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Introduction 

The purpose of this study is to examine a function for approximating natural frequency constraints 
during structural optimization. The nonlinearity of frequencies has posed a barrier to constructing 
approximations for frequency constraints of high enough quality to facilitate efficient solutions. A new 
function to represent frequency constraints, called the Rayleigh Quotient Approximation (RQA), is 
presented. Its ability to represent the actual frequency constraint results in stable convergence with 
effectively no move limits. 

The objective of the Optimization problem is to minimize structural weight subject to some minimum (or 
maximum) allowable frequency and perhaps subject to other constraints such as stress, displacement, and 
gage size, as well. A reason for constraining natural frequencies during design might be to avoid potential 
resonant frequencies due to machinery or actuators on the structure. Another reason might be to satisfy 
requirements of an aircraft or spacecraft’s control law. Whatever the structure supports may be sensitive to 
a frequency band that must be avoided. Any of these situations or others may require the designer to 
insure the satisfaction of frequency constraints. A further motivation for considering accurate 
approximations of natural frequencies is that they are fundamental to dynamic response constraints. 
Techniques for natural frequency constraints may have application to transient response and frequency 
response problems. 

~ ~ 

Problem 
Minimize Weight of Structure 
Subject to Constraints on Structural Response (Natural Frequencies) 
For a Finite Element Model (Cross-Sectional Properties as Design Variables) 
With a Given Geometric Configuration. 

Obstacle 
Highly Nonlinear Frequency Constraints 

Difficult to Approximate 

Solution 
Better Approximation Using Modal Energies 



“Best” Choice of Intermediate Design Variables 

Engineers have long used the Taylor Series Approximation (TSA) as a tool to simplify problems. In 
1974 Schmit and Farshi exploited the use of TSAs to form approximate problems to the actual design 
problem.1 Since then much attention has been focused on finding the most appropriate intermediate design 
variables to use for the best TSA. Schmit and Miura originally championed the use of reciprocal 
variables.2 Starnes and Haftka3 and Fleury and Braibant? have shown that a hybrid constraint using 
mixed variables (i.e., a combination of direct and reciprocal variables) yields a more conservative 
approximation. Woo generalized the concept in his Generalized Hybrid Constraint (GHC) Approximation 
where a variable exponent controls how conservative is the convex approximation.5 Fleury devised a 
means of selecting an “optimal” intermediate variable based on second order information.6 Vanderplaats 
and Salajegheh demonstrated improved quality for frequency constraint approximations in the element 
property space of frame elements when the optimization design variables are cross-sectional dimensions.7 
All of these approaches have sought improvement through the “best” choice of intermediate variables. Yet 
all of them have used a Taylor series of some sort for the eigenvalue. 

Taylor Series Approximation (TSA)-Reciprocal Variables - Schmit & Farshi, 1974 
- Schmit & Miura, 1976 

- Starnes & Haftka, 1979 - Fleury & Braibant, 1984 

-Woo, 1986 ( Frequencies) 

- Mills-Curran, Lust & Schmit, 1983 
- Vanderplaats & Salajegheh, 1988 (Frequencies) 

Hybrid Constraint-Mixed Variables 

Generalized Hybrid Constraint (GHC) 

0 Cross-Sectional Property Space for Frames 
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Alternatives to Conventional TSA 

The nonlinearity of frequencies is readily observed through the appearance of cross-sectional variables 
in both the numerator and denominator of Rayleigh’s quotient. Venkayya has pointed out that in practical 
structures, the denominator (kinetic energy) is typically dominated by the non-structural mass.* In this 
case, frequency eigenvalues are more nearly linear in the cross-sectional property (direct design variable) 
space. Based on this assumption some researchers have preferred a Taylor series constructed in the direct 
design variable space.7 On the other hand, Miura and Schmit presented results that were better in the 
reciprocal design space than in the direct design space.9 Nevertheless, their studies revealed that the 
eigenvalues are highly nonlinear in both direct and reciprocal design variable space, requiring strict move 
limits. As a result, they used a second order Taylor series. Although the second order approximation 
provided stable convergence without strict move limits, they reported the total computational time was 
“comparable with that required using fnst order approximations with move limits.” 

