& hftps://ntrs.nasa.gov/search.jsp?R:19890015829 2020-03-20T01:49:40+00:00Z2

N89-25200

OPTIMIZING FOR MINIMUM WEIGHT WHEN TWO DIFFERENT
FINITE ELEMENT MODELS AND ANALYSES ARE REQUIRED

Jeffrey C. Hall
General Dynamics/Electric Boat Division
Groton, Connecticut

1009



INTRODUCTION

Whether designing an automobile, aircraft, building, or ship, the structural
engineer must consider many loading conditions and meet multiple design
criteria. Arriving at a minimum weight structure which satisfies all of the
design constraints requires the integration of the results from all analyses
and loading conditions. This is a relatively straightforward process if all
of the analyses use the same analysis model. However, if each analysis
requires a separate model, each model must still vary by the same amount when
the design variables change. Typically, this optimization process is further
complicated when constraints from the different analyses drive the design
variables in opposite directions. For example, the stress constraint from a
static analysis may cause a decrease in a design variable. However, the

minimum frequency constraint from a vibration analysis may cause an increase
in the same design variable.

This paper discusses the FESOP (Finite Element Structural Optimization
Program) program's ability to perform minimum weight optimization using two
different finite element analyses and models. FESOP uses the ADS optimizer
developed by Dr. Garret Vanderplaats to solve the nonlinear constrained
optimization problem. The design optimization problem in the paper requires a
response spectrum analysis and model to evaluate the stress and displacement
constraints. However, the problem needs a frequency analysis and model to
calculate the natural frequencies used to evaluate the frequency range
constraints. The paper summarizes the results of both the successful and
unsuccessful approaches used to solve this difficult weight minimization
problem. The results show that no one ADS optimization algorithm worked in
all cases. However, the Sequential Convex Programming and Modified Method of
Feasible Directions algorithms were the most successful (Figure 1).

MININUM WEIGHT STRUCTURAL DESIGN

*Multiple Analysis Types and Models

- Static, Vibration, Response Spectrum
*Multiple Loading Conditions
*Conflicting Design Constraints
- Stress, Displacement, Frequency
*Different Functional Design Groups

- Static, Vibration
FIGURE 1
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PROBLEM

The engineer faces many conflicting requirements when designing equipment
foundations. The design requirements are conflicting because a minimum weight
response spectrum (stress) design will tend to decrease the structural
stiffness, while a minimum weight natural frequency avoidance design will tend
to increase the structural stiffness. Another problem arises from the fact
that separate response spectrum and natural frequency analysis models may be
required. A much finer finite element mesh may be needed in the vibration
analysis to accurately determine the natural frequencies of vibration. This
paper presents a multidisciplinary optimization procedure and program which has

successfully integrated these analysis methods to

(1) solve both the natural frequency and response spectrum finite

element foundation models at the same time;
(2) optimize these foundations for minimum weight while meeting both

frequency avoidance and response spectrum design criteria;
(3) arrives at.producible equipment foundation designs (Figure 2).

Thus, instead of a time consuming trial and error approach to performing
combined response spectrum and natural frequency avoidance foundation design,
an automated process, using the FESOP computer program, now exists to arrive
quickly and efficiently at producible and weight effective equipment
foundations designs. The following paragraphs describe how FESOP was used to

develop producible minimum weight designs.

FESOP
(Finite Element Structural
Optimization Program)

*Solves Both Natural Frequency and Response
Spectrum Analyses in Same Execution

*Permits Different Finite Element Models for
Each Analysis

*Optimizes For Minimum Weight Using ADS

*Satisfies Stress, Displacement, and
Frequency Avoidance Constraints

*Arrives at Producible Equipment Foundations
FIGURE 2
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SAMPLE PROBLEM

Figure 3a is the response spectrum (stress) finite element model and Figure 3b
is the vibration frequency finite element model. The response spectrum model
employs the minimum number of finite elements needed to accurately assess the
structure's performance, with only the equipment mass plus enough lumped
masses to accurately model the foundation mass. However, the vibration model
requires a much finer finite element discretization with an element mass
definition but no equipment mass to accurately determine the structure's
natural frequencies of vibration. Each math model, therefore, requires a
separate analysis. In the normal design situation the engineer would set up
the two models, run both analyses, evaluate two sets of results, change both
models, rerun both models, and continue this process until the "optimum"
design was established. At best this is a very time consuming and very
imprecise procedure since the engineer relies only on his experience and
intuition to modify the structure. In FESOP, an automated procedure exists:
to read in both models, to perform both analyses, to evaluate the results of
both analyses, to modify the math models as dictated by the numerical
optimization program ADS, and to arrive at a producible true minimum weight
foundation design while meeting all criteria.

