@ https://ntrs.nasa.gov/search.jsp?R=19890015858 2020-03-20T01:48:06+00:00Z
N89-25229

AN IMPROVED ALGORITHM FOR OPTIMUM STRUCTURAL DESIGN
WITH MULTIPLE FREQUENCY CONSTRAINTS

Oliver G. McGee! and Khing F. Phan?
Department of Civil Engineering

The Ohio State University
Columbus, Ohio 43210

l1Assistant Professor
2Graduate Research Associate

1489



SUMMARY

This paper presents an optimality criterion (OC) method for
minimum-weight design of structures having multiple constraints
on natural frequencies. In this work a new resizing strategy is
developed based on '"relaxation" techniques. A computationally
adaptive control parameter is used in conjunction with existing
OC recursive formulae to promote convergence of optimum
structural designs. Some considerations regarding the coupling of
the modified Aitken accelerator with the OC method are discussed.
Improved and rapidly converged minimum~weight designs are
obtained when using an under-relaxed recursive scheme combined
with the modified Aitken accelerator.

INTRODUCTION

In recently published literature regarding structural
optimization with multiple frequency constraints (1,2}, the
algorithms were applied to truss systems, taking advantage of
their special characteristics (i.e., single design variable per
element, structural matrices linearly proportional to the design
variables, constant stress elements, etc.). In search for optimal
values of design parameters in minimum weight design the
iterative approach based on alternately satisfying the
constraints (scaling) and applying an "optimality criterion"
(resizing) may give oscillatory results which might not converge;
or they may converge to local extrema at the expense of an
increased number of iterations.

The resizing formulae used in [1,2] employed an exponential
control parameter as the step size. The control parameter was
reduced to stabilize the iterative design cycle and to assure

convergence. Basically, the control parameter was kept constant
through all the iterations, as the structural weight was
continually reduced; or if a sudden rise 1in the weight was

observed, the iterative design cycle was - momentarily stalled and
the control parameter was reduced until a decrease in the weight
was obtained. For various single and multiple frequency
constraint conditions, optimum designs were presented. Although,
the final designs being the real optimum were gquestionable.

In this work a new resizing strategy is developed based on
"relaxation" techniques. A computationally adaptive control
parameter is used in conjunction with OC recursive formulae
currently used to obtain minimum weight design of truss system
[1-3]. The new control parameter is adjusted by monitoring the
local histories of scaled weights calculated in the iterative
design cycle. As the step size is reduced, the rate of
convergence is reduced. Hence, the convergence rate is increased
using an acceleration technique. The modified Aitken accelerator
{4,5] is 1implemented to extrapolate values of structural weight
from the local history of the design cycle to accelerate
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convergence towards an optimal design. Structural element si:zes
and natural frequencies are presented for optimally designed
truss systems under various frequency constraint conditions.
Design cycle histories of structural weights and control
parameters are charted to compare the performance of different
recursive strategies to modify the design variables and to
estimate the Lagrange multipliers.

FREQUENCY ANALYSIS

The square of the jth natural frequency for the case of
undamped vibration of a discretized structure can be written as

’

w;j? = {q;}T"[Kl{aj} (1)

vhere [K] is the stiffness matrix, and {q;} is the jtP vibration
mode normalized with respect to the total mass, [M]=[Ms+Mc],
consisting of structural and nonstructural mass. The gradient of
the natural frequency with respect to the design variables xi
{member cross~sectional areas) is obtained by differentiating Eq.
(1). The result is

w32),xi = (1/xi) [{qi}iT(kil{as}i - w3%{qsj}iT(mil{q;}i] (2)
where {qj}i, [ki]l, and [mi] denote components of the structural
matrices associated with the ith element xi, and ( )}, represents

a partial differentiation.

