
NASA Technical Memorandum 10 1583 

AN ANALYTICAL SENSITIVITY METHOD FOR 
USE IN INTEGRATED AEROSERVOELASTIC 
AIRCRAFT DESIGN 

Michael G.  Gilbert 
( l i A S A - T I ¶ - l o l s 8 3 )  A Y  A L A L Y I I C A L  S E B S I T X V I T Y  P89-25239 
EESEGE FOR USE Ib I I T E 6 6 i A T E C  
AlibOS ER VCELAS T I C  EIZBCRAPT f ESZ GL tiAS A .  
Langley Besearch Center) 11 F CSCL 01c Unclas 

G 3 / 0 8  0516751  

MAY 1989 

National Aeronautics and 
Space Administration 

Langley Research Center 
Hampton, Virginia 23665-5225 

https://ntrs.nasa.gov/search.jsp?R=19890015868 2020-03-20T01:48:28+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42827587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


AN ANALYTICAL SENSITIVITY METHOD FOR USE IN INTEGRATED 
AEROSERVOELASTIC AIRCRAFT DESIGN 

ABSTRACT 

Michacl G. Gilbar 
Stnrtural Dynamics Division 
NASA Langley Research Center 

Hampmn.VA 23665 

Next generation air and space vehicle designs arc being 
driven by increased performance requirements. demanding a high 
level of design integration between traditionally separate design 
disciplines. lnterdisciplinary analysis capabilities have been 
developed for aeroservoclastic aircraft and large flexible 
spacecraft , but the requisite integrated design methods arc only 
beginning to be developed. One integrated design method which 
has received attention is  based on hierarchal problem 
decompositions, optimization. and design sensitivity analyses. 
This paper highli hts a design sensitivity analysis method for 
Linear Ouadratic 8aussian (LOG) m a d  mml laws. enabling 

that uses thc feedback signals actually available from the aircnft 
sensors. Both of these requirements necessitated the 
development and validation of appropriate design sensitivity 
expressions. Linear Quadratic Gaussian (LQG) optimal control 
law methods were selected for the control law design. Dynamic 
response criteria considered include time responses to control 
surface motions and discrete aerodynamic gusts, stochastic 
responses to random gust environments. closed-loop system 
eigenvalues, and open- and closed-loop fnquency responses. 

The sensitivity developments have recently been 
completed.2 A summary of these results and the application and 
validation of the sensitivitv exDressions to an aeroservoclastic 

the usc of LQG techniques in &e hikrchal dcsign methodolog< 
The LQG sensiavity analysis method calculates the change in the 

aircraft example arc described in this paper. Sensitivity results 
have been comouted and are shown for design integration 

optimal control law amiresuiting controlled system responses 
due to changes in fixed design integration parameters using 
analytical sensitivity equations. Numerical results of a LQG 
design sensitivity analysis for a realistic acroservoelastic aircraft 
example an presented. In this example. the sensitivity of the 
optimal control law and aircraft rcsponse for v&ous parameters 
such as wing bending natural frequency is determined. The 
sensitivity results computed from the analytical expressions arc 
used to estimate changes in response resulting from changes in 
the parameters. Comparisons of the estimates with exact 
calculated responses show they arc reasonably accurate for 2 
15% changes in the parameters. It is also shown that evaluation 
of the analytical expressions is computationally faster than 
equivalent finite difference CalculaFs. 

INTRODUCTION 

The design of new generation air and space vehicles is 
increasingly becoming subject to extensive requirements for 
dcsign integration. that is. the close cowdination of the design of 
the various pans of the vehicle. For example, many modern 
fighter aircraft require integration of the flight controls and 
engines so that sufficient power is available at all flight 
conditions. Similarly, the aircraft flight conml  and structural 
designs must be integrated to avoid potential aeroservoclastic 
instabilities. To m e t  the challenge of  integrated aircraft design 
requirements. methods which tie together existing a d y n a m i c ,  
structure. conml. and propulsion design methods 

One such integrated design methodology cumncly under 
development at the NASA Langley Research Center is based on 
hierarchical problem decompositions, multilevel optimization 
methods. and design sensitivity analyses.' This methodology 
depends on the decomposition of the integrated vehicle design 
problem into vehicle requirements and separate aerodynamic. 
structure, control. and/or propulsion subsystem requirements. 
The subsystem designs are obtained independently subject to a 
set of fixed design integration parameters. using existing design 
methods and tools. An iterative optimization method is used to 
satisfy the integrated vehicle design requirements through 
modification of the design integration parametas and repeated 
subsystem designs. Subsystem design sensitivity data relative to 
the design integration parameters are used as the gradient 
information for the optimization procedure. 