In 1987 Vanderplaats and Salajegheh demonstrated for stress constraints that using a Taylor series to 
approximate the internal loads, instead of the stresses themselves, could increase the rate of convergence 
and reduce the need for move limits.10 They observed that internal loads are a more fundamental quantity 
than stresses. Venkayya’s approach in formulating the optimality conditions for frequency constraints8911 
suggests that for frequencies modal energies may be a more fundamental quantity than the eigenvalue. A 
frequency constraint might be better approximated by a separate Taylor series for the numerator and 
denominator in the Rayleigh quotient. In fact, the concept is similar to an alternative approximation 
proposed by Fox and Kapoor.12 

Miura & Schmit, 1978 
- Frequencies are Highly Nonlinear 
- 2nd Order TSA 
- Generous Move Limits Offset by Added Cost 
Vanderplaats, 1987 
- Approximate Internal Loads Instead of Stresses 
- Loads-More Fundamental Quantity 

- Modal (Strain) Energy Resizing 

- Separate TSA for Modal Energies 

Venkayya, 1983 

Rayleigh Quotient Approximation (RQA) 



Mathematical Statement of Problem. 

The structural optimization problem is stated mathematically as minimizing an objective function, the 
weight,W, subject to constraints on response quantities, g, where x is a vector of n design Variables, XI 
and xu represent their lower and upper bounds, respectively, and g are the rn inequality constraints. The 
design variables are linked to one or more of the p physical variables, represented by the vector, d, 
through a transformation matrix, T. In general the T matrix may be fully populated; however, each row of 
T is limited to only one non-zero element (so-called group linking) when reciprocal variable 
approximations are considered. In this case the summation in eq (4) is unnecessary. The examples below 
use rod and membrane elements exclusively. Their design variables are the cross-sectional properties: rod 
areas and membrane thicknesses. 

Frequency constraints are formed using the eigenvalue, (square of the angular frequency, a) normalized 
by its allowable value. The positive sign is used for upper bounds and the minus sign for lower bounds. 
Only lower bound frequency allowables, hl, are given in the following examples, since minimizing 
structural weight drives frequencies toward zero. Other constraints are also cast in the form of eq (3) using 
the positive sign and replacing the h's with the appropriate response quantity (Von Mises stress or 
displacement value). 

Minimize Structural Weight 

Subject to 

Frequency Constraint 

Design Variable Linking 

min W(x) 

gj(x) 0; j = 1, ..., m 

i = 1, ..., n '5. I 5 '5. I q; 

n 

i =1 
dk = TkiT; k = I ,  ..., p 

941 



Approximate Sub-problem 

An approximation to the actual optimization problem is constructed by approximating the constraints 
using a first order Taylor series. If the approximate problem is solved in the reciprocal design variable 
space (Le., p=l/x), then the approximate constraint function is given by eq (6). 

The Method of Mixed Variables uses either a direct or reciprocal variable depending on the sign of the 
the constraint's derivative for each design variable. This creates a convex and more conservative 
approximation. As generalized by Woo, the equations for the GHC are given in eqs (7) where p is a real 
number and n is a positive integer. When p=O and n=l  the GHC reduces to the Method of Mixed 
Variables. 

The approximate sub-problem formed with eqs (9, (6), or (7) is solved by a nonlinear programming 
optimization algorithm. Appropriate move limits are employed to insure that the design remains in the 
vicinity of the point about which the Taylor series was made. The move limits are applied as side 
constraints, eq (2), if they are more restrictive than the minimum and maximum gage constraints which are 
otherwise used. Move limits are typically specified as a percentage of the current design variables. 
Alternatively, a move limit factor,f, determines the upper and lower bounds. 

