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Why the Effort? 

The trend in design indicates that future airplanes will be statically unstable in pitch, be more flexible 
than current aircraft, and require highly integrated, interdisciplinary, design methodologies [ 11. Fighter 
aircraft will be more maneuverable and will use active flutter suppression. One application of active 
flutter suppression is to provide the required margin between the maximum attainable speed in a dive and 
the speed at which flutter occurs while also requiring open-loop flutter to be at or above the maximum 

envelope to exceed the open-loop flutter speed. If active flutter suppression is to become part of the 
integrated flight control system, then an integrated modeling and simulation capability is required. This 
modeling and simulation capability would embrace traditional non-linear, rigid-body mechanics for 
aircraft and traditional linear aeroservoelastic dynamic models. In particular, a unified set of equations 
and notation should arise. 

to be reexamined in light of anticipated applications to future aircraft. At the Langley Research Center a 
Functional Integration Technology (EIT) team was established to perform dynamics integration research 
using the F/A-18 as a focus vehicle. A central part of this effort has been the reexamination of the 
aeroelastic equations of motion for fixed-wing aircraft [2,3] and the development of a comprehensive 
simulation modeling capability [4]. At the Wright Research and Development Center, a 30-month 
contract was awarded to Lockheed to develop an aeroservoelastic analysis and design software package 
wherein the equations of motion are developed from fxst principles [5 ] .  At the Air Force Office of 
Scientific Research a contract was let to Professor Luigi Morino to develop the equations of motion of a 
maneuvering, flexible airplane with minimal simplifying assumptions [6]. The Lockheed effort [5] adapts 
the method of hybrid coordinates used by Likens for space-craft applications [7] to the aircraft problem. . 
Morino's approach [6] is very similar to the FIT effort [2,3] and does a nice job of incorporating the total 
vehicle rotational degrees-of-freedom in a Lagrangian framework by taking partial derivatives of kinetic 
and potential energy with respect to the entire direction cosine matrix. 

, dive speed. A more ambitious application of flutter suppression would be to allow the normal operating 

A variety of programmatic responses arose from the concern that current modeling practices needed 

OBSERVED TRENDS IN AIRPLANE DESIGN (FIGHTERS) 
- STATIC INSTABILITY IN PITCH 
- MORE FLEXIBLE 
- MORE MANEUVERABLE 
- HIGHLY INTEGRATED DESIGN 
- ACTIVE FLUTTER SUPPRESSION TO PROVIDE MARGIN 

URGE TO "UNIFY" AND GENERALIZE NOTATION AND EQUATIONS 
- TRADITIONAL, RIGID-BODY AEROMECHANICS 
- TRADITIONAL, LINEAR ASE ANALYSIS 
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The Path Followed by FIT 

When the FIT team began its investigations, no references in the aircraft literature could be found 
wherein equations of motion for elastic airplanes were developed with what seemed to be sufficient 
generality. The usual developments made assumptions that resulted in the absence of any inertial 
coupling between angular rates and elastic deformation. Occasionally questions were raised as to the 
conditions under which these simplifying assumptions might not be justified [8]. The literature for 
spacecraft and rotorcraft was not examined initially. 

In the FIT team development, a Lagrangian approach was used to derive the equations of motion of 
an elastic airplane flexing about a rotating reference frame. As a result of retaining the coupling terms in 
the kinetic energy expression, non-linear terms representing inertial coupling between angular and elastic 
degrees-of-freedom were identified. Equations including these terms were implemented in a simulation 
model of an F/A-18 and a number of trajectories calculated to determine the effects of these coupling 
terms [2]. At the same time, a number of articles were appearing in the literature that examined the errors 
that can arise in predicting centrifugal stiffening when all the nonlinear terms are retained in the kinetic 
energy expression but not in the potential energy expression [9,10]. The result was that either zero 
stiffening or negative stiffening is predicted in cases where positive stiffening should result. This error 
was common to most of the multi-flexible body simulation codes then available and to the initial 
developments of the FIT team and Lockheed [2,5]. The approach adopted by the FIT team to correct the 
error in centrifugal effects was to augment the existing simulation structure with terms resulting from 
retaining non-linear straiddisplacement terms in the potential energy expression and mapping their effect 
into the existing simulation structure. The FIT approach and its application to an example problem are 
described in detail in reference [3]. 