OPTIMIZATION PROCEDURE
The optimization problem is defined as
minimize the structural weight
Wixi) = P:+ 1li xi (i=1,2,...,n) (3)
subject to m constraints

gij(xi) = w5 - w;*

= 0 (j=1,2,...,k)
gi(xi) =w; - w;* <0

(j=k+1l,...,m) (4)

where pi is the mass density, xi is the design variable, and 1li
is the length of the element. 1In Egqg. ({4) wj and wj* are the
actual and the desired values of the frequency constraints. In
addition, minimum limits are prescribed on the design variables:

xi > xil.

Using Eqs. (3) and (4), the Lagrangian function, L, can be
written as

Lixi, A) =Ps 1i xi - Aj @Wj - w;*)
(i=1,2,...,n) (j=1a2’tg~9m) (35)
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where Aj; are the Lagrange multipliers.

Differentiating Eq. {5) with respect to the design
variables and setting the resulting equations to =zero, the
optimality criterion can be written as:

eij Aj =1 (i=1,2,...,n ; j=1,2,...,m) {(6)

where
eij = (Wj),x1
W),xi (7)

where the Lagrangian energy density, eij, represents the ratio of
the gradient for the natural frequency constraint (Eq. 2) to the
gradient of the objective function, given as (Pili).

Using Eq. (6), one can write recursive relations to modify
the design variables. Recursive relations to estimate the
Lagrange multipliers can be written by assuming that all the
constraints in Eq. (4) are equality constraints {3]. In either
case these recursive relations can be written in an exponential
or a linearized form. In the exponential recursive relations the

design variables (or Lagrange multipliers) are modified by
multiplying them by a quantity which 1is equal to unity at the
optimum, and in the 1linear recursive relations the design
variables (Lagrange multipliers) are modified by adding a

quantity which is equal to zero at the optimum. Note that the
linear recursive relation for the Lagrange multipliers is an
approximation to a set of linear equations that can be wused to
determine the Lagrange multipliers [1,3]. Nonetheless, it is
possible to promote the convergence of these relations by
incorporating a simple technique known as relaxation. Such a
modification is used in this work:

To modify the design variables:
xik+l = x;k + g5 [(e1j Aj)x(2/Tv) — 1] xik (8)

Xik’l

xi¥ + s [{1 + (1/r) (e1tj A3y - 1)}x - 1] xik (9)

To estimate the Lagrange multipliers:

Ajkel Ak + s [(A3 / A3*)x€l/B) - 1] A;k ; (b=1/r) (10)

Ajk+1

Asx + s [{(b+1)/b} = (1/b)(Aj; / A;*)xt1/B) ~- 1] A3k (11)

where the superscripts k and k+l denote iteration numbers. The
quantity (1/r), 1is the step size used in the algorithms reported
in [1,2). In the present algorithm this step size is immobilized
by setting it to a constant value, 1/r=0.5. Alternatively, a more
adaptive control parameter s, is utilized. At the beginning of
the design cycle the control parameter is set to unity.
Henceforth, the value of s is adjusted by monitoring the local
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histories of structural weights calculated in the iterative
design cycle. For structural weight histories exhibiting an
oscillatory pattern of convergence, an optimal value of s is
chosen using the following algorithm: If Wk*1l15>(1/2)[wk-Wk-1] op
wk+l>wk>wk-1  and the current value 'of s is above a specified
minimum value, then s is reduced to s/2., (For structural weight
histories displaying a pattern of convergence other than
oscillatory, the algorithm can be appropriately refined. At the
optimum the optimality criterion (Eq. 6) and the constraints (Eq.
4) are satisfied. Hence, Egs. (8-9) converge to «xik*l = «x;k and
Eqs. (10-11) converge to Ajk+l = Ak,

The jth Lagrange multiplier for the jt" frequency constraint
also can be approximated by a simple expression derived from a
single constraint condition [2,6]

Aj =W /wi2 m (12)

m = qjT[Mslqgj (13)
q;T(Mlay.