SAMPLE EQUIPMENT FOUNDATIONS

a - Response Spectrum b - Vibration Model
Model

FIGURE 3
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ENGINEER'S FUNCTION

While FESOP improves and automates the normal design process, the engineer's
knowledge is still required to achieve acceptable results. Usually two or
more attempts with FESOP are required to arrive at an optimum weight equipment
foundation due to the highly complex nature of the frequency avoidance

problem. However, FESOP does provide an efficient means to arrive at this
desirable result quickly and with 1ittle or no guesswork. In addition, by
properly specifying the design constraints and variables, a truly producible
structure will result.

While at first glance this would seem to be a very expensive process, in the

long run the costs will be cheaper because the engineer will spend

considerably less time making alterations to the design and rerunning the
required analyses. He will be able to devote more cogitative effort to
?olving h;s design problem, and the design will be far superior in all aspects
Figure 4).
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FIGURE 4

1013



REQUIREMENTS

A combined response spectrum and vibration minimum weight design can be
accomplished using many different approaches with FESOP. Some of the more
important considerations for successful completion are the fineness of the
finite element model; the choice and number of design variables; the choice of
the optimization algorithm; the initial design of the FESOP analysis; and the
producibility of the resulting structure. A number of recommended procedures
have been developed to help ensure the best minimum weight design in the
quickest manner possible, (Figure 5). In the following sections these
important considerations are addressed, with samples of both good and bad
applications to emphasize the point. Finally, a summary section discusses

the successful combination of all of these features.

Fineness of Finite Element Model

Selection and Number of Design Variables

Optimization Algorithm
* - MFD, MMFD, SLP, SQP, SCP

Starting Point

- Upper or Lower Bound

- Feasible or Infeasible
Procedure

- One Step (All Constraints)

- Multiple Steps (Selected Constraints
Then All)

FIGURE 5

* Defined in Figure O,
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REQUIRED FINITE ELEMENT MODELS

In the sample problem, the vibration finite element model, Figure 3b, has
approximately two times the number of finite elements as the response spectrum

finite element model, Figure 3a. The vibration model is sufficiently complex to

demonstrate a combined response spectrum and vibration foundation design
optimization with FESOP. Although the discretization of the frequency model is
different from that of the stress model, all of the reference data (material
properties, cross-sections, eccentricities, thicknesses, etc.) must be and are
identical in the two models. The reason for this is that as a design variable
for one model's changes, it must change identically for the other model. The
important thing to stress is that the major differences between the two models
are the number of finite elements, the number of node points, and the
definition of the mass associated with each model.
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THE CHOICE AND NUMBER OF DESIGN VARIABLES

The choice and number of design variables affects the computer time it takes
to arrive at an optimum solution; the ability of FESOP to give a true minimum
weight solution; and the ability of FESOP to arrive at a producible

structure. The greater the number of design variables, the more finite
element solutions are required to determine the constraint gradients needed
for the ADS optimizer, and consequently the longer and more costly the FESOP
analysis. For example, in the sample problem every beam element box
cross-section has five shape parameters: the depth, the width, the top
thickness, the bottom thickness, and the side thickness (Figure 6). Thus, with
the response spectrum model, there could be 16 different cross-sections (16
beam elements), with 5 design variables for each cross-section, or a total of
80 design variables. However, specifying such a large number of design
variable would be ridiculous for two reasons: (1) more than 800 gradient
evaluations would be required for both the models to obtain an optimum design,
and (2) the resulting structure would clearly not be very producible. A more
reasonable scheme would be to specifiy all of the horizontal members as having
the same cross-section and all of the vertical or nearly vertical members
having another cross- section. This would leave a total of ten design
variables and only 100 gradient evaluations for a normal FESOP run. However,
even in this case the structure could be very unproducible with mismatched
cross-sections at the joints.