Direct TSA 

Reciprocal TSA 

Generalized Hybrid Constraint (GHC) Approximation 
n 'gj i f 4 2 0  JQ 

(7) Jq 
q = a,+ cax_$(q 

(.(I$)  = (x I - x 01 .)( -> x*i 

J l = l  / 

X .  r p -  n; i f 3 e O  

Move Limits 

942  



I Rayleigh Quotient 

I The structural system’s mass and stiffness matrices can be represented by eqs (lo), where K’ and M’ 
are the sensitivity of the stiffness and mass, respectively, to all the elements controlled by the ith design 
variable. For rod and membrane elements the element stiffness and mass matrices are linear in the design 
variables, so that eqs (10) are exact. For frames the element matrices are functions of several dependent 
cross-sectional properties. If cross-sectional dimensions are used as design variables instead, eqs (10) are 

I 

I 

I 
I approximate. As Vanderplaats and Salajegheh point out, the cross-sectional dimensions are appropriate 

intermediate design properties for the constraint approximation even when designing for the cross-sectional I 

dimensions directly.11 The RQA below is entirely compatible with their approach of constructing 
constraint approximations in the cross-sectional property space. 

The relationship of a natural frequency, a, to its associated eigenvector, 9, and the system’s stiffness 
and mass is expressed by Rayleigh’s quotient, eq (9), where the modal strain energy, U, and the modal 
kinetic energy, T, are the sum of the strain and kinetic energies, respectively, from each of the elements. 
This is expressed for modal strain energy in eq (1 1) and for modal kinetic energy in eq (12). Eqs (13) 
defines the element energies where u, is strain energy from undesigned elements, and to is the kinetic 
energy due to non-structural mass and undesigned elements. The gradient of a frequency constraint, used 
in eqs (5) or (6), is given by eq (14). 

n 
u= h+ c u . x  

1 1  i =1 

n 

i =1 
T =  b +  Ct .x  I /  

u. I = @ X j @  
tj = @hij @ 
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Rayleigh Quotient Approximation (RQA) 

Instead of using eqs (5) or (6)’ Taylor series approximations to the strain and kinetic energies can be 
used to construct the approximate constraint. In deriving eqs (15) and (16) the eigenvectors were assumed 
invariant with respect to changes in the design variables. In fact, Miura and Schmit recommend this 
assumption as a means of reducing the computational burden of calculating the second derivative of a 
frequency. The assumption is also implicit in Venkayya’s derivation of a scaling factor for frequency 
constraints.l3 The two approximations of eqs (15) and (16) are next combined to form a single 
approximate frequency constraint, eq (17). 

The same issue of an appropriate intermediate design variable is as pertinent for eqs (15) and (16) as for 
constructing a Taylor series directly for the eigenvalue. Starnes and Haftka proposed that the sign of the 
constraint’s derivative should determine the appropriate variable. A positive derivative indicates a direct 
variable approximation, a negative derivative signals a reciprocal variable approximation. Therefore a 
conservative approximation for a lower bound frequency constraint should employ reciprocal variables for 
the strain energy and direct variables for the kinetic energy. The reverse is true for an upper bound 
frequency constraint. For the former, more typical case eq (15) is replaced by eq (18). 

For a lower bound frequency the approximate frequency’s derivative is by eqs (19) and (20), where 
= o/ t . The sign of eq (19) can change as the design changes. This behavior is consistent with 

intuition which says that the frequency tends toward zero as the cross-sectional properties go to zero. This 
trait is not characteristic of TSAs to the eigenvalue in direct or reciprocal design space, nor for Woo’s 
GHC. 

Modal Strain Energy Approximation n 
i7= 4 + Cu.(x. - s) 

i =1 I 1  I 

Modal Kinetic Energy Approximation n r= T,  + c f.(x - +)’ 
i =1 I 1  i 

Approximate Frequency Constraint 

Reciprocal TSA to Modal Strain Energy 

g = 1 -  -~ u 
A’T 
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Special Case of High Non-Structural Mass 