An application of the hierarchal integrated design 
methodology is to the aeroservoclastic design of aircraft conml 
laws and structure. including the effccts of unsteady aerodynamic 
forces due to structural and control surface motions. This 
application requires the use of dynamic response requirements as 
the integrated design objective and a conml law design method 

nceded. 

parameters re la th  to aircraft wing bending stiffness, fedback 
accelerometer location. and control law design specifications. 
These parameters are typical of those which would be used to 
obtain an integrated structure/control law design of an 
aeroservoelastic aircraft by the hierarchal design method. The 
sensitivity results were also used to validate the analytical 
sensitivity expressions. This was accomplished by comparing 
the sensitivity result with changes in responses due to control 
laws designed for different fixed values of the design integration 
parameters. Finally, the relative computational effort of 
computing the sensitivity information using analytical 
expressions versus numerical finite difference methods was 
investigated. 

INTEGRATED DESIGN METHOD 

A general integrated srmcture/control law design 
formulation based on h i m h a l  decompositions and multilevel 
optimization is shown in Figure 1. In Figure 1, the structural 
design and the control law design are independent lower level 
design problems. These lower level designs are coordinated 
using a set of design integration parameters. The upper level 
dcsign optimization problem reflects the desired objectives ofthe 
integrated aircraft s r m c ~ ~ ~ / c o n m l  law design. As a hypothetical 
example, the upper level objective might be to reduce peak 
transient nsponses of the aircraft due to a gust encwnter and to 
reduce the weight of the structure. The actual peak transient 
responses of the aircraft would come from analysis of the control 
law design at the I o w a  level. while the actual structural weight 
would come from the lower level structural optimization. These 
might then be combined as a weighted sum of square errors 
baween the actud and desired values to form a single upper level 
optimization performance index. The upper level design 
variables. which are the design integration parameters, would 
then be selected to optimize the integrated design. 

The values of the design integration parameters at any 
time are treated as fixed for the lower level designs. The 
sensitivities of [he lower level designs to these fixed parameters 
are computed and used in turn to compute the gradient of the 
related part of the upper level perfomance index. That is, these 
sensitivities iuc the gradients necessary to perform the top level 
optimization. In the present hypothetical example, one of the 
design integration parameters may be a local structural stiffness 
requirement. which appears as an equality constraint in the lower 
level structural design. The sensitivity of the optimized smctutal 
weight to this parameter is computed at the lower level and 
r e t d  for use in computing the pan of the gradient of the upper 
level performance index that is related to structural weight. 
Another of the design integration parameters might be a 
maximum allowable control surface deflection limit. The 



sensitivity of the optimal control law design with respect to this 
parameter would then be used to compute the sensitivity of the 
peak uansient gust response of the controlled airrraft. as required 
to perform the upper level design integration optimization. 

In many cases, existing nonlinear programming-based 
structural optimization and design sensitivity analysis methods 
can be used for the lower level structural design. These methods 
may themselves be hierarchal. multilevel optimization 
algorithms3-4 

In the rest of this paper. the use of Linear Quadratic 
Gaussian optimal conml  law design methods in hierarchal 
integrated aircraft srmcture/control law design is examined in 
detail. Expressions for the sensitivity of controlled systcrn time. 
frequency. and stochastic responses in terms of state-space 
coefficient sensitivity mamces are discussed below. The 
sensitivity of optimized LQG control law to fixed parameters 
must be known to compute the needed state-space coefficient 
sensitivity matrices. Analytical expressions for the sensitivities 
of the LQG gain mamces to fixed problem parameters arc 
discussed next, followed by the controlled system response 
sensitivity expressions, 

LQC CONTROL LAW SENSITIVITY 

The Linear Quadratic Gaussian (LQG) optimal control 
law problems-7 is to find the control u(t) for the system 
x, = A,x, + B,u + D,w, (la) 
Y = CSX, (1b) 
z = M,x, + v (IC) 
such that the cost function 

0 

i s  minimized, where E denotes expected value and 1 is the final 
rime. In equations (1). x, is the system state vector of dimension 
(n,x x l ) ,  y is vector of system responses of dimension (ny x 1). 
and z is a vector of measured system outputs of dimension (n, X 
I ) .  The vectors ws (n, x 1) and v (nv x I .  n, = n,) are zero 
mean. Gaussian distributed, white noise disturbances with 
intensity matrices Ws and V respectively. and the matrices As. 
Bs. C,.,Ds. and MS are real valued coefficient matrices of 
appropnate dimensions. 