PERFORMED LITERATURE SEARCH 
- VERY LITTLE IN AIRCRAFT LITERATURE ON MANEUVERING, FLEXIBLE 

STRUCTURES 
- SPACECRAFT AND ROTORCRAFT LITERATURE IGNORED 

REDERIVED EQUATIONS OF MOTION 
- AIRPLANE FLEXING ABOUT A ROTATING FRAME 

- INERTIAL COUPLING BETWEEN ANGULAR MOTION AND ELASTIC MODES 
IDENTIFIED 

- APPLIED TO MODEL OF F18 TO DETERMINE EFFECTS - AlAA 87-2501-CP 

THEORETICAL WEAKNESS ADDRESSED 
- CENTRIFUGAL EFFECTS - [Kane], [Eke] 

STIFFENING 
- APPROACH CHOSEN: NONLINEAR STRAIN/DISPLACEMENT - GEOMETRIC 

- APPLIED TO SIMPLE ROTATING STRUCTURE - AlAA 88-2232-CP 
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The Issues 

One is left with with two questions at this point: (l), Is geometrically-exact flexible body modeling 
theory required for the dynamic analysis of fixed-wing aircraft, even highly-augmented, unstable ones; 
and (2), how is such modeling best accomplished? Previous work [2] indicates that for most fixed-wing 
aircraft in a clean-wing configuration, geometrically exact theory is probably U M C X X S S ~ ~ ~ .  Exceptions 
may occur in cases of underwing-store and T-tail configurations. Nonlinear terms due to the complex 
geometry can assert themselves in the form of parametrically excited oscillations. The most compelling 
reason for geometrically-exact modeling theory may be just the urge to have a comprehensive theory that 
works for all cases. The difficulty is establishing a non-linear theory that is sufficiently correct for the 
airplane problem without resorting to full-blown computational structural dynamics. An example of the 
computational structural mechanics approach is the M g e  Angle Transient DYNamics (LATDYN) code 
[ 111 developed at Langley and the work of Belytschko and Hsieh on which LATDYN was based [ 121. 
These methods [ 1 1,121 assign a separate reference frame to each finite element that translates and rotates 
("convects") with each finite-element. This "convected" coordinate method has been applied to large 
deformation problems such as car collisions and antenna deployment and would accommodate the 
nonlinear rotationaVelastic coupling of a typical airplane structure with ease. However, a theory based on 
assumed modes and correct to second order may be sufficient for airplane applications and would require 
less computer resources than an approach similar to that of [ll] and [12]. 

(1) ARE GEOMETRICALLY-EXACT MODELIP 
FOR AIRPLANE DYNAMIC ANALYSIS? 
- SPACECRAFT AND HELICOPTERS - YES 
- MOST AIRPLANES - NO 
- REASONS FOR / POSSIBLE EXCEPTIONS: 

G Tt EORIES REQUIRED 

INERTIAL FORCES APPROACH AERODYNAMIC FORCES 
COMPLEX GEOMETRIES - STORES 
THEORETICAL PURITY 

(2) IF SO, WHAT IS THE BEST WAY TO IMPLEMENT SUCH THEORY? 
- MUST PROPERLY MODEL CENTRIFUGAL EFFECTS OR LEAVE THEM OUT 
- MANY POSSIBLE APPROACHES 
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Outline 

The remainder of this paper is organized as follows. First the equations of motion are briefly 
described. Since an energy approach was taken in the development of the equations of motion [2,3], 
expressions for kinetic and potential energy are defined. The differences between the FlT model and the 
more typical aircraft aeroelastic equations [8,13] are explained. Prior to defining the the potential energy, 
a simple example [ 101 is presented to illustrate the notion of "geometric" stiffness. The higher order 
terms in the FIT potential energy expression are explained in light of the simple example. Once the 
equations are established, the effects of the including the nonlinear inertial coupling terms in the 
simulation model of an F/A-18 are presented. Time respnses due to a high-authority roll command are 
compared for the following cases: (l), additional terms mcluded; and (2), additional terms ignored. 
Finally, conclusions and recommendations are offered. 

