacobi method [7] for the solution of the eigenvalue problem, the total time for 
the required gradient calculations was 39.5 seconds. Note that the design vector 
has thirteen variables, and it was necessary to solve the perturbed eigenvalue 
problem thirteen times. Since the solution of the unperturbed eigenvalue problem 
provides an excellent guess for the eigenvalue of the perturbed system, an inverse 
iteration scheme [7] in conjunction with shifting of the stiffness matrix K can be 
used to accelerate the solution process. Using such a strategy, the CPU time 
required for the calculation of the eigenvector gradients using forward 
differences was down to 27.6 seconds. 
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Thus, i n  r e l a t i o n  t o  t h e  a n a l y t i c a l  method the  computational cos t  o f  the  f i n i t e  
d i f ference c a l c u l a t i o n  o f  t he  eigenvector g rad ien ts  i s  no t  a t  a l l  p r o h i b i t i v e .  On 
the  o ther  hand, i n  s p i t e  o f  t h i s  modestly h igher  computational cost ,  t he  
simp1 i c i  t y  o f  the  c a l c u l a t i o n  o f  the eigenvector gradients  us ing forward 
d i f ference scheme i s  overwhelming. However some caut ion  must be exerc ised when 
us ing  inverse  i t e r a t i o n  i n  con junc t ion  w i t h  sh i  ting o f  the  s t i f f n e s s  ma t r i x .  

o f  t he  eigenvector and i f  x 
the  system. 
must be taken t o  choose the  eigenvector ( x r )  

It 
should be noted t h a t  the  normal iza t ion  scheme xy f M xr= 1 f i x e s  on ly  the  magnitude 

i s  an eigenvector,  then -x i s  a l so  an eigenvector o f  
Hence, when eibenvectors o f  the  per turbed gystem are computed, care 

such t h a t  
Pj+h 

T 
(Xr) > o 

Pj+h 

Th is  can be done very  e a s i l y  i n  p r a c t i c e  by s imply  c a l c u l a t i n g  the  above do t  
product  and changing the  s ign  o f  the  vec tor  xr i f  the  do t  product i s  negat ive.  

Table 1. Error E as a Function o f  the Step Size h 

h 

0.156 x 10-1 
0.781 x lo-' 
0.390 x 10" 
0 195 x lo-' 
0.976 x 

0.488 x lom3 
0.244 x lom3 
0.122 
0.610 x 

0.305 x 

0.152 x 

0.79 x 

0.21 x lo+ 
0.54 
0.13 

0.98 
0.80 

0.101 10" 

0.34 x 

0.25 x 

0.404 x 

0.162 x 



Table 2 prov ides a comparison o f  the  computational e f fec t i veness  o f  the  two 
approaches f o r  t he  con t ro l  of the  s t i f fened laminated composite p l a t e  problem f o r  
cases i n v o l v i n g  d i f f e r e n t  number o f  design va r iab les  and d i f f e r e n t  number o f  f r e -  
quencies being con t ro l l ed .  

13 design 
var iab les ,  

8 f requencies 

Table 2. F i n i t e  Difference Versus Nelson' Approach - Normalized CPU Time 

1.939 1.0 

Type o f  
Design 

F i n i t e  D i f fe rence 
Approach Nelson's Approach 

13 design 
v a r i  ab1 e, 

3 f requencies 
1.598 1.0 

5 design 
var iab les ,  

8 f requencies 
1.700 1.0 

I t  i s  c l e a r  f rom Table 2 t h a t  i n  a l l  the  cases considered the  f i n i t e  
d i f f e r e n c e  approach requ i res  more CPU t ime as compared t o  the  Nelson's A n a l y t i c  
approach. The percentage increase i n  CPU t ime increases w i t h  the  number o f  
f requencies considered. I n  the  f i n i t e  d i f f e rence  approach an eigenvalue problem 
needs t o  be solved f o r  each design v a r i a b l e  considered. I f  s h i f t i n g  the  K m a t r i x  
i n  con junc t ion  w i t h  inverse i t e r a t i o n  i s  used t o  ca l cu la te  the  
eigenvalues/eigenvectors, the  f i n i t e  d i f f e rence  approach i s  q u i t e  compet i t ive w i t h  
the  Nelson's a n a l y t i c  approach. Even though the  approach may r e q u i r e  about tw ice  
the  t ime o f  Nelson's method, the  coding e f f o r t  i s  fa$Kles3Min t h e  case o f  t he  f i -  
n i t e  d i f f e r e n c e  approach. Secondly, c a l c u l a t i o n  o f  - , - ( d e r i v a t i v e s  o f  s t i f f -  
ness and mass mat r ices  respec t i ve l y )  requ i red  i n  the  case o f  Nelson's approach 
can be q u i t e  d i f f i c u l t  i n  some cases I n  the  case where the  design va r iab les  are  3K element frame areas, c a l c u l a t i o n  of - , arr l  i s  f a i r l y  s t ra igh t fo rward .  However, 

if p, corresponds t o  the  number of p l i e s  w i t h  a g iven o r i e n t a t i o n  then the  ca lcu-  
l a t i o n  o f  ap' a K  ap a M  i s  f a i r l y  invo lved.  

I n  conclusion, i t  needs t o  be emphasized t h a t  t he  f i n i t e  d i f f e rence  scheme 
f o r  t he  c a l c u l a t i o n  o f  t he  eigenvalue and eigenvector d e r i v a t i v e s  does n o t  appear 
t o  be c o s t l y  enough t o  warrant  t he  use o f  the  a n a l y t i c a l  method. With the  former 
scheme one does n o t  have t o  " t i n k e r "  w i t h  the  "b lack box" t h a t  generates t h e  
eigenvalues and e igenvectors  f o r  a g iven design v a r i a b l e  vec tor .  The a n a l y t i c a l  
method on the  o ther  hand needs an i n t i m a t e  knowledge o f  t h i s  "b lack box". 

aP aP 

aP ap 
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