It is assumed that the matrix pair (A,, B 3  is stabilizable. 
the pair (MS. A,) is detectable. and the pair (Qo. A,) is detectable. 
where Qo is defined by QoTQo = CsTQCs and the mamces Q and 
R are positive semi-definite and positive definite respectively. 
The solution of the LQG optimal control law problem is then the 
interconnection of the optimal Linear Quadratic Regulator and the 
optimal linear state estimator or Kalman Filter.5-7 In the Kalman 
Filter, the measured outputs z arc used to create estimates for the 
actual system states xs. Thus, the optimal control law is 
u = - G,xf (33 
if = A,x, + B,u + F ~ Z  - M,x$ (3b) 
where the gain mamces Fr and Gs arc given by 
F, = TMTV-' (4a) 

(4b) 0,  = R. B,S 

and the matrices S and T arc the positive definite soludons of the 
steady-state nonlinear mauix R i m t i  qua* 

I T  

D = ATS + SA, - SB,R.'B~S + cfhc, 
o = A,T +TAT - T M T V - I M ; ~  + D,W,D, 

(5a) 
(5b) 

It is assumed that the state-space model coefficient 
matrices As. Bs. Cp. D,. and M,. the noise intensity matrices W,. 
and V. And the cost function weighting matnces Q and R arc 
rime-invariant, continuous, differentiable functions of a number 
of parameters pi, i = I. .... n whose nominal values are fixed 
during the solution of the L& optimal control law problem. It is 
further assumed that the functional dependence of the above 
mavices on the parameters is known so that the partial derivative 
of each mauix with rcspcct to each parameta L i '? known. 

T 

Analytical expressions for the sensitivity of the optimal 
LQG problem solution above to the paramctcrs pi can be obtained 
by differentiation of the necessary conditions of optimality. 
Since the solution of the LQG optimal control problem is the 
interconnection of the optimal Linear Quadratic Regulator (LQR) 
and Kalman Filter (KF). the necessary conditions for the LQG 
problem are the necessary conditions for the LQR and KF 
pmblems. Detailed derivations for the sensitivity expressions are 
presented in reference 2. The results arc summarized here. 

Regulator Sensitivity - The sensitivity of the optimal 
LQR gain mamx Gs with respect to the i* p m e t e r  pi is 

where the subscript i is dropped ?or convenience' throughout the 
remainder of the paper except where necessary to avoid 
confusion. The unknown sensitivity of the steady-state LQR 
Ricatti solution S is obtained from 

aA aAT aQ o = Y A ~  - B,GJ +(A, - B , G , Y ~ +  [ s-+* + - 
a p .  3P aP aP aP 

Equation (7) is a linear Lyapunov equation which has 3 
unique solution [reference 5. pg. 103. Lemma 1.51 since the 
coefficient matrix A, - BsGs is asymptotically stable by the 
properties of the LQR solution [reference 5.  pg. 237. Theorem 
3.71. This equation must be solved for each different design 
parameter pi, however the coefficient mamx (A, - B,Gs) is the 
same for every parameter. This can be used to advantage in 
developing a numencal algonthm for solving equation (7) for 
luge numbers of parameters. 

Kalman Filter Sensitivity - The sensitivity of the 
Kalman Filter gain matrix Ff with respcct to p is - 

(8) 
aMT . 3 = ~ M f v . 1 ~  T L v  I - T M ~ V . ' ~ V V - I  

aP aP 3P aP 
The unknown sensitivity of steady-state KF Ricatti solution T is 
obtained as the solution of . - 

which is also a linear Lyapunov equation with a unique solution 
s i n e  the coefficient matrix AS - FfM, is asymptotically stable by 
the properties of the Kalman Filter solution. The coefficient 
matrix is the same for every parameter pi for this Lyapunov 
equation as well. 

Optimal Controlled System Sensitivity - Defining 
a state estimate error vector E, an augmented state vectur x. and 
an augmented noise vector w as 
e = x, - XI (loa) 

x = [ i s }  (lob) 

the open-loop combined system and state estimator can be written 
in state-space form as 
i = A,x + Bu + Dw (1 la) 
y = Cn ( I l b )  
u =Gx ( I l c )  
where (he oiamces A,,, D. C.  D. 2nd G are defined us 

w = {y 

A, = 

2 



The sensitivity of the system state and output responsea 

c = p ,  01 

The closcd-loop systan state-space equation is then 
x = A & + D w  (12) 

& =  

whae the mamx & is 
[A,-B,G, B,G, 1 
L 0 A , - F P s J  

The derivative mamces of A,,. B. C. D. and G with 
respcct to p art r ?  O 1  

r ae.1 

whercihe derivative manices of the optimal gain matrices Gr F d  
Ff are given by equations (6) and (8) respectively. The derivative 
of the closed-loop state-space dynamics matrix Ac with respect to 
D is 

DYNAMIC RESPONSE SENSITIVITY 

Equations for the sensitivities of a given linear state-space 
dynamic system to variations in parameters which define that 
system can be obtained by partial differentiation of the state-space 
equations with respect to the desired parameter. For example, 
consider the linear. am-invariant state-space system 
x = A x + B w  (Ha)  
y = c x  ( 1%) 
when x is the system state vector of dimension (n, x 1). w is the 
system input vector of dimension (n, x I). and y is the system 
output vector of dimension (n x 1). The mamces A, B. and C 
are appropriately dimensioned coefficient matrices. Note that 
equations (13) can describe either an o p n  or a closed-loop 
system and that the control input vector w is taken here to be a 
general inpvt or nfcnncc annmand. 

ay=2Cx+,ax ( 14b) 
aP JP aP 
where the order of differentiation with respect to time t and the 
parameter p has been interchanged in (14,). 