EQUATIONS OF MOTION 

- KINETIC ENERGY 
- EXAMPLE OF GEOMETRIC STIFFNESS 
- POTENTIAL ENERGY 

EFFECT OF INERTIAL LOADING - F/A-18 

CONCLUSIONS 
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Modeling Assumptions 

The operating assumptions in the equations of motion are listed below. Assumptions (2) through 
(4) are typical for airplane applications [8,13]. Assumptions (5) through (7) are atypical and lead to the 
differences between the FIT model and the more typical aeroelastic equations of motion [8,13]. 

The structural finite-element model obtained for the F/A- 18 was a lumped mass model, which 
provided the principal motivation for assumption (1). For a continuum model, summations over the 
lumped masses are replaced with integrations over the entire airplane. The finite-element model had both 
lumped masses and lumped inertial quantities and both were utilized in the calculations. Assumption (2) 
and (3) are consistent with each other. Assumption (2) leads to a generalized Hooke's law and 
assumption (3) allows the superposition of deformation modes. Assumption (4) reflects the fact that 
gravity grdients are only of concern in spacecraft dynamics. 

Assumption (5 )  acknowledges that while defamation is assumed to be small, total vehicle angular 
rate may not be small. The result is that products of total angular rate and deformation rates are retained in 
the kinetic energy expression. The effect of assumption (6) is that the term resulting from summing 
(integrating) the cross product of deformation with deformation rates over the total vehicle is retained in 
the kinetic energy expression. Assumption (7) recognizes that a transverse deformation of a beam will 
result in axial strain. This effect becomes critical in correctly predicting centrifugal effects and is best 
explained in the simple example that appears later. Apart from assumptions (5), (6), and (7), the 
following development closely parallels other developments of the aeroelastic equations [8,13]. 

(1) LUMPED MASS APPROXIMATION 

(2) LINEAR STRESS/STRAIN 

(3) DEFORMATION IS SMALL - SUPERPOSITION 

(4) GRAVITY CONSTANT OVER THE AIRPLANE 

FOLLOWING ATYPICAL AEROELASTIC ASSUMPTIONS WERE MADE 

(5) PRODUCTS OF ROTATION RATE AND DEFORMATION 

(6) ELASTIC DISPLACEMENT AND ELASTIC VELOCITIES 

ARE NOT NEGLIGIBLE 

MAY NOT BE PARALLEL 

(7) NON,LINEAR STRAIN / DISPLACEMENT 



Symbols and Definitions 

For the purposes of calculating kinetic energy, the total vehicle is viewed as a collection of small 
rigid bodies centered at the finite-element node locations. The lumped mass (dm)i and the lumped inertia 

[dQi associated with the i- node can be interpreted as the result of performing integrations over the th 

volume of the i l!l rigid body using s as a variable of integration and the mass density, 0, as a weighting 
function. The i h rigid body undergoes a translational deformation 4 and a rotational deformation 4. 
The assumption of small deformations allows the rotation to be described as a vector and implemented as 
a cross product. The vector 3 locates the undeformed position of the i- rigid body in the vehicle body 
frame. The origin of the body frame is at the center of mass of the total vehicle when the vehicle is in the 
undeformed configuration. The vector R locates an arbitrary point of the i' rigid body in the inertial 
frame. 

th 

......... .................., 
i REFERENCE POSITION OF 

AIRPLANE 
CENTER OF 

- r d  i - THE RIGID MASS ELEMENT 
i CENTERED AT NODE i ........................... _ _  - - -  

F MASS 
\d i 

MASS ELEMENT 
AFTER ELASTIC 
DISPLACEMENT 

...................................... 
- 
e ixs  ,,, 1 0. 1 

..... 

s a . .  
0 . .  