ALL WIDTHS AND THICKNESSES
CAN BE DESIGN VARIABLES

1
I
| BEAM RECTANGLE BOX ANGLE
—— 1
L
PIPE MODIFIED | TEE CHANNEL

Typical Beam Cross-Sections
FIGURE 6
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SELECTED CROSS-SECTIONS

A better solution would be to allow only five design variables: the depth,
width, and top thickness of the horizontal members; the top thickness of the
vertical members; and the top thickness of the inclined members (Figure 7).
The bottom and side thickness of the horizontal members; the depth, width, and
bottom and side thickness of the vertical members; and the depth, width, and
bottom and side thickness of the inclined members would all be dependent
design variables. In this case the bottom and side thicknesses of each cross-
section would equal the top thickness of the same cross-section. This would
mean each box section would have a uniform thickness. The depth and width of
the inclined members would be equal to the depth and width of the horizontal
members, and the depth and width of the vertical members would equal each
other and the width of the horizontal members. Figure 7 shows the five design
variables for this case. In addition to such design variable 1inking for the
sample foundation, the eccentricities at the joints are also 1inked to changes
in the depth and width of the members. By doing this these eccentricities
which are dependent upon the shape of the cross-section will change as the
design variables change. With such limitations, the resulting optimized
foundation will be very producibie.
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HORIZONTAL INCLINED VERTICAL
MEMBERS MEMBERS MEMBERS
FIGURE 7
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UNPRODUCIBLE OPTIMIZED STRUCTURE

Figure 8 1s an example of a structure which was optimized without
consideration of its producibility. The lack of 1inking created an impossible
structure to build.

1f futher restrictions were made to the sample problem by making all widths
and depth of each cross-section equal to the depth of the horizontal members,
there would be only four design variables. And if the inclined and vertical
members had the same thicknesses, the number of design variables would be
three. However, because three design variables would allow very little
variation in the structure, obtaining a minimum weight foundation could be
very difficult. Experience has shown that with too few design variables an
optimum weight foundation which satisfies all constraints frequently cannot
be obtained. Therefore, it is simply too restrictive to make all of the box
sections square with the same width and depth, but allowing the depth and
widths to vary independently allows sufficient leeway to permit an optimum to
be found. So having too many design variables or having too few design
variables will both produce poor results. The best results are obtained by the
judicious blend of design variables, as in this case where there are five
design variables.

FIGURE 8
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THE CHOICE OF THE OPTIMIZATION ALGORITHM

The ADS optimizer in FESOP offers the analyst many different optimization
algorithms to choose from: the method of feasible directions (MFD), the
modified method of feasible directions (MMFD), sequential 1inear programming
(SLP), sequential quadratic programming (SQP), or sequential convex programming
(SCP). (See Figure 9.) In problems with 'stress and/or displacement constraints,
all of these methods will arrive at nearly the same minimum weight solution,
with the only difference being the time it takes to arrive at the minimum
weight solutions. However, with the combined response spectrum and vibration
foundation design problem, which includes frequency avoidance constraints, the
choice of the optimizer can make a significant difference. As will be shown,
starting at the same point, two different optimization algorithms can produce
two different optimum structures. In addition, both methods many not be able
to produce an optimum weight foundation which satisfies all the constraints.
Thus, no one algorithm will produce the best optimum all of the time.
Therefore, in general, at least two of the optimizers should be used to insure
the best chance of finding an optimum,

MFD - METHOD OF FEASIBLE DIRECTIONS

MMFD - MODIFIED METHOD OF FEASIBLE DIRECTIONS
SLP - SEQUENTIAL LINEAR PROGRAMMING

SQP - SEQUENTIAL QUADRATIC PROGRAMMING
SCP - SEQUENTIAL CONVEX PROGRAMMING

FIGURE 9
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For the sample problem shown in Figures 3a and 3b, two different optimizers were
selected to optimize for minimum weight and avoid frequencies from 80 to 120.
The starting point for the optimization process was choosen as the upper limit
of all design variables. Figure 10 shows the results using both the MMFD and
SCP algorithms. In each case the process was started with only frequency
avoidance constraints and no stress or displacement constraints. At points A
and B the frequency only analysis was stopped and all other constraints were
added. This is only one of the many ways to approach the problem. The SCP
method arrived at a valid solution, but the MMFD method had two frequency
constraint violations. With the MMFD method ADS simply could not find a way to
change the design variables to eliminate the frequencies (82.0 and 114.1)
within the range 80 to 120. However, Figure 10 also shows the results of using
the MMFD method to avoid the frequency range of 48 to 72. In this case, the
MMFD method was successful. Therefore, the analyst should always attempt more
than one method when trying to avoid frequency ranges. Because the SCP method
is the least expensive, I would recommend using it to start and then running
the same problem with the MMFD method.