Equations (13) and (14) can be combined into a single 
system of cauations as 

or more compactly as 
x, = Apxp + Bpw 

Yp = cpxp 

( 1 W  

where the subscript p refen to sensitivity equations. and the 
definitions of the vectors and coefficient mamces follow from 
equations (15). 

Time Response - The sensitivity of the time response 
of a state-space system to known parameter variations is obtained 
by solving equations (16) as a function of time for a given input 
w(tL The theoretical solution for systems of equations of this 
type is well known9 ami is given by 

xp(t)  = C+XP(0) + J e %pw(r)ctr (17s) 

YP(I) = Cpxp(t) (17b) 
where xp(0) is the initial condition of the system defined by 
equations (16). 

Frequency Response - The frequency response of a 
linear time-invariant state-space system can be obtained by 
Laplace transformation of the state-space equations and 
replacement of the Laplace transform variable s with the complex 
frequency s = jw (for zero system initial conditions)S9. The 
sensitivity of the frequency response can be obtained using the 
same technique on the system sensitivity equations (16). The 
result is 

I 

0 

The frequency response hum) and frequency response 
sensitivity hp(jo) of a given input/output pair calculated tiom 
equation (18) are complex quantities expressed in terms of real 
and imaginary components 1s I function of frequency O. These 
quantities are usually more conveniently expressed in terms of 
magnitude and phase. and sensitivity of the magnitude and phase. 
than in their red and imagnary components. 

The magnitude Ihl and phase @ of a complex .quantity 
hCjw) = a + j b  can be calculated from the real and imaginary 
components as 

(19a) lhl= 
(19b) I b  0 = tpn' - 

The sensitivities of the magnitude and phase are obtained by 
differentiating equations (19) with respcct to p 

a 

where aa/+ and ab/+ arc the real and imaginary components of 
dh/ap respectively. 



Singular Values - The output vector y(s) is related to 
w(s) by a transfer function matrix of dimension n y  X nu in the 
multi-input. multi-output case. When the transfer funcnon mamx 
is some nu x nu or ny x ny mamx H(s) of a controlled system, it 
is often desirable to compute the minimum and maximum 
singular values of H(s) as a function of the complex frequency s 
= ja. since these singular value quantities have been related to 
various control system design criterionlO. The singular values 
and the sensitivity of the singular values to parameters as a 
function of frequency o can be obtained from H(jo) and 
a H ( j o ) / a p  using the definition of the singular value 
decomposition of a complex maaix. 

For the square complex mamx H of dimension nh x nh. 
the singular value decomposition of H is defined by 

where (*) denotes complex conjugate transpose, U and V are 
unitary oansformation mamces, and Z is 

H = UZV' (21) 

Z = diag([a, a2 ... a%]) 

where csI is the I* real scalar singular value of H. For the ilh 

singular value, equation (21) can be wntten as either 
Hvl = u , ~ ,  (23a) 
or 
H'ui = viai 
where uI and Vi are the i* columns of U and V respectively. 

For the case when H is a known continuous function of 
the parameter pj for which the derivative aI@pj is also known 
and the csl are distinct (no repeated singular values), then the 
sensitivity of the I* singular value u1 to the parameter p is"-13 

Eigenvalues - The eigenvalues and right eigenvectors of 
a real n, x n, mamx A are defined by the equation9 
AE = EA (25) 
where E is the mamx whose columns are the right eigenvectors 
and A is a diagonal mamx with the i* diagonal element being the 
i* eigenvalue, assuming A has no repeated eigenvalues and a full 
set of linearly independent eigenvectors. The left eigenvectors 
are just the rows of the inverse modal matrix E-I. For the ith 
eigenvalue 7.i. equation (25) can be written as either 
Ae, = Liei (26a) . . .  
T T 

l i  A = Aili 
where q and ii arc the i* right and left eigenvectors respanivcly. 