Equation {12) 1is used as initial values in the recursive Egs.
(10-11)5

where

After the structural members are modified using Egqs. (8) or
(9), they are uniformly scaled by a factor f; corresponding to
the jth frequency constraint. The relationship between the
unscaled design xi and the scaled design xi® is given by

xis% = fjxi {14)

The scale factor fj is computed as follows [2,6]:

fj = ___ mR;? , Rj?2mz < 1
1 - Rj%m2
f;j = Rj;?2 , otherwise (15)

where
m2 = T{Mc ]qj (16)
q;T[Mlq;

and Rj;2 represents the frequency target ratio given by
Ri? = wj2*/ w;? (17)

In search for optimal values of design parameters in minimum
weight design the iterative approach based on alternately
satisfying the constraints (Egs. 14-17) and applying the
optimality criterion (Eqs. 6) may give oscillatory results which
might not converge; or they may converge to local extrema at ‘the
expense of an increased number of iterations. The control
parameter s, adopted in Egs. (8-11) controls the step size of the
recursive relations and stabilizes the convergence of the
iterative design cycle. A drawback is that the convergence rate
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is slowed as the control parameter is reduced. This is primarily
due to the fact that a smaller value of s reduces gains towards
meeting the optimality condition. Hence, the <convergence rate of
the iterative process 1is improved with two-fold objectives in
mind: (1) maintaining as large of a value for s as possible
during the design cycle, and (2) extrapolating structural
information from the 1local history of the design cycle tc
accelerate the convergence rate.

MODIFIED AITKEN ACCELERATOF

The convergence rate of the iterative process can be enhanced
by using an accelerator. An appropriate one has been proposed by
Boyle and Jennings [4,5]. The Aitken accelerator is a numerical
technique whereby three consecutive results of an iterative
process are exXxtrapolated to obtain improved results on the
assumption that the error curve of the iterative process decays
exponentionally. The adaptability of Aitken’s accelerator for the
computer however, is unpredictable given the possibility of a
singular denominator in the predictor algorithm. Nonetheless, a
modified Aitken accelerator was developed by Jennings [53] for
general multivariable iterative problems. The predictor algorithm
for the modified Aitken accelerator requires only one division as
opposed to one for each variable, and allows the divisor to be
chosen to avoid the possibility of a zero value, ’

In this work, 1local histories of structural weight are
monitored for convergence patterns which are not monotonic. If
the structural weight histories before the current design exhibit
an oscillatory pattern of convergence and show a mark increase in
value, then continued computations with the current design are
bypassed while an improved design {(i.e., one that will result in
a reduced scaled weight) is obtained using the modified Aitken
accelerator.

Let xik-3, xik-2, and xi¥-! be design variables obtained from
three consecutive iterations of the design cycle and 1let xik* be
the desired variables for a current design. By letting

di = xijk-2 - x;k-3 dz = xik-1 - xjk-2 (18)

the adopted procedure [5] for finding an improved (accelerated)
design x2, may be written as

xi® = xik-1 + Sd2 (19)
where S, is defined as the acceleration factor
S = (dz ~ d1)?T(-d2)[(d2 - d1)T(dz - d1)]-! (20)
In general, xi® satisfies neither the optimality condition

(Eq. 6) nor the frequency constraints. Nonetheless, the design
cycle is continued after an acceleration by applying the
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optimality condition with the improved design xi?:

xi¥ = xi® + s [(eij Ajlatl/T) - 1] x;a (21)
xi¥ = xi2 4+ s [{1 + (1/r) (eij Aj - 1)}a - 1] xi2 (22)
AjE = dja + s [(Qj /J wj*)atl/ib) - 1] Aja ;7 (b=1l/r) (23}
Ajk = Aja 4 s [{(b+1)/b} - (1/b)(w; / @;*)atl/b) — 1] Aja  (24)

The kP design is then scaled to satisfy the constraints using
Eq. (14). (Note that the control parameter s is appropriately
adjusted as previously outlined.)

OPTIMIZATION ALGORITHM
The main steps of the present optimization algorithm are

Assign uniform sizes to all elements (set s=1, k=1).

Perform frequency analysis (Egqs. 1-2)

Scale the design until frequency constraints are obtained

within the required accuracy (Egs. 14-17).

(4) Calculate the scaled weight of the structure using (Eq. 3)
and the scaled design variables (Eq. 14).

