FINAL REPORT

AERODYNAMIC FLIGHT EVALUATION ANALYSIS AND DATA BASE UPDATE

May 1989

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MARSHALL SPACE FLIGHT CENTER, AL 35812
by
W. W. Boyle
M. S. Miller
G. O. Wilder
R. D. Reheuser
R. S. Sharp
G. I. Bridges

FOREWORD

This final report presents the results of work performed by personnel of the Flight Technology Group of Lockheed's Huntsville Engineering Center for NASA MSFC under Contract NAS8-33807. The NASA Contracting Officer's Representative and technical monitor for this contract was Mr. Charlie C. Dill, Jr., to whom the authors are grateful for his valuable assistance, direction, and contributions to the successful completion of this study.

CONTENTS

Section Page
FOREWORD i.i
CONTENTS i.ii
NOMENCLATURE \mathbf{x}
1 TNTRODUG'IION 1
PHASE I 〔TQUID ROCKET BOOS'TER (LRB) TEST DATA 2
2.1 Test Configurations and Conditions 2
2.2 Increment Development Methodology 5
2.3 Verification of Interpolations Performed on LRB Phase I Data 12
2.3.1 Angle of Attack Interpolation 12
2.3.2 Mach Number Interpolation 12
2.4 Evaluation of Plume Effect 22
2.5 Data Analysis Review 38
2.5.1 Data Analysis Review of Longitudinal Effects 38
2.5.2 Data Analysis Review of Wing Loads 38
3 PHASE II LIQUID ROCKET BOOSTER TESTING 51
3.1 Test Conditions and Configurations 51
3.2 Test Results 51
3.3 Phase I and Phase $I I$ Comparison 51
3.3.1 Data Analysis 57
3.3.2 Angle of Attack Trends 69
3.3.3 Results of Data Comparison 69
4 LRB LATERAL/DIRECTIONAL WIND TUNNEL DATA 92
5 PROTUBERANCE EFFECTS 113
5.1 Protuberance Effects 113
5.2 SRB Increment Data Base Summary 113
GAP AND AFT SKIRT EFFECTS 135
6.1 Gap Effects Summary 135
6.2 Aft Skirt Effects Summary 168

CONTENTS (Concluded)

Section		Page
7	LRB BASE DRAG STUDY	195
	7.1 Original Base Drag Estimates	195
	7.2 Base Drag Calculation Code	208
	7.3 STS Flights 2, 3, 5	208
	7.4 Martin Pump Fed (LRB1)	208
	7.5 Martin Pressure Fed (LRB2)	224
	7.6 General Dynamics 02/H2 Pump Fed (LRB3)	224
	7.7 General Dynamics 02/RP1 Pump Fed (LRB4)	224
	7.8 Concept Comparison/Conclusion	249
8	SUMMARY	254
A	APPENDIX A-1	
	LIST OF FIGURES	
Figure		Page
2-1	Phase-I LRB Test Configurations	3
2-2	Methodology Used to Generate Increments	7
2-3	Recommended Future Methodology lo Generate Increments	8
2-4	Comparison of Increment Development Methods	10
2-5	CMF vs a ($M=0.6$)	13
$2-5$	CAF vs a ($M=0.6$)	14
2-7	CNF vs a ($M=0.6$)	15
2-8	CNF vs a $(M=0.9)$	16
2-9	CNF vs a ($M=1.11$)	17
2-10	$C N F$ vs a ($M=1.26$)	18
2-11	CNF vs MACH (Mach $=-4$)	20
2-12	CAF vs Mach (Mach $=-4$)	21.
2-13	W Normal Force Coefficient (TWT 675)	24
2-14	W Pitching Moment Coefficient (TWT 675)	25
2-15	W Normal Force Coefficient (TWT IA300)	26
2-16	W Pitching Moment Coefficient (TWT IA300)	27
2-17	W Normal Force Coefficient (TWT 675 \& TWT IA300)	28
2-18	W Pitching Moment Coefficient ('TWT 675 \& TWT IA300)	29
2-19	Shuttle LRB Configurations Used in Study	30
2-20	Booster CPB vs Mach	33
2-21	ET CPB vs Mach	34
2-22	CD Increment vs Mach	35
2-23	CN Increment vs Mach	30
2-24	CM Increment vs Mach	37
2-25	CAF vs Mach (Length and Diameter Effects)	39
2-26	CNF vs Mach (Length and Diameter Effects)	40

LISI OF FIGURES (Continued)