The sensitivity of the i h  eigenvalue with respect to the 
parameter p is14-'6 

Covariance Response - Often the response of an 
asymptotically stable linear system to random disturbances or 
inputs which can only be described in statistical terms is desirrd. 
In this case, the response of the system is computed using the 
covnrimce equation and the noise intensity matrices which model 
the random disturbance or noise5d. Equations for the sensitivity 
of the covariance rcsponse have been developed by differenriztion 
of the covariance equation with respect to the panmeter variation 
of interest.l7 

The input w(0 of the linear system given by equations 
(13) is assumed to be a zero mean, Gaussian distributed. "white" 
noise with noise intensity matrix W. The steady-state covariance 
response of the (asymptotically stable) system is given by 
solution of the steady-state covariance equation - - 
O =  AX + X A '  + BWB' 

Y = cTxc 
and the steady-state output covariance is 

(28) 

(2')) 

Assuming the derivative mamces of A. B. C. and W with 
respect to a parameter pi are known, equation (28) can be 
differentiated with respect to pi to obtain 

+ ~ W B ' + B Z B ~ + B W -  aBT ) 
aP a p  a. 

Equation (30) is line& Lyapunov eqhtion which has a unique 
solution by virtue of strictly stable eigenvalues of the A mamx. 
The sensitivity of the output covariance is 

AEROSERVOELASTIC AIRCRAFT SENSITIVITY 
STUDY 

Description - An aerosewoelastic control law deqign 
sensitivity problem was formulated and analyzed for various 
control law and structural parameter variations. This was done to 
numerically demonstrate the application of the sensitivity 
developments of previous sections to a realistic aircraft 
strucWcontro1 law design problem 

A mathematical d e l  of the longitudinal dynamics of the 
Drone for Aerodynamic and Structural Testing. Advanced 
Research Wing-I1 (DAST ARW-11) Firebee aircraft, Figure 2. 
was developed for this e~arnp1e.Ig-I~ The open-loop state-space 
model is of 25* -order incorporating rigid body plunge and pitch 
modes, three elastic vibration modes, elevon and aileron control 
surfaces with actuators, and a Dryden20 second-order vertical 
gust input model. I t  has elevon and aileron commanded 
deflections as inputs, pitch rate and normal acceleration at the 
c.g.. wing acceleration at two locations, and actual control 
surface deflections and rates as outputs. At Mach 0.75 and 
15.000 feet altitude, the open-loop aircraft model has two real 
shon penod roots. one stable at -3.625/sec. and one unstable at 
I.lOl/sec.. and a lightly damped aeroelastic tlutter mode with 
eigenvalues at -0.162 f j I 18.3/sec. 

A control law design problem was formulated to stabilize 
the unstable shon period root of rhe aircnfr while maintaining or 
augmenting the stability of the aeroelastic mode using reasonable 
control surface deflections and rates. Center-of-gnvity pitch m e  
and acceleration, and wing acceleration from the aft wing 
accelerometer were selected as feedback measurements. These 
measurements were assumed to be noisy. A random gust 
environment of 5 ft./sec. (60 in./sec.) root mean square vertical 
gust velocity was selected for the control law design. 

The original eight mathematical model outputs were 
weighted in the LQG cost function by the matrix Q. The diagonal 
elements of Q were selected using the "Bryson" rule [reference 6. 
pg. 1691 as one over the square of the desired maximum output. 
The weighting matrix R on commanded control surface 
deflections was selected as an identity manix. The Dryden gust 
input noise intensity was selected to give a 5 ft./sec. RMS gust 
input, and the measurement noises were selected to be 
approximately 10% of the expected output due io the gust input. 
Table 1 summarizes the numerical values for the weighting 
mamces and noise statistics. 

Numerous parameters w e n  selected to exercise the 
sensitivity analysis techniques described in previous chapters. 
Sensitivity results for four of these parameters ye presented here. 
The four parameters and their nominal values are listed in Table 
2. Parameter 1 is an element of the cost function weighting 
matrix Q, affecting the regulator portion of the optimal LQG 
control law solution. Parameters 2 is an element of the noise 
inicnsity mamx V. which affects the Kalman Filter portion of the 
LQG solution. Parameter 3 is a factor that simulates the effects 
of structural wing bending stiffness changes by uniformly scaling 
the two wing bending mode natural frequencies. Parameter 4 
locates the aft wing accelerometer relative io the forward 
accelerometer through a scaling of the nominal longitudinal 
separation distance between the accelerometers. Sensitivity 
matrices of the open-loop state-space model and LQG matrices to 
the four parameters were also gencratcd. 



. 

Sensitivity - A numerical sensitivity analysis of the 
rerosenoelastic example problem was conducted. This 
numerical analysis consisted of the following: I )  solution of the 
optimal L w  conml law problem fop nominal parameter values, 
2) calculation of the sensitivity of the LQG solution to thc four 
parameters. and 3) computation of the nominal controlled system 
eigenvalues. covariance response. and time and frequency 
responses. and the sensitivity of those responses. to the four 
parametm using the optimal conml law sensitivity information. 