* . I  

- 0 . .  
a * .  

0 MASS / UNIT VOLUME 

r r r  - 

d K  FIXED IN 

INERTIAL 
FRAME 

dm = JJJods 
i i 
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Total Kinetic Energy 

.th The total kinetic energy is calculated in two steps. First the kinetic energy of the 1- rigid body 
(lumped mass) is found by performing the volume integration indicated in the brackets. The inertial 
velocity of an interior point is squared, multiplied by the mass density, 6, and integrated over the small 
rigid body. All volume integral expressions involving the variable,of integration 3 can be resolved into 
the "known" parameters, ( d n ~ ) ~  and [&Ii, that are defined in the previous figure .,A summauon is then 
perform& over the small rigid bodies indexed by i. Lf the deformations are described !s a sum of spatial 
functions ,(mode shapes) and time-dependent generalized coordinates, a separation of variables is achieved 
The kinetic energy becomes a summation of terms where each term is a product involving time varying 
coordinates and constant mass or length terms resulting from the summation (integration) over the total 
vehicle. ' 

INTEGRATE OVER THE IDEALIZED LUMPED MASS TO GET 
KINETIC ENERGY FOR EACH LUMPED MASS 

SUM THE KINETIC ENERGIES ASSOCIATED WITH EACH 
LUMPED MASS 

*............., 
WHERE 

1 1 = P + r . + d * + S + @ S  
- e x s  

1 1 i 

I .i TRANSLATIONAL DEFORMATION i 
I IN MODAL COMPONENTS 

d. 1 = gill 

j ROTATIONAL DEFORMATION 
1 II IN MODAL COMPONENTS 

-. e = W"l l  

d - 
dtI 

TIME RATE OF CHANGE WITH 
RESPECT TO THE INERTIAL FRAME 
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Kinetic Energy in Modal Components 

The first three terms of the expression defining kinetic energy, shown below, are found 
in the standard aeroelastic equations of motion developments [8,13] and represent "rigid" translational 
energy, "rigid" rotational energy, and elastic kinetic energy, respectively. The term [J,] is the inertia 
dyadic of the total undeformed airplane expressed in body-frame components and has units of mass- 
length . The fourth line describes coupling between translational, rotational, and elastic momenta. If the 
assumed mode shapes are the modes of free vibration of an unrestrained structure, they satisfy the first- 
order mean axis conditions [8,13] and the terms, a. and h. are zero. The term a. is simply the location of 

the center of mass of the j' mode shape in the body frame and has units of length. The term h. is the first 

moment of the J- mode shape in the body frame using mass as the weighting function and has units of 
mass-length2. The terms in the dashed-line box result from assumptions (5 )  and (6). The terms [J1. and 
[Jljk are the first and second partial derivatives of the inertia dyadic matrix with respect to elastic modes j 
and k. The term results from summing (integrating) the cross product of mode shape j with mode k 

over the vehicle and has units of mass-length . For a more complete explanation, see reference 2. 

2 

3 3  -I 

J . th 

J 

l?jk 2 

T 3 m v . y  RIGID BODY TRANSLATIONAL KINETIC ENERGY 

+ TcU.[J,l 1 *o RIGID BODY ROTATIONAL KINETIC ENERGY 

MODAL ELASTIC KINETIC ENERGY 
* j  * k  + L M  q q 

* j k  

j + rnv.ajfij + o - h  .fij + rny-oxa -J .q ZERO FOR UNRESTRAINED 
MODES - J  

NONLlNEARlTlES 
RESULTING FROM 
ASSUMPTIONS (5), (6) 

J 
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Illustration of Geometric Stiffness 