FREQUENCY AVOIDANCE USING
DIFFERENT ADS ALGORITHMS

16000 T
14000
.._ '
v 12000 MMFD (80 - 120)
0 . 0- SCP (80 - 120)
10000
L A ‘B MMFD (48 -72)
0
8000 1 N
U 0——0 0\
1 o INVALID SOLUTION (2 FREQ.
M 6000 \o IN RANGE 82 & 114)
E >
4000 1
u A—O——0——0
T~ _¢— O—0—0—0- VALID
2000 B -~<.__./|\.__./ SOLUTIONS
0 + —t -+ + +

o 1 2 3 4 5 6 7 8 9 10
ITERATIONS
FIGURE 10
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STARTING POINT FOR RESPONSE SPECTRUM AND VIBRATION FOUNDATION DESIGN

The shock and vibration foundation design optimization process can begin in
any number of ways:
By applying all stress, displacement, b/t ratio, and frequency
avoidance constraints from the start
(2) By applying all constraints except the frequency avofdance
constraints to obtain a fully stressed design, and by then
optimizing with all constraints
(3) By applying only the frequency avoidance constraints until a
minimum weight foundation is found, and by then including the
rest of the constraints
(4) By using a minimum frequency constraint instead of a frequency
avoidance constraint, and by then applying the frequency
avoidance constraint
(5) By starting with either a feasible stress design, an
understressed design or an overstressed design in combination
with one of the above (Figure 11).
Based upon this sample problem, no one starting procedure works best all the
time, and some methods for starting almost never work and, therefore, should be
avoided. In Figure 10 an understressed design was chosen for the starting
point with all design variables at the upper 1imits. A frequency avoidance
only starting procedure for the range 80 to 120 was initiated with two
optimization algorithms, MMFD and SCP. Similarly, one was started to avoid the
range 48 to 72 using only the MMFD algorithm. In the first case, the SCP
algorithm worked and the MMFD did not, however, in the second case the MMFD
algorithm worked. Looking at Figures 12 and 13 where other starting point
procedures were tried, potentially better optimum solutions exist.

(1) Apply all stress, displacement, b/t ratio, and frequency
avoidance constraints from the start

(2) Apply all constraints except frequency avoidance (fully
stressed design), and then optimize with all constraints

(3) Apply frequency avoidance only constraint, and then
optimize with all constraints

(4) Use minimum frequency only start, and then all
constraints

(5) Vary the inital design (lower or bound, feasible or
infeasible) in conjunction with the first four procedures

FIGURE 11
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In Figure 12 the SCP algorithm was used in conjunction with three different
starting procedures in an attempt to arrive at an optimum weight foundation.
This foundation was to avoid the natural frequencies of vibration from 48 to
72 and satisfy all stress constraints. The three approaches were
(1) to first optimize with a minimum frequency constraint of either
48 or 72
(2) to first optimize with only a frequency avoidance constraint
(i.e. no stress or displacement constraints at the start)
(3) to first optimize with no frequency constraints of any type (i.e.
ignoring frequencies)

The first and second approaches were successful in producing an optimum weight
structure; however, the optimum volumes differed significantly. In the first
case, the final structure had no frequencies of vibration below 72 and a
volume of 3300. In the second case (frequency avoidance only), a minimum
weight structure with frequencies above and below the range was obtained, with
a smaller volume of 2250. Attempting to first optimize with a minimum
frequency of 48 and trying to first optimize by ignoring frequencies, both
resulted in invalid solutions. For both of these cases, the final structures
had unallowable frequencies within the range of 48 to 72. In these
unsuccessful cases, the ADS optimizer simply could not find a way to change
the design variables so as to move away from an invalid structure. This
inability to move to a valid solution clearly demonstrates the need to attempt
more than one approach when trying to obtain a minimum weight foundation with
frequency constraints.

FREQUENCY AVOIDANCE IN RANGE 48 TO 72
USING SEQUENTIAL CONVEX PROGRAMMING

6000 1 INVALID SOLUTION (3 FREQ.
IN RANGE 49,69,71)

5000 1
Q
v 5 /
4000 + VALID SOLUTIONS ']
0 O—0 \ 4
u 3000 T
\ . - MINIMUM FREQUENCY - 48
M D\D~ /
o — d—o—a0o [}
2000 1 *—o—o [ “O- MINIMUM FREQUENCY - 72
E \ /"l n—s
‘B- FULLY STRESSED
1000 T INVALID SOLUTION
2 FREQ. (50,69) ‘0- FREQUENCY AVOIDANCE
0 .