Sensitivity results presented throughout this paper are 
multiplied by the nominal value of the parameter of interest. such 
that the (semi-relative) sensitivity results for every parameter can 
be directly compared on a percent parameter change basis. This 
type of semi-relative sensitivity data has the same units as the 
nsponse of interest in all cases. 

Closed-loop system eigenvalues and theu sensitivities to 
each of the parameters were computed using equations (26a) and 
(27). The closed-loop short period and flutter mode eigenvalues 
and their sensitivities are given in Table 3. Note in Table 3 that 
the sign order of the sensitivity of the imaginary part is 
significant. The notation f means a positive change in the 
parameter will increase the magnitude of the imaginary part of the 
eigenvalue. whereas the notation -/+ means a positive parameter 
change will dccrcase the magnitude. Neither the short period nor 
flutter mode eigenvalues are affected at all by parameten 2 and 4. 
since these parameters affect only the Kalman Filter pomon of the 
Lw solution. The wing bending stiffness parameter. while 
having an expected large effect on the flutter mode eigenvalues, 
also has a significant effect on the aircraft short period mode 
eigenvalues since the sensitivity results arc of the same order of 
rnaenitude. 

Covariance responses and sensitivities of the aircraft 
model to a 5 ft./scc. RMS random vertical gust environment 
werc computed using equations (28) - (31). Mean-square 
responses and sensitivities daived from the covariance results for 
aircrdft pitch rate, normal c.g. acceleration, and wing acceleration 
at the forward wing accelerometer arc given in Table 4. Note that 
an increase in wing bending stiffness would tend to decrease the 
aircraft pitch rate. c.g. acceleration, and the wing tip acceleration 
in the random gust environment. as would moving the aft wing 
accelerometer forward (a negative change in parameter 4). 
Parameter 1 could be used to tradeoff pitch rate response with 
c.g. and wing acceleration since the sensitivity derivatives have 
opposite signs. 

Output time responses and sensitivities were computed 
for the closed-loop aircraft subjected to the I - cosine discrete 
gust 

{ 0.0 
w(t) = 

60 x (1.0 - cosine (m / .25)) 0.0 5 t 5 .25 

.25 t 5 1.0 
(32) 

using equations (17). Time histones of aircraft pitch rate and 
c.g. acceleration arc shown in Figures 3 and 4. Also shown in 
these figures an the sensitivities of the responses to parameters 3 
and 4. Note here that of the two parameters, the pitch rate 
response is most sensitive to the wing bending stiffness. The 
sensitivity of the c.g. acceleration is largest with respect to 
parameter 3. indicating that wing bending stiffness is a significant 
factor in normal accelerations due to gust encounters. 

The complex frequency response and sensitivities of the 
elevon open-loop transfer function with the aileron loop closed 
were calculated using equation (18). The complex (real and 
imaginary) results were converted to magnitude and sensitivity of 
the magnitude using equations (20). The magnitude result is 
shown in Figure 5. as arc the sensitivities of the magnitude to 
paramten  3 and 4. The magnitude is most sensitive to the wing 
bending stiffness at about .6 rad/sec.. although the peak 
sensitivity for parameter 4 coincides with the peak of the 
magnitude at 1.1 rad/sec. 

Sensitivity Validation - The sensitivity analysis 
results were evaluated for accuracy by comparing predicted 
covariance responses with covariance responses computed for 
variations in the nominal values of the parameters. The four 
parametm werc varied f 25% from their nominal values in 5% 
increments. and the new oprimal control law and controlled 
aircraft covariance response were computed for each parameter 

vrnatioii. 'l'hese cooiputed responses were compared with 
sensitivity derivative-based first-oder predictions of the response 
computed by 

ai  f =f ,+ -x i lp  
JP P (33)  

where f refers to the response of interest. Ap is the parameter 
change, af/ap is the appropnate sensitivity denvauve. and the 
subscnpts and ,, refer to predicted and nominal responses 
respectively Percentage errors in the covanance response 
predictions werc calculated as 

where the-subscript refers to the computed response. 

Validation results for the prediction of the aircraft pitch 
rate, c.g. acceleration. and aft wing accleration due to variations 
in parameter 3, the wing bending stiffness parameter. are shown 
in Figure 6. The percent errors in predicting pitch me and c.g. 
acceleration are reasonable even for large variations in the value 
of the parameter. Further, the slope of the error curve is zero 
near the zero parameter change(nomina1 value) point, where the 
sensitivity derivative used for the prediction was originally 
calculated. This indicates that the sensitivity derivative is exact at 
this point, verifying the derivation of the onalytical sensitivity 
expressions. The percent error results for the aft wing 
acceleration prediction are larger than for the other two response 
predictions. however the error is less than about -30% for 5 10% 
variations in the parameter. In an actual application of these 
sensitivity methods, parameter variation magnitudes would 
nornially be restricted by good engineering practice to be 
relrtively small values, closer to the region where the sensitivity 
results are nearly exact. 