The example shown below is taken from reference [lo] and provides a simple paradigm of the beam 
problem. Pictured is a simple 3 degree-of-freedom, planar system. A mass, m, is located at the 
outermost point and is the only mass in the system. The structure rotates freely about the point P. The 
angle between rod a and an inertial reference is given by yf. There is a torsional spring, kg, and a linear 

spring, kb The deflection of the torsional spring is given by 8 and the linear spring by d = r6, where 6 is 
a nondimensional deflection. Another coordinate system (x,y) is given by an axis system located at the 
zero-strain position of the mass, m. The (x,y) coordinates are analogous to those typically used in the 
beam problem. The coordinates (c,q) are the non-dimensional forms of (x,y). Both the (v,S,8) and the 
(v,c,q) coordinate systems are equally valid for describing this system. The (yf,S,O) system leads to a 
particularly simple expression for strain energy. The reason is that a change in 6 produces only a linear 
distortion in the spring, ks, and similarly for 8. Thus the strain energy, U, is given by, 

U = (1/2) ( k,e2 + k,62 ) 

2 where ks = kdr . The (v,t,q) system produces a complex expression for strain energy. A change in q 
produces nonlinear changes in both springs and similarly for 5 if there is some deflection in q. Using the 
relations, 

6 = -1 + {q2+ (1+~)2)'/2 and 8 = Tan-'(q/(l+C)}, 

one gets for the strain energy, U, in terms of 5 and q, 

TWO CHOICES FOR COORDINATES: ( W  , 6 ,  e OR ( \I,, 5 ,  ) 

( 6 ,  e ) -> SIMPLE EXPRESSION FOR STRAIN ENERGY 

( 5 , ~  ) -> COMPLEX STRAIN ENERGY EXPRESSION 

PARADIGM OF BEAM PROBLEM 



Comparison of Resulting Linear Models 

If the full nonlinear equations are derived using the (v,S,O) coordinates, the v equation removed, 
- 

and the quantities y~ and v are treated as parameters, the remaining two equations can be linearized in 8 
and 6 and the resulting correct linear equations are given in case 1 below. Suppose the procedure is 
repeated for the (v,c,q) coordinates except that a linear approximation for strain energy given by, 

is used, then the resulting equations are given as case 2 below [ 101. The only differences occur in the 
stiffness matrix. The foremost difference is that a de-stiffening result is predicted in case 2 for the q 
degree-of-freedom due to the spin rate when a stiffening effect should be predicted. 

CASE I :  Y AND k GIVEN; Y EQUATION REMOVED; LINEARIZED IN ti AND e 

2 2 
CASE 2: (6 ,ll ) COORDINATES; LINEAR STRAIN I DISPLACEMENT, U (1/2) { ke q + kti6 } 

. 2  .. 
ABOVE kg - I ,  W 

I = m r  2 I= = m a r  
r 
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Potential Energy 

Returning to the equations of motion development for an airplane, the total potential energy is 
composed of a component due to the work performed by strain and a component due to the work 
performed against gravity. The gravity component is straightforward since gravity is assumed constant 
over the airplane. If a second order expression is used for describing strain as a function of displacement 
and a linear stress / strain relationship exists, then a fourth-order strain energy expression results [3]. The 
strain energy expression, however, is accurate only to third order, so the fourth-order term is dropped. A 
third-order term in the strain energy expression, shown in modal components below, would lead to 
second-order stiffness terms in the final equations. If the third-order strain-energy term is left in this 
form, then modes with significant axial displacement need to be included in the dynamic model. As seen 
from the simple example, coupling occurs between axial and transverse displacement in the strain energy 
expression when beam-like coordinates are used. Since, for airplanes, axial modes are typically much 
higher frequency than transverse modes, the effects of the axial modes can be residualized. This 
residualization is accomplished in the FIT framework by solving for the elastic displacements that result 
from combinations of unit values of rotational velocity about the airplane body-frame axes. Thus for a 
unit roll rate, p, the steady state deflections are calculated for the full finite-element model. These "static" 
deflections are combined with the third order stiffness tensor to produce an increment to the basic 
stiffness matrix that is appropriate for unit roll rate. Thus the j,k- element of an incremental stiffness th 

I matrix, [AK], is given by, 

The j,@ element of [AK] becomes one entry into the 3x3 matrix [Jlgjk Because of symmetry, the 

matrix, [Jlgjk. has 6 free parameters, and each is calculated by repeating this process for different 
combinations of unit roll rate, p, pitch rate, q, and yaw rate, r. This process is discussed in greater detail 
in reference [3]. 