Structural designs with high non-structural mass constitute a limiting case for the RQA. Venkayya 
introduced modal mass ratios to characterize the degree of structural versus non-structural mass. If the 
mass matrix is considered as the sum of a structural mass matrix, Ms, and a constant (non-structural) mass 
matrix, Mc, then the modal mass ratios are defined in eqs (21) and (22). By definition q+‘y=l. In the limit 
as non-structural mass becomes dominant, 7‘ + 1 and 77 +o,  the modal kinetic energy can be 
considered constant with respect to design changes, and the second term in the derivatives of the 
eigenvalue in eqs (14) and (19) can be neglected. In this case the RQA reduces to a TSA-either the 
reciprocal or direct variety depending on which design space was used to approximate the modal strain 
energy. Starnes and Haftka’s hybrid constraint reduces the reciprocal TSA in this case, as well. The same 
reasoning for choosing the reciprocal design space indicates that it would be more successful than the 
direct design space for conventional TSAs when optimizing structures with a low modal structural mass 
ratio. A graphical illustration of this point is seen in a later figure for the beam problem. 

COMPUTATIONAL CONSIDERATIONS. 

The only computational penalty for using RQA is that the optimizer has to deal with explicit nonlinear 
instead of linear constraints. The sensitivity analysis is the same except that two gradients must be stored 
for each frequency constraint instead of one. Additional “bookkeeping” is required to distinguish a 
frequency constraint from other types in order to apply the RQA. Otherwise the method involves no more 
complexity than a conventional TSA. 

Modal Mass Ratios 

1 RQA reduces to TSA in h as y -+ 1 

Computational Considerations 
Explicit Non-Linear Constraint 

1st Order Information only 
2 gradients per Frequency Constraint 

Gradient of RQA can Change Sign 



Three Bar Truss 

I I . 

A simple three bar truss is used to illustrate the differences among approximation techniques. A 10 lb 
point mass is at the free node. All three bars have an elastic modulus of lOx106psi, density of 0.1 lblin3, 
initial areas of 5.0 in2, and minimum sizes of 0.001 in2. The fundamental frequency is constrained to be at 
least 1300 hz. As in the remaining examples, TSAs are made in both direct and reciprocal design space. 
For RQA the kinetic energy Taylor series is always made in the direct design space. In reference to RQA 
“direct” and “reciprocal” distinguish the design space used for approximating the strain energy. Effectively 
no move limits were imposed, i.e.,f=10,000 in eq (8). Due to symmetry the two mode shapes for this 
system are always the same: one horizontal and one vertical. Since a constant mode shape was the only 
assumption made in deriving the RQA, when strain energy is found with direct variables, RQA calculates 
the exact frequency and finds the optimum in a single iteration. Because signs of the constraint’s 
derivatives are not all the same, a TSA in either space creates an infeasible design that is corrected the next 
iteration. RQA with strain energy in reciprocal space is conservative, producing only feasible designs. 
The initial design has ‘Ya.5 1 and the final design, ‘Y4.65. 

The design can be controlled by a single variable by recognizing two simplifications: symmetry forces 
the two diagonal bars to have the same area, and because the vertical bar contributes no strain energy to the 
fundamental mode, it goes to minimum. The constraint functions are plotted in as a function of the single 
variable controlling the two diagonal bars. Using the direct RQA, the optimum area of 3.736 in2 for these 
two bars can be calculated by hand. The conservative nature of approximating strain energy in the 
reciprocal space is also evident. In general the reciprocal RQA will compensate for changes in the 
eigenvector; however, in this instance with an invariant mode shape, it is overly conservative. 

A Direct RQA 
B Reciprocal RQA 
C Direct TSA 
D Reciprocal TSA 

~ 

A 
19.14 
10.57 
10.57 

B 
19.14 
11 5 0  
10.67 
10.57 
10.57 

C 
19.14 
10.36 
10.56 
10.56 

D 

0.01 5 
19.14 

141.3 
24.02 
13.30 
10.87 
10.57 

Frequency Constraint Functions for 3 Bar Truss 

Direct TSA 

Table 1: Iteration History (Weight)-3 DV 0 2 4 6 0 10 
Diagonal Bar Areas 
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Cantilever Beam 