COMPUTATIONAL COSTS 

The computational burden associated with the numerical 
evaluation of the analytical LQG problem sensitivity equations 
can appear to be substantial, since solution of two matrix 
Lyapunov equations (equations (7) and (9) )  is required to obtain 
the sensitivities of the linear quadratic regulator and Kalman Filter 
gain matrices to a single parameter. For this reason. a 
comparison of the analytical sensitivity evaluation versus one- 
and two-step finite difference calculations for the equivalent 
sensitivity information was made. The measure of comparison 
for the three calculations was central processing unit time (CPU 
seconds) on a Digital Equipment Corporation MicroVAX I I  
computer, where the LQG sensitivity equations were 
programmed as user functions to a commercially available linear 
systems analysis computer code. 

The one-step regulator gain matrix G finite difference 

(35) 

sensitivity was calculated as 

where GI is the perturbed LQR gain for the wing bending 
stiffness parameter (parameter 3) perturbed positively by 2.5% 
( I  ,025 times the nominal value). The KF gain matrix F finite 
difference sensitivity was calculated similiarly. 

sensitivity was calculated as 
The two-step regulator gain matrix G finite difference 

(36) 

and the wing bending stiffness parameter was perturbed by ? 
2.5%. G2 refers the  LQR gain matrix obtained for pmmcter 3 
perturbed to 1.025 times nominal. and GI refers to the gain 
mamx for parameter 3 perturbed to ,975 times nominal. The 
Kalman Filter gain mamx F sensitivity was again calculated in the 
same manner. 

The results of the CPU time comparisons are shown in 
Table 5.  as is the CPU time required for solution of the LQG 
problem without sensitivity calculations. These results show that 
the analytical sensitivity expressions require substantially less 
CPU rime than either the one- or two-step numerical finite 
difference approaches for a single parameter sensitivitv analysis. 
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and require only a 33% increase in CPU time over the nominal 
LQG problem solution. Furthermore. the computational 
advantage of the analytical approach is likely to increase when 
sensitivity calculations for more than one parameter are involved, 
since additional computational efficiency can be achieved by 
storage of the decomposed coefficient mamces of the sensitivity 
equations (7) and (9). Similar computational efficiencies arc not 
possible with the finite difference approaches, since they require 
a solution of the LQG problem for each perturbation of the 
parameter of interest. 

CONCLUSION 

This paper has highlighted a method for computing the 
sensitivity of optimal LQG control laws to various parameters 
using analytical sensitivity expressions. The LQG sensitivity 
results are used to predict changes in closed-loop aircraft 
responses due to changes in the nominal values of the parameters 
of interest. These sensitivity results arc shown to be useable for 
hierarchal integrated structure/control law design problems 
through a large aeroservoclastic aircraft example. Sensitivities of 
covariance, time. and frequency responses of the aircraft to 
various parameters were computed. The sensitivity results were 
validated against computed response changes due IO changes in 
the nominal values of various parameters and found to be 
accurate for f 15% changes in the parameter values. It was also 
found that it is cheaper to evaluate the analytical LQG sensitivity 
expressions than IO calculate the equivalent sensitivity 
information by finite difference means. 
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TABLES 

Table 1 
Smbol value Descnpuon 
O(1.1) 0.01 Pitch Rate Weight 

LQG Control Law Problem Data 

1 .OO 
0.01 
0.01 
1.04 x IO-? 

1.56 x I O 4  
1 3 3  x 10-6 
I .@a 
I .00 

1.50 x I 0 3  
6.00 x 10-3 
1.00 x 10-6 
1.00 x io-6 

4.40 x 10-3 

2.00 x 10-3 

C.G. Acceleracon Weight 
Fwd. Wing Acceleration Weight 
Aft Wing Acceleration Weight 
Elevon Deflection Weight 
Aileron Deflection Weight 
Elevon Rate Weight 
Aileron Rate Weight 
Commanded Elevon Weight 
Commanded Aileron Weight 
Pitch Rate Noise Intensity 
C.G. Accl. Noise Intensity 
Aft Wing Accl. Noise Intensity. 
Input Noise Intensity (Elevon Loop) 
Input Noise Intensity (Aileron Loop) > W 

Table 2 
Number Nomnal Value Demotion 

lntegated A i m f t  Desisn Problem Pwmneters. 