POTENTIAL ENERGY STRAIN + GRAVITY CONTRIBUTION 

u = u  + ug 
8 

STRAIN ENERGY IN TERMS OF MODAL STIFFNESS MATRICES 

HIGHER ORDER TERMS RESULT FROM NONLINEAR STRAIN / 
DISPLACEMENT EQUATIONS 
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Final Equations - Unrestrained Modes 

The final equations in modal form are shown below. These equations apply to the case where the 
assumed modes satisfy the first-order mean axis conditions, otherwise additional coupling is present. 
The terms that are inside the dashed boxes result from assumptions (3, (6), and (7). The terms outside 
the boxes are equivalent to the equations seen in the more traditional approaches [8,13]. 

TRANSLATIONAL MOMENTUM 

ROTATIONAL MOMENTUM 
......................... ............................................................................ 

ki 0 
j ..k I - j  -k + hjkq q : +  a x  [J ]a  + [JIB+ h q q + axh q j i  i =  - L 

-jk .ik ........................ ............................................................................ 
ELASTIC MODE j 

........................................................................................................ .......................... 
' 0  ki ki .k 1 k g k  i 
I - o * h  q i +  K q :- 2 a . h  q FW{[J]. + [J] ?l + [J] }ai= Qj - - * ;  jk i -P J jk .ik 

Mjkmik 
............................ ........................................................................................................ ! 

TOTAL INERTIA MATRIX IN THE BODY FRAME .......................................................................... 

.......................................................................... , 
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Inertial Effects - Time History Responses 

In assessing the effects of the additional terms in the FIT equations of motion on a predicted 
response, a variety of cases were calculated. While all three axes were examined, the most interesting 
responses involved roll rate. The responses shown here were presented at the 1987 Flight Simulation 
Technologies Conference [2] and were generated prior to the incorporation of the geomemc stiffness 
terms, [qgj,, in the simulation model. Preliminary runs made subsequently, but not presented in this 
paper, suggest that the effect of the additional stiffness terms is small for the angular rates cons ided  and 
that qualitative conclusions drawn from the data presented in reference [2] a~ still valid. 

The time responses were generated by injecting a roll command doublet at the actuator input. A 
combination of aileron and stabilator was used. The initial conditions were straight and level flight at 
Mach .7 at sea level. Responses were generated with ("terms on") and without ("terms off*) the 
additional anguladelastic coupling terms that are part of the FIT equations of motion. 

8 28 

GOAL: ACHIEVE SUFFICIENT ANGULAR RATE TO EXCITE 
INERTIAL RESPONSE 

ROLL DOUBLET - 1 SECOND EACH SIDE 

20 DEG AILERON / 10 DEG DIFFERENTIAL STABILATOR 

INITIAL CONDITIONS 

- MACH=.7 

- SEA LEVEL 

- STRAIGHT AND LEVEL 1 G TRIM 

COMPARE RESPONSE WITH AND WITHOUT ANGULAR/ELASTIC 
INERTIAL COUPLING 

- "TERMS ON" - FIT MODEL 

- "TERMS OFF" - TYPICAL ASE MODEL 



Lateral / Anti-Symmetric Response 

For the anti-symmetric responses to the roll command, there was no discernable difference between 
"terms on" and "terms off' responses. The responses shown below, roll rate and the third anti-symmetric 
mode, are typical. The third anti-symmetric mode is characterized as a wing first-torsion mode with 
significant missile pitch. The finite-element model had tip missiles. The reason that no difference 
occurred is that for anti-symmetric modes, the elastic modes are excited by the terms pq, pr, and qr in the 
angular/elastic coupling terms. Since the roll maneuver remained well-coordinated, the pitch rate, q, and 
the yaw rate, r, remained small. Thus the coupling terms, pq, pr, and qr, remained small. 