Y 

E 11- 
E3) .- 

The cantilever beam, originally used by Turner,14 is modelled using rod and shear panel elements. It is 
symmetric about the mid-plane and supports three non-structural masses, each 30 lb. Chord areas (AI, 
A2, A3) and web thicknesses (tl ,  12, t3) are optimized for minimum weight subject to a minimum 
fundamental frequency of 20 hz. No other constraints are applied except minimum gages of Ai=O.Ol in2 
and ti=0.001 in. Initial values are Ai=l.O in2and ti=0.2 in. Young’s Modulus is 10.3 x 106psi, 
Poisson’s ratio is 0.3, and the density is 0.1 lblin3. 

Designs were feasible at every iteration using RQA without move limits (+loo) and the rate of 
convergence was faster than for Woo’s results. 

6” t- 20” -+- 20” -+- 20” -j 
Ateration fa History for Cantilever Beam 

+ RQA 
4 woo 
+ Miura - oc 

U J  V ‘  

0 2 4 6 a 
Number of Finite Element Analyses 
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Cantilever Beam Results 

The final design is similar to those obtained by Turner,14 Miura? and Woo;5 however, the weight is 
slightly higher than for the latter two-entirely as a result of modelling and analysis differences. When 
Miura and Woo’s final designs were analyzed in the small optimization program used for this paper, as 
well as in ASTR0S:the frequency was 19.3 hz. When the lower bound frequency was set to this value, 
the final designs were more nearly the same. 

In order to examine the design space, the number of variables was reduced at a point near the optimum 
design. One design variable was linked to all the rod areas and one linked to the web thicknesses in the 
ratios given in Table 3. Contours of the resulting constraint surfaces are plotted for the approximate 
functions along with the actual constraint surface. The failure of the direct TSA reported by Miura and 
Woo is evident in the poor quality of the approximating constraint surface to the actual highly nonlinear 
surface. In fact since the direct TSA constitutes a linear programming problem, the optimizer always 
moves to a vertex in the design space, choosing to maximize the most effective variable while minimizing 
the rest. In the absence of severely restrictive move limits or other constraints to cut off the design space, a 
feasible design is never achieved. Also, because the final modal non-structural mass ratio is 0.98, the 
RQA closely follows the reciprocal TSA. Since the sign of both constraint derivatives is negative, Woo’s 
GHC with p a  and n=l (equivalent to Fleury’s Method of Mixed Variables) would be identical to the 
Reciprocal TSA. 

0.044 0.041 7.00 19.3 
0.046 0.041 7.01 19.3 
0.035 0.031 6.92 19.3 

*Freqencies calculated using CROD and CSHEAR elements (lumped mass) in ASTROS. 
**Areas for Turner’s design are the average for a linearly tapered rod. 

Table 2: Cantilever Beam Final Designs 
- 

- Beam Frequency Constraint Contours 
a RQA 
+ Exact 
+ Direct 

0.75 1 .oo 1.25 1.50 z 
Normalized Rod Areas, A 

0.125 
A. l  A.2 

0.56 

t.2 t.3 
0.10 0.08 0.06 

Table 3: Cantilever Beam Intermediate Design 

*Automated Structural Optimization System 
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Cantilever Beam Single Design Variable Constraint Functions 

1.0- 
0) 

C 
+ 
.- 
2 0.5- In 
C s 
g 0.0- 
>I 

al cr 
u. ? 

-0.5 

Consider next the constraint surfaces as a function of a single variable, the tip rod’s area (A3). The f i s t  
plot shows a cut along the A3 axis through the six-dimensional design space for the constraint functions 
near the same nearly optimum design point ( ~ 0 . 9 7 ) .  It reflects the same comments mentioned above. 
The second plot shows the same functions constructed at the initial design point (y=O.88) where the 
constraint derivative with respect to A3 is positive instead of negative. Here the difference between the 
RQA and other approximations stands out. The RQA closely follows the actual constraint surface. Its 
derivative can change sign to match the curvature of the actual surface, whereas the TSA’s derivative 
cannot change sign. In fact, the TSA’s derivative is constant in the design space in which it was 
constructed. The advantage of Woo’s GHC is that, based on the constraint’s sign, it chooses the direct 
TSA surface which is more conservative than the reciprocal TSA surface in this case. Neither TSA, 
however, represents the actual constraint surface well. 