{5) For iteration k=4 or greater, check for oscillatory

convergence pattern of scaled weights in the last three

consecutive k-1, k-2, k-3 iterations. If this is the case,

then apply the modified Aitken accelerator to obtain an

improved design (Eq. 19) and modify the design variables

using Egs. (20 or 21 and 12, 22 or 23). Else continue to

step (6).

Determine the Lagrange multipliers (Egqs. 10,11 or 12}).

Modify the design variables (Egs. 8 or 9).

Repeat steps 2, 3 and 4.

For iteration k=3 and greater: If Wk+l > (1/2) [Wk - wk-1]

or Wktl1 > Wk > Wk-1 and s > specified minimum value, then s

is equal to s/2 and go to step 7; Else go to step 5.

(10) Steps 5-9 represent one iteration in the design cycle
history.

(11) Repeat until difference in weight is less than specified

tolerance.

— — —
W DN =
— N ——

o~~~

[Vl oL Mo )
Nt gt gt

RESULTS AND DISCUSSIONS

The effectiveness of the above algorithm was demonstrated by
designing a 10 member truss (Figure 1), a classical problem in
the structural optimization literature [1-3]. The elastic modulus
was 107 psi, and the weight density was 0.1 psi. A nonstructural
mass of 2.588 lb-sec?/in was added to the four free nodes. All
the member cross-sectional areas were given uniform sizes for an
initial design. During the design cycle history, a lower limit
value of 0.1 in? was imposed on member sizes. The natural
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frequencies and mode shapes were computed using a Jacobi method.

Table 1 presents initial and final frequencies and structural
weight at the optimum design for various frequency constraint

conditions. Table 2 gives the optimum member sizes. As indicated
in Tables 1 and 2, Eq. 8 was used to modify designs and Eg. 12
was used to estimate the Lagrange multipliers. Reference [2]

presents optimization studies using similar formulae for the same
ten member truss subjected to the same constraint conditions. In
Tables 1 and 2 these results are shown in parenthes-s for
comparison with those obtained in the present analysis.

The ten member truss was designed with both single and

multiple frequency constraint conditions (Tables 1 and 2). The
first set of results (Case 1) was obtained with a single
constraint on the second frequency ( W2=10.0Hz). The next three

sets of results involved multiple frequency constraints: (Case 2|
w;=7,0Hz, w2>15,0Hz; (Case 3) wW1=7,0Hz, wW2>15.0Hz, w3>20,0Hz;
(Case 4), w1>3.5Hz, w2>10,0Hz, w3>14.0Hz.

At the 1initial design the structural weight was 4000 1lbs.
Furthermore, the first eight frequencies were on the averasge
approximately 4.26 percent higher than those of reference [2].
Resulting design weights obtained by the present analysis were
significantly lower than those obtained in [2]. For example,
Cases 1 and 4 showed mark improvements in structural weight with
approximately 15.7 and 15.88 percent decreases, respectively.
Additionally, -the first eight frequencies calculated for Cases 1
and 4 were decreased by an average of approximately 11.13 and
12.63 percent, respectively. For Case 4 the constraint on the
first and second frequencies was met to within 6 and 3.5 percent,
respectively. The third frequency constraint in Case 4 was
completely satisfied, as well as the second frequency constraint
in Case 1. In Case 2 a 3.01 percent decrease from the weight
reported in [2] was calculated, while a 9.78 percent decrease in
weight was obtained for Case 3. For the calculated frequencies in
Cases 2 and 3, there was less than 1 average percent change from
those reported in [2].

Reference [1] presents optimization studies of a thirty-eight
member truss (Figure 2) with multiple frequency limits. The
elastic modulus and weight density of the material were 107 psi
and 0.1 1b/in3, respectively. At nodes 8 and 14 a nonstructural
mass of 0.5 lb-sec?/in was included. Lower limit on the design
variables was 0.005 in2.