0.5 

ROLL RATE 
RAD/SEC 

A -  - 
MISSILE PITCH/ 
WING 
FIRST-TORSION 
ASM 3 

- TERMS ON 
I,,.....,, TERMS OFF 

TIME SECONDS 
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Symmetric Response - Set 1 

5 -  

0 '  

The inertial coupling terms made no effect on rigid body symmetric responses. The angle-of-attack 
response is shown below. The angle-of-attack at time equal zero is due to the 1-g trim. The second 
response shown below is the first symmetric mode, wing first-bending. The y-axis indicates the 
deflection of the mode in feet measured at the point of maximum deflection, presumably at the wing tip. 
The mode is positive for tip-down deflection, so the mode is displaced about .25 feet tip-up at time zero. 
While the angle-of-attack is clearly the principal driver of symmetric wing first-bending in this maneuver, 
a discernable difference has occurred between the "terms on" and the "terms off'' responses. Only two 
symmetric modes showed more difference in "terms odoff' responses than the first symmetric mode and 
these two modes are shown in the f ipre  on the next page. 

- TERMS ON 
, , I I , I I I I I  TERMS OFF a 

DEG 

WING 
FIRST- 
BENDING 
SYM 1 

TIME SECONDS 



Symmetric Response - Set 2 

Symmetric modes 4 and 7 were the only modes to show significant inertially induced response. 
Symmetric mode 4 is characterized by tip-missile yawing together with fin-bending and symmetric mode 
7 is a wing frrst-bending in the fore/aft plane. The fact that roll rate squared is the principal driver is seen 
clearly in the figure. The y-axis for the elastic mode responses shown below represents strain energy 
absorbed normalized by that of the first symmetric mode. In other words, a unit deflection in modes 4 or 
7 represents the same strain energy absorbed as would occur with a deflection of one foot in the first 
symmetric mode. Since the wing is swept backwards, a forward deflection in the the wing results in 
outboard movement of mass and is therefore excited by roll rate. A natural question to ask is if these sort 
of responses can be predicted from merely examining the parameters of the simulation model. 

SQUARE OF 
ROLL RATE 

2 2  
RAD I SEC 

0.1 I 1 I I 
MISSILE YAW I 
FIN BENDING 
SYM 4 

-0.1 I I J 

0.1 I I 1 1 -okqLj-l WING IN-PLANE 
LATERAL 
FI RST-B ENDING 
(FOREIAFT) 
SYM 7 

-0.1 
0 1 2 3 

TIME SECONDS 

TERMS ON 
TERMS OFF 

- 
I I I I I , , , . .  
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Modal Sensitivity Parameter 

As part of determining when inertial coupling might be important in an analysis, the following 
simple parameter can be calculated. The parameter R.@) defined below is simply a first order 

J 
approximation to the steady-state response of elastic mode j to a constant angular rate represented by the 
angular velocity vector, a. The y constant is used to scale the responses so that for different modes j, 
identical R.'s represent the same strain energy. 

J 

1 - 2 { cuT [JIj cu 1 
Rj(cu) = y 

K 
I 

MODAL DISPLACEMENT NORMALIZED BY STRAIN ENERGY 

APPROXIMATES RESPONSE OF MODE "j" TO CENTRIFUGAL 
LOADING FOR A GIVEN ROTATIONAL VELOCITY 

MAX DESIGN ROTATIONAL RATES ARE LIKELY INPUTS 



Modal Sensitivity at Max Roll 

The parameter R . 0  is shown below for each of the 20 elastic modes included in the simulation 
J 

model. The input angular rates correspond to the max roll rate achieved at about .9 second into the 
maneuver. The angular velocity vector 
symmetric modes are clearly singled out by the R.@) parameter. Again, the units of R.@) are strain 
energy normalized to the first symmetric elastic mode. 