Frequency Constraint Near Optimum Design Frequency Constraint Near Initial Design 

* Exact 
0 RQA 
+ Reciprocal 

* Exact 
0 RQA 

2 + Reciprocal 5 0.0 
C + Direct 

0.5 
0) 

C 
+ 
.- 

8 
>I 

al 
J 
U 

-0.5 

? 
-1.0 

0.0 0.5 1 .o 1.5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 
Normalized Tip Rod Area, A3 Normalized Tip Rod Area, A3 

* < O  
dA3 

ds - > o  
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ACOSS 

The Active Control Of Space Structures (ACOSS) model I1 was developed by the Charles Stark Draper 
Laboratory.15 The structure consists of two subsystems: (1) the optical support structure and (2) the 
equipment section. The two are connected by springs at three points to allow vibration isolation. In this 
problem the equipment section at the base wasdisregard& ahdonly theopticalsupport structurefixed at the 
three connection points was considered. The finite element model for this modified ACOSS XI has 33 
nodes (90 degrees of freedom), 18 concentrated masses, and 113 rod elements made of graphite epoxy 
with Young’s Modulus of 18.5 x 106psi, Weight Density of 0.055 Lblin3, and initial areas of 10.0 in2 for 
the truss members. 

ACOSS Figures 

0 LIlaped h r r  Location 

Finite Element Representation of ACOSS 11 



ACOSS Results 

The structural weight was minimized using all 113 elements as design variables subject to a lower 
bound frequency of 2.0 hz and minimum sizes of 0.1 in*. The results show that RQA achieves a final 
design significantly better than TSA or the Optimality Criteria (OC) method.12 A reciprocal TSA fails to 
converge to a feasible design even withf=1.5. The results in the figure are forf=1.5 at iteration one, 
exponentially reduced at each iteration to a lower limit off=1.2. Still, the constraint is violated (g>O.l%) 
in the first 11 iterations and violated by more than 1% in the first 5 iterations. For RQA the move limit 
scale factor +2) prevented a feasible design until after the second iteration, after which all subsequent 
designs were feasible. With less restrictive move limits e l 0 0  initially, exponentially reduced tof=2) 
RQA’s first iteration was feasible; however, some subsequent intermediate designs were violated by 1- 
3%. RQA still has an infeasible design after increasing the weight in the first iteration and then 
subsequent designs are feasible. Initially y=0.42 and at the final design y=0.86, showing why a 
reciprocal TSA eventually becomes more conservative, producing a feasible final design. 

ACOSS Iteration History 
22000 
20000 
18000 
16000 
14000 
12000 

10000 

* Reciprocal TSA 

8000 1 I I 

0 5 10 15 
Number of Finite Element Analyses 
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Conclusions. 

A new function for approximating the frequency constraints during the solution of a structural 
optimization’s approximate subproblem was developed. The motivation for this Rayleigh Quotient 
Approximation was to approximate some quantity more fundamental than the eigenvalue itself in order to 
improve the quality of the constraint approximation. Constructing approximations to the modal strain and 
kinetic energies independently results in more accurate constraint evaluation without any additional 
computational burden. The numerical examples demonstrate that the RQA is more conservative than other 
approximations and permits stable convergence without stringent move limits. Future work should be 
directed toward examining multiple frequency constraint problems, more direct comparisons to Woo’s 
GHC approach, and application to space frames. 

RQA-Frequency Constraint Approximation Function 

Higher Quality Approximation 
- Separate TSAs for Modal Energies 

- Generous Move Limits 
- Quick Convergence to Feasible Design (Conservative) 
- Derivative Changes Sign to Follow Constraint Surface 
No User Supplied Parameters 
Future Work 
- Multiple Frequencies 
- Frames 
- More Comparisons to GHC (Mixed Variables) 
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