Tables 3 and 4 show design c¢ycle histories of structural
weight and frequencies of a 38 member truss when a specified band

between the square of the first and second frequency is
increased: [(Case i) @12=2500rad?/sec?, w22>2500rad? /sec?;

(Case ii) w12=2500rad?/sec?, w22>3000rad? /sec?, respectively.]
The first set of results were obtained by the present analysis
using Eq. (8) to modify the design variables and Eq. (12) to

estimate the Lagrange multipliers. The asterisk associated with
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an 1iteration indicates the use of the modified Aitken's
accelerator (Eq. 19) and the corresponding Egqs. (21-24). The
second set of results was taken from reference {1]. Khot [1]
reported real optimum designs because the minimum weights
obtained were equal to the dual weight of the structure, which
was the difference between the total weight and the weight of
passive elements (such as elements at minimum gage).

From Tables 3 and 4 it is seen that with the relative areas of
all members equal to wunity the initial scaled weight of the
structure was 27.74 compared to 52.30 obtained in [1]. The
present authors could not reach any justifiable conclusions for
the difference. However, it is seen that the weights obtained in
this work quickly converged to a 8.61 percent lower weight for
Case (i) (Table 3). Comparing the results for Case (1ii) (Table
4), it 1is seen that the present algorithm calculated a 7.04
percent decrease in weight.

The example ten bar truss was redesigned with the constraints
of Case 4. The two recursive relations used to modify the design

variables were (1) the exponential relation (Eq. 8); (2) the
linear relation (Eq. 9). The Lagrange multipliers for the above
two cases were determined by using (1) the approximate relation
[2] (Eq. 12); (2) the exponential relation (Eq. 10); (3) the
linear relation (Eq. 11).

The design cycle history of structural weights using
combinations of the above recursive formulae (Cases A-F) is given
in Table 5. This table also contains CPU time (sec) using double
precision arithmetic on a 32-bit IBM machine. Table 6 gives
design cycle histories of the control parameter s, used in Cases
A-F. (Note that the control parameter is not used in Eq. (12) of
Cases A-B). The iteration history for the six cases is shown in
Figure 3. At this time it 1is premature to draw general

conclusions at this time on which case performs the best in a
wide variety of design situations. Although all the cases appear
to illustrate an average degree of convergence, a value of s near
unity is preferred in Eq. (8 or 9) because this ensures a larger
contribution in satisfying the optimality condition. This
inevitably leads to a more rapid convergence to a lower weight.
Hence, Case B appears to perform the best for the example
problem.

The example thirty-eight bar truss was redesignedwith the
constraints of Cases (i) and (ii). The design cycle history of
structural weights wusing the recursive Cases A-F is given in
Tables 7 and 8. The iteration history for the six cases is shown
in Figures 4 and 5. In Figure 4, all the recursive cases appear
to converge with Case A producing the lowest weight. The curve
for Case B displays the most stable convergence. As the frequency
band is increased in Figure 5, all the cases appear to converge
to the same weight, but the path of convergence is more
dispersed.
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CONCLUSIONS

In this paper, minimum weight designs of truss systems with
multiple frequency constraints were obtained using OC methods with
a new resizing strategy based on relaxation techniques. A
computationally adaptive control parameter was used in
conjunction with available OC recursive formulae. To increase the
overall rate of convergence, the modified Aitken accelerator was
employed during the design cycle. Several recursive schemes to
modify the design variables and to estimate the Lagrange
multipliers have been compared. It is premature to generallv
state which scheme was superior for frequency constraint design
problems until more case studies are complete. Minimum weight
designs were obtained for various frequency constraint conditions,
even though their design may be undesirable due to other
practical considerations. Practical extensions of this work call
for including displacement constraints.
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Table 1  Ten Bar Truss .
Initial and Final Frequencies (Hz) in Dif ferent Constraint Conditions

w,=70 | w235

Frequency Initial | ©,=100| @,=70 | w,2150| w,2100

No. Design w, 2 150| wy,2200| w, 140
1 9.18 3.04 7.00 7.00 3.71
(8.96) (3.26) (7.00) (7.00) (4.40)
2 27.31 10.00 15.45 16.30 10.35
(27.08) | (10.00) (15.58) (15.61) (12.14)
3 29.79 10.00 17.36 20.15 14.00
(27.45) | (10.19) (16.93) (20.17) (14.00)
4 53 11. 18.83 20.24 14.33
(51.25) | (16.01) (18.75) (20.77) (17.89)