T 
= [p,q,r] in body-frame components. The fourth and seventh 

J J 

MODE 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

SYMMETRIC 

-.0283 
.0048 
,0064 

I .0739 I 
.0075 
-.0028 

1 0 8 9 9 7  
-.0115 
-.0043 
-.0027 

T 

ANTSY MMETRIC 

,0008 
-.0120 
.0004 
.0039 
-.0001 
-.0090 
-.0016 
-.0006 
.0018 
-.0012 

- 0 = [ 4.7 , .I7 , .03 1' (RAD/SEC) 
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Illustration of R Parameter 

The amplitudes of the response of symmetric modes 4 and 7 are essentially equal to the 
values of the R parameter calculated in the previous figure. This parameter, which is a linear 
approximation to steady-state response, is far from the end of the story. In the case of the 
FIT simulation model, even though symmetric modes 4 and 7 were excited by inertial effects, 
these modes are essentially decoupled from the rest of the dynamic model. This occurred 
because both modes 4 and 7 are dominated by in-plane bending of the wing lifting surface. A 
doublet-lattice code was used to calculate the generalized aerodynamic forces and in-plane 
motions produce no change in the normal washes induced at the 3/4 chord points of the 
aerodynamic boxes. Thus none of the other modes are significantly affected by symmetric 
modes 4 and 7. 

One can imagine other cases where inertially affected modes are more coupled to the rest 
of the system dynamics. One case is if such a mode contributes to a feedback signal. 
Another case might occur in an underwing store configuration. As the underwing stores were 
slung outboard by centrifugal forces, they would induce out-of-plane bending in the wings, 
the primary lifting surfaces. 

R4 ( ) = .074 AT MAX ROLL POINT 

TERMS ON - MISSILE YAW I 
FIN BENDING II. I I I I I I I  TERMS OFF 
SYM MODE 4 

R,( 0) = .090 AT MAX ROLL POINT 

WING IN-PLANE 

FI RST-B EN DING 
LATERAL 

(FOREIAFT) 
SYM MODE 7 

-0.1 
0 1 2 3 

TIME SECONDS 
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Conclusion 

An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft 
has been developed. While the author realizes that the subject of modeling rotating, elastic structures is 
not closed, it is believed that the equations of motion developed and applied herein are correct to second 
order and are suitable for use with typical aircraft structures. The equations are not suitable for large 
elastic deformation. In addition, the modeling framework generalizes both the methods and terminology 
of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. 

Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing 
aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must 
be approached with care. In keeping with the same engineering judgment that guided the development of 
the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane apphcations is 
expected to be small. A parameter has been presented to help in the determination of when such effects 
are significant. The parameter does not tell the whole story, however, and modes flagged by the 
parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e. the 
inertially affected modes can influence other modes. Classically, configurations where nonlinear inertial 
effects can come into play are characterized by complex geometries such as stores mounted under the 
wings or the presence of a T-tail. 

INTEGRATED NONLINEAR MODEL DEVELOPED 
- CORRECT TO SECOND ORDER 
- SUITABLE FOR AIRPLANE STRUCTURES 

GENERALIZES CONVENTIONAL ASE MODELS AND NONLINEAR 
RIGID-BODY MODELS 

ANGULAR / ELASTIC INERTIAL COUPLING 
- RIGOROUS INCLUSION PROBLEMATIC - 
- EXCEPTIONS CHARACTERIZED BY 

EFFECT NORMALLY SMALL FOR AIRPLANES 

R ( Q )  PARAMETER IS SIGNIFICANT FOR SOME MODE 

- AND 
AFFECTED MODE IS COUPLED TO THE REST OF THE MODEL 
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