I 0.01 Q(l.1) Pitch Rate Weight 
Z 2.NJ x i l i -3  V(I.1) Pitch Rate Noise Intensity 
3 1 .oo Wing Bending Stiffness Factor 
4 7.58 Aft Wing Accl. Location 

Table 3 Semi-Relative Closed-Loop Shon Period and Flutter 
Mode Eigenvalue Sensitivities IO Pmrneten. 
Shon Penod Mode Flutter Mode 

- 
(I/SeC.) ( 1 /sec.) 

P a m .  (-5.136 f j2.742) (-5.046tj1.178 x 102) 
1 
* 0.00 0.00 
3 
4 0.00 0.00 

-4.74 x 10-1 -/+ j7.28 x 1 0 '  

4.72 x IO-I i j4.04 

4.69 x 10-5 -/+ jl.50 x 10-5 

3.70 -fr j2.83 x 101 
7 
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Table 4 Semi-Relative Closed-Loou Mean-Souarc Response 

C 

Sensitivities to Piuamctm'(5 ~/scc.'RMS Gist). 
Wing Accl. Rtch Rate C.G. Accl. 

(deg./sec.) (g's) ( 2 s )  
Param. (5.15 x 10-2) (2.65 x 10-2) (2.35 x 10') 

1 -6.18 x 10-3 2.24X lo" 6.24 x 10-5 
2 5.91 x 10-3 9.91 x lo" 5.21 X 10-3 
3 -9.84 x 10-2 -3.38 x 10-3 -5.32 x 101 
4 1.35 x 10-3 1.16X 2.94 x IO-' 

Table 5 CPU Time Comparisons of Analytical Sensitivity 
Expressions versus Finite Difference Calculations. 

kelhod Time 6s.) 
LQG Solutlon only  
Analytical Sensitivity Exprcssions E:;! 
One-Step Finite Dificrcnce 196.44 
TweStep Finite DiffeMcc 287.39 

Integrated 
O w n  

Design 

Figure 1. General integrated structurdcontrol law design 
problem formulation. 

Outboard Wing 
. ,  .... ,a, 

Pitch Rate Gyro 
and C. G. 
Accelerometer Accelerometers (LJ 

- Elevon 

Aileron \ 
Figure 2. Aeroservoclastic aircraft example problem 

configuretion. 

Pitch Rate 
9 

(rad/sec) 

02 

0.0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 .o 
0.0 0.25 0.5 0.75 1.0 

Time t (sec) 

*O'O 15.0 T 

(rad/sec) 

-5.0 
0.0 0.25 0.5 0.75 1.0 

Time t (sec) 

0.09 

0.06 

0.03 

0.0 

-0.03 

-0.06 

-0.09 
0.0 0.25 0.5 0.75 1.0 

Timet (sec) 

Figure 3. Piich rate response io 1 - cosine discrete gust and 
sensitivity to parameters 3 and 4. 
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C. G. 
Acceleration 

2 

(g's) 

0.0 

-0.02 

-0.04 

-0.06 

-0.08 

-0.1 
0.0 0.25 0.5 0.75 1.0 

M e t  (sec) 

2.5 -1 
2.0 1 
1.5 1 1 

az 
-XP, 1.0 
*3 

(g's) 0.5 

00 

-0.5 
0 0 0.25 0.5 0.75 1.0 

Time t (sec) 

0.012 

0.0 

-0.003 

- x pr 0.003 

-0.006 
-0.009 

a2 
a4 
(9'5) 

0.0 0.25 0.5 0.75 1.0 
Timet (sec) 

Figure 4. C. G. acceleration response to I - cosine discrete 
I gust and sensitivity to parameten 3 and 4. 

Elevon Loop 
T.F. Magnitude 

Ihl 

am1 
- x P, 

3.5 
3.0 
2.5 
2.0 

1.5 

1 .o 
0.5 
00 _ _  

0.01 0.1 1.0 10.0 100.0 lwo.o 

Frequency w (radlsec) 

.l .o 
0.0 

-1 .o 
-2.0 

-3.0 

-4.0 
0.01 0.1 1.0 10.0 100.0 1000.0 

Frequency o (rad/sec) 

Frequency o (rad/sec) 

Figure 5 .  Open devon loop transfer function magnitude 3nd 
sensitivity to parameten 3 and 4 (aileron loop 
closed). 
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Yo Error in 
Predicted Pitch 
Rate Response 

%Change Parameter 3 

% Error in 
Predicted C. G. 
Acceleration 
Response 

0.0 

-5.0 

-10.0 

-15.0 

-20.0 

-25.0 

-30.0 
-30.0 0.0 30.0 

% Change Parameter 3 

% Error in 
Predicted Aft 
Wing Acceleration 
Response 

% Change Parameter 3 

Figure 6. Pmcnt prediction errors in covariance responses for 
f 25% changes in parameter 3 nominal value. 
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