5 61.06 12.86 28.36 29.08
(58.00) | (18.08) (29.13) (28.76) (19.58)
6 68.35 17.34 29.71 29.88 9.52
(64.73) | (22.96) (30.30) (29.76) (22.96)
7 69.95 26.01 47.70 48.52 30.33
(66.87) | (25.21) (46.93) (53.88) (34.01)
8 82.11 26.81 50.31 51.41 31.84
(80.85) | (27.25) (49.67) (56.03) (35.72)
Weight (1b) | 4000.0 256.7 1137.3 1180.4 4115
(4000.0) | (304.5) (1172.6) | (1308.4) | (489.17)

Notes :
* present analysis using exponential resizing and approximate
Lagrange multiplier formulae.
() via reference [2].
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1500

Notes :

* present analysis using exponential resizing and approximate

Table 2

Ten Bar Truss
Optimum Design Variables (in®) in Dif ferent Constraint Conditions

©0,=10 | o, 235
Element ©, =100 ©,=70 | w,2150| w,2100
No. w, 2150 w,2200( w,2140

1 0.887 5.769 5.254 1.021
(0.910) (5.511) (5.672) (2.306)
2 0.889 1.944 2.446 1211
(0.821) (1.937) (3.823) (1.304)
3 0.887 5.769 5254 1.021
(0.910) (5.511) (5.672) (2.306)
4 0.88 1.944 2.44 1211
(0.821) (1.937) (3.823) (1.304)
5 0.36 0.125 0.125 0.213
(0.768) (0.207) (0.646) (0.639)
6 0.208 0.448 0.720 0.343
(0.570) (0.414) (0.321) (0.557)
7 0.78 3.30 3.739 1.661
(0.712) (3.616) (4.191) (1.029)
8 0.78 3.30 3.739 1.661
0.712) (3.616) (4.191) (1.029)
9 0.276 2.21 2.109 0.605
(0.581) (2.414) (1.604) (0.800)
10 0.276 2211 2.109 0.605
(0.581) (2.414) (1.604) (0.800)
Weight (1b) | 256.7 11373 1180.4 4115

(304.5) (1172.6) | (1308.4) | (489.17)

Lagrange multiplier formulae

() via reference [2
Table 3 Thirty-Eight Bar Truss
Design Cycle History for wf=2500 and w§ 22500 (rad/sec)’
Iter. * wf w; Weight Iter. '] wf wg Weight
No. (1bs) No. (1bs)
1 2500 3667 27.74 1 2500 8560 52.30
2 2500 2907 25.74 2 2500 6451 39.41
3 2500 3111 30.65 3 2500 5061 33.29
4 2500 4497 * 28.56 4 2500 4326 31.01
5 2500 3435 26.29 5 2500 4033 29.83
6 2500 2759 25.26 6 2500 3706 2894
7 2500 2507 2493 7 2500 3314 28.26
8 2500 2880 27.72
9 2500 2537 27.36
10 2500 2501 27.29
11 2500 2500 27.28
Notes :

# present analysis using exponential resizing and
approximate Lagrange multiplier
+ via. reference [1]
* with acceleration



Table 4 Thirty-Eight Bar Truss
Design Cycle History for wf=2500 and w§> 3000 (rad/sec)’