01 23 45 6 7 8 9 10111213 1415
ITERATIONS
FIGURE 12
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In Figure 13, two of the starting procedures employed in Figure 12 were used
when trying to avoid frequencies in the range of 80 to 120. First, the SCP
algorithm and a frequency avoidance only procedure was attempted. While this
combination successfully obtained a minimum weight foundation with no natural
frequencies in the range of 48 to 72 (Figure 12?, the method was a complete
failure when seeking to avoid the frequencies of 80 to 120. Similarly,
optimizing with only stress constraints to start was a total failure in Figure
12, but provided two valid solutions in Figure 13, one for the SCP algorithm and
one for the MMFD algorithm. The significance of this is that one starting
procedure does not work all the time.

FREQUENCY AVOIDANCE 80 TO 120

9000 1 niINVALID SOLUTION (TWO FREQ. IN RANGE 82,112)
*—o
8000 /
..- .
2000 1 /. FREQUENCY AVOIDANCE - SCP
.o- .
’ 6000 | s FULLY STRESSED -SCP
u - FULLY STRESSES - MMFD
L 5000 1
U 4000 +
1 N—n—n
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o\\o:>l—=g=:l::o~_o__o_’o 0\\0——°-o.-o——o
1000
0 } } } } } ; } } { { { } { } {
01 2 3 45 6 7 8 9 1011 12 13 14 15
ITERATIONS
FIGURE 13
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By reviewing the results in Figures 11 through 13, a number of conclusions can

be drawn.

(1) An optimum weight foundation which avoids certain natural

(2)

(3)

(4)

(5)

frequencies of vibration can be found using FESOP's combined
response and vibration capability.

Because of the highly complex nature of the frequency avoidance
problem, a number of attempts with both different starting points
and different optimization algorithms should be used to find the
best optimum.

A procedure which should give a feasible optimum is to start with
all design variables at their upper bound 1imits and perform a
frequency avoidance only analysis with both the SCP and MMFD
optimizers.

Next, an attempt from a reasonable design with either a frequency
avoidance or maximum stress only starting point should be tried to
see if a better optimum is obtained.

If no valid solution is obtained, a minimum frequency constraint for
the upper bound of the allowable range should be tried. This should
be the last resort because this will always result in the heaviest
foundation.

Following these guidelines will help to insure the optimum equipment
foundation in terms of producibility and weight.

1024

TABLE - COMPARISON OF RESULTS
Frequency | Optimizer [Starting Point Initial Success | Objective
Range Constraint
FEASIBLE Fmin > 48 NO 2000
scp STRESS Fmin > 72 YES 3300
48 TO 72 DESIGN (FSD) F <48, F > 72 YES 2250
Stress Only NO 5500
MMFD |UPPERBOUND | F <48, F > 72 YES 1800*
UPPER BOUND F < 80, F > 120 YES 2800
F <80, F> 120
SCP Fsp < > NO 8300
80 TO 120 Stress Only YES 1700*
F < 80, F > 120 N
MMED UPPER BOUND < > 0 3500
FSD Stress Only YES 3300

* Best Optimum For Given Range




PRODUCIBILITY CONSIDERATIONS

Producibility (Figure 14) is a factor which must be considered at all stages
of the optimization process. The definition of the finite element model and,
more importantly,the design variables must be made with producibility in mind.
Otherwise, a foundation that is clearly unproducible, 1ike the one shown in
Figure 8, will result. The first step toward insuring a producible structure
is to set limits on design variables which will be both reasonable and
producible. However, this alone is not always enough because, during the
optimization process, combinations of design variables which were not
anticipated will probably result. Therefore, 1imits on the relationships
between design variables should be made. In the sample problem the thickness
of the box beams was limited to 25 percent of the cross-section width to
insure that unreasonably thick box beams would not result. FESOP allows limits
to be specified on the relationship between any two cross-section design
variables, thus helping to insure a producible structure. In addition, as was
mentioned on the choice of design variables, many design variables should be
linked so as to guarantee that the changes in the structure will be uniform.
This is important because it means that with design variable linking, radical
size and shape changes will not take place.

*A Primary Consideration at All Stages of the

Optimization Process

*Vital to Definition of the Design Variables

*Must Also Limit Relations Between Design

Variables

*Avoids Unproducible Structures

FIGURE 14
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RESULTS/CONCLUSIONS
Based upon the results presented, the following conclusions can be drawn:

(1) One can successfully optimize two different finite element models
and analyses with FESOP.

(2) No one ADS optimizer works best all of the time.

(3) Many starting procedures are possible, and each can produce
different "optimums".

(4) Producibility is a vital consideration.

(5) The engineer's active participation is essential.
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