Iter. * wf w, | Weight Iter. o’ w) | Weight
No. (1bs) No. (1bs)
1 2500 3667 27.74 1 2500 8560 52.30
2 2578 3000 26.58 2 2500 6451 39.41
3 2500 3789 26.89 3 2500 5061 33.29
4 2500 3123 | * 25.77 4 2500 4326 31.01
5 2500 4033 29.83
6 2500 3706 28.94
7 2500 3314 28.26
8 2500 3016 27.80
9 2500 2998 21.72
10 2500 2999 27.72
11 2500 3000 27.72
Notes :
# present analysis using exponential resizing and
approximate Lagrange multiplier
+ via. reference [1
* with acceleration
Table 5 Ten Bar Truss
Design Cycle His s al Weight
Uzi’:lg {’Cfriau tgey ;{mr:inv‘:“;{ormukeg
w235 , 0,210 & ;214 Hz
Tter. # A B C D E F
1 778.192 469.222 778.192 469.222 778.192 469222
2 646.754 502.846 647.753 533.498 647.753 533.498
3 750.374 606.414 744.672 674.662 744.672 672.496
4 [ * 445400 436027 | * 439.545 628077 | * 439.545 618992
s 467.874 463.789 528.799 462.462 511.869 457.601
6 * 438.693 * 442,361 * 407.225 484.560 * 409.063 458.850
7 436.855 422,566 448.569 491.267 436235 | * 455656
8 425245 404818 | * 430650 | * 480.714 | * 430.713 454.152
9 422174 427.603 472.686 418.765 450.901
10 421.555 414.426 465.015 406.346 447.713
11 416449 418.468 457.683 444588
12 411556 * 415.834 450.670 441523
13 414329 438518
14 435571
15 432681
16 429.847
17 427.068
¢.p.u.
(sec.) (3.16) (1.86) (3.33) 317 (2.28) (3.99)
Notes :

A exponential resizing/approximate Lagrange multipier formulae
B linear resizing/approximate Lagrange multiplier formulae
C exponential resizing/exponential Lagrange multiplier formulae
D linear resizing/exponential Lagrange multiplier formulae
E exponential resizing/linear Lagrange multiplier formulae
F linear resizing/linear Lagrange multiplier formulae
* with acceleration
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Table 6 Ten Bar Truss

of Control Parameter B

Desi{ln Cycle Histor

sing Various ecursive For

w, 255 10 & «,214 Hz

Iter. # A B C D E
1 1. 1. 1. 1. 1. 1.
2 1. 1. 1. 1. 1. 1.
3 1. 1. 1. 1. 1. 1.
4 0.5 1. 0.5 1. 0.5 1.
s 05 1. 05 1 0.5 1.
6 0.5 0.5 0.5 0.125 0.5 1.
7 0.25 0.5 0.125 0.0625 | 0.125 0.0625
8 0.125 0.5 0.125 00625 | 0.125 0.0313
9 0.0625 0.125 00625 | 0.125 00313
10 0.0625 0.125 00625 | 0.125 00313
11 0.0625 00156 | 0.0625 00313
12 0.0625 0.0156 | 0.0625 0.0313
13 0.0156 00313
14 00313
15 00313
16 00313
17 00313

Notes :

A ;xponential resizing/approximate Lagrange multiplier formulae

B linear resizing/approximate Lagrange multiplier formulae
C exponential resizing/exponential Lagrange multiplier formulae
D linear resizing/exponential Lagrange multiplier formulae
E exponential resizing/linear Lagrange multiplier formulae

F linear resizing/linear Lagrange multiplier formulae
* with acceleration

Design Cycle History of Structural Weight

Table 7 Thirty-Eight Bar Truss

Using Various OC Recursive Formulae

wf =2500 & wi 22500 (rad/sec.)®

Tter. # A B C D E F
1 27.742 30.186 25.741 26.965 25.741 26.965
2 25.741 26.965 30.653 25.293 30.653 25.293
3 30.653 25.379 215.117 29.667 215.117 29.322
4 * 28.564 25.613 34.820 * 27.886 34.820 * 27.636
S 26.288 * 25.438 31.565 26.434 31.565 26.264
6 * 25259 25.297 26.756 25.500 26.756 25.376
7 24928 25119 25.153 25.119 25.044

Notes :

A exponential resizing/approximate Lagrange multipier formulae

B linear resizing/approximate Lagrange multiplier formulae

C exponential resizing/exponential Lagrange multiplier formulae

D linear resizing/exponential Lagrange multiplier formulae
E exponential resizing/linear Lagrange multiplier formulae

F linear resizing/linear Lagrange multiplier formulae
* with acceleration




Table 8 Thirty-Eight Bar Truss
Design Cycle History of Structural Weight

Using Various OC Recursive Formulae
©=2500 & w)>3000 (rad/sec)’

Iter. # A B C D E F
1 27.742 30.186 26.888 26.965 26.888 26.965
2 26.577 26.965 29.175 32.344 29.278 32.344
3 26.888 28.090 37.388 32410 211.307 32.518
4 * 25776 * 27.450 27.629 26.922 72.092 26.964
5 26.287 26.085 25.920 * 31.820
6 26.154 * 27.844
7 25.987 26.752
8 25976

Notes :

A exponential resizing/approximate Lagrange multipier formulae

B linear resizing/approximate Lagrange multiplier formulae

C exponential resizing/exponential Lagrange multiplier formulae

D linear resizing/exponential Lagrange multiplier formulae
E exponential resizing/linear Lagrange multiplier formulae

F linear resizing/linear Lagrange multiplier formulae
* with acceleration
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£ = 914.4 cm (360 in)

Figure 1 Ten bar truss

Connecting Connecting Connecting
Element Nodes Element Nodes Element Nodes
1 1-2 14 7-9 27 13-16
2 1-3 15 7-10 28 14-15
3 1-4 16 8-9 29 14-16
4 2-3 17 8-10 30 15-17
5 2-4 18 9-11 31 15-18
6 3-5 19 9-12 32 16-17
7 3-6 20 10-11 33 16-18
8 4-5 21 10-12 34 17-19
9 4-6 22 11-13 3s 17-20
10 5-7 23 11-14 36 18-19
11 5-8 24 12-13 37 18-20
12 6-7 25 12-14 38 19-20
13 6-8 26 13-15

- P |
| 450 aus |

Figure 2 Thirty-eight bar truss
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Figure 3 Iteration history for ten bar truss with multiple

Iteration Number

Notes :

A : exp tal resizing/approxi Lagrange p formulse
B : linesr resizing/spproximste Lagrange mulliplier formulse

C: tial resizing/exp tial Lagrange plier formulae
D : linear resizing/exponential Lagrange multiplier formulae

E : exponential resizing/linear Lagrange multiplier formulae

P : linear resizing/linear Lagrange mulUplier formulase

frequency constraints

3z2.

31.

30. 4

Weight (1b.)

28. 1

25. 1

24. A

23

29. 4

28. A

27. 1

Thirty—Eight Bar Truss
w = 2500 w, 2z 2500

14

o 1 2 3 4 -3 8 7 a 9
Iteration Number

Notes :
A : exponential resizing/spproxi Lagrange plier formulae
B : linear resizing/spproxi Lagrange iplier formulae
C : exponential resizing/exp tial Lagrange iplier formulae
D : linear resizing/exp lis] Lagrange plier formulse
E : exponential resiting/linear Lagrange multiplier formulae
F : linesr resizing/linesr Lagrange mulliplier formulae

Figure 4 Iteration history for thirty-eight bar truss
with multiple frequency constraints
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Weight (lb.)

Figure 5

33. 4

32

31. A

30. 4

29. A

28. A

27 4

26. 4

25

24

23

Thirty—Eight Bar Truss
w, = 2600 w, 2 3000

loleRel kg

Y T T T ——

[+] 1 2 3 4 5 (-3 7 8 9 10
Iteration Number

A : exponentisl resizing/approximate Lagrange multiplier formulae
B : linear resizing/approximate Lagrange multiplier formulae

C : exp ial resizing/exp tial Lagrange ipl formulae
D : linear resizing/exponential lLagrange multiplier formulae
E
F

: exponential resizing/linear Lagrsnge multiplier formulae
: linear resizing/linear Lagrange mulliplier formulae

Iteration history for thirty-eight bar truss
with multiple frequency constraints