Figure Page
2-27 CMF vs Mach (Length and Diameter Effects) 41
2-28 $X_{\text {AC }}$ vs Mach (Length and Diameter Effects) 42
2-29 $\mathrm{C}_{\text {SR }}$ vs Mach (Length and Diameter Effects) 46
2-30 $\mathrm{C}_{\text {TR }}$ vs Mach (Length and Diameter Effects) 47
2-31 $C_{B R}$ vs Mach (Length and Diameter Effects) 48
2-32 CHEI vs Mach (Length and Diameter Effects) 49
2-33 CHEO vs Mach (Length and Diameter Effects) 50
3-1 Phase II Configurations 52
3-2 Phase I LRB Wind Tunnel Test Configurations 583-3 Phase I/Phase II Incremental Data, and D2L2/SD15Configuration603-4 Phase I/Phase II Total Data, Comparison and D2L2/SD15Configuration633-5 Phase I/Phase II Total Data, Comparison and D1L1/SD12L1Configuration66
3-6 Angle of Attack and Diameter Effects on Phase I/Phase II Data 71
3-7 LRB Diameter Effects 75
3-8 Data Increments Phase II 78
3-9 Data Increments vs Diameter 87
4-1 Scope of Test (TWTO16) 93
4-2 Test Configurations (TWT016) 94
4. 3 Launch Vehicle Sign Convention 95
4-4 $C Y_{B}$ vs Length 100
$4-5$ $C Y_{B}$ vs Diameter 101
4-6 CYM_{B} vs Length 102
4-74. 84-9CYM $_{B}$ vs Diameter103
CRM $_{B}$ vs Length 104
CRM_{B} vs Diameter 1054. 10
CSR vs Length 106
4. 11 $\triangle C S R$ vs Diameter 107
. 1
4-12 $\Delta C T R$ vs Length 108
4-13 $\quad \Delta C T R$ vs Diameter 109
4-14 $\triangle C B R$ vs Length 1.10
4-15 $\triangle C B R$ vs Diameter 111
5-1 SRB Protuberance Configurations 114
5-2 SRB Fairing Configurations 115
5. 3 CNF (Protuberance Effects) 116
5. 4 CMF (Protuberance Effects) 1175.5
CSR (Protuberance Effects) 118
CTOR (Protuberance Effects) 1195-8CRBM (Protuberance Effects)120
CHMIE (Protuberance Effects) 121
5-9 CHMOE (Protuberance Effects) 122
5-10 CAF' (Fairing/Protuberance Fifects) 123
5. 11

List of Figures (continued)

Figure Page
5-12 CTOR (Fairing/Protuberance Effects) 125
5-13 CRBM (Fairing/Protuberance Effects) 126
514 CHMIE (Fairing/Protuberance Effects) 127
5-15 CHMOE (Fairing/Protuberance Effects) 128
5-16 CSR (Fairing/Protuberance Effects) 129
5-17 CTOR (Fairing/Protuberance Effects) 130
5-18 CRBM (Fairing/Protuberance Effects) 131
5-19 CHMIE (Fairing/Protuberance Effects) 132
5-20 CHMOE (Fairing/Protuberance Effects) 133
6-1 Gap Effect Configurations (D1L1) 136
6-2 Gap Effect Configurations (D1L2) 137
6-3 CAF vs Mach (D1L1) 138
CNF vs Mach (DIL1) 139
6-5 CSR vs Mach (DlL1) 140
6-6 CTR vs Mach (D1L1) 141
6-7 CBR vs Mach (DlL1) 142
6-8 CHEI vs Mach (D1L.1) 143
6-9 CHEO vs Mach (D1L1) 144
6-10 CAF vs Gap (D1L1) 145
6-11 CNF vs Gap (D1L1) 146
6-12 CMF vs Gap (D1L1) 147
6-13 CSR vs Gap (D1L1) 148
6.14 CBR vs Gap (D1L1) 149
6. 15 CTR vs Gap (DILI) 150
. 16 CHEI vs Gap (D1L1) 151
6. 17 CHEO vs Gap (D1L1) 152
618 CAF Vs Mach (D2L2) 153
6.19 CNF vs Mach (D2L2) 154
6-20 CSR vs Mach (D2L2) 155
6.21 CTR vs Mach (D2L2) 156
6-22 CBR vs Mach (D2L2) 157
6-23 CHEI vs Mach (D2L2) 158
6-24 CHEO vs Mach (D2L2) 159
6...25 CAF vs Gap (D2L2) 160
6-26 CNF vs Gap (D2L2) 161
6-27 CMF vs Gap (D2L2) 162
6-28 CSR vs Gap (D2L2) 163
6-29 CTR vs Gap (D2L2) 164
630 CBR vs Gap (D2L2) 165
6-31 CHEI vs Gap (D2L2) 166
6-32 CHEO vs Gap (D2L2) 167
6-33 Aft Skirt Configurations (D1L1) 169
6-34 Aft Skirt Configurations (D2L2) 170
6-35 CNF vs Mach (D1L1) 171
6-36 CSR vs Mach (D1L1) 172

List of Figures (continued)

Figure Page
6-37 CTR vs Mach (D1L1) 173
6-38 CBR vs Mach (D1L1) 174
6-39 CHEI vs Mach (D1L1) 175
6-40 CHEO vs Mach (D1L1) 176
6-41 CNF vs α (D1L1, M $=1.25$) 177
6-42 CSR vs α (D1L1, $M=1.25$) 178
6-43 CTR vs α (D1L1, $M=1.25$) 179
6-44 CBR vs α (D1L1, $M=1.25$) 180
6-45 CNF vs α (D1L1, $M=1.47$) 181
6-46 CSR vs α (D1L1, $M=1.47$) 182
6-47 CTR vs α (D1L1, $M=1.47$) 183
6-48 CBR vs α (D1L1, M = 1.47) 184
6-49 CNF vs Mach (D2L2) 185
6-50 CSR vs Mach (D2L2) 186
6-51 CTR vs Mach (D2L2) 187
6-52 CBR vs Mach (D2L2) 188
6-53 CHEI vs Mach (D2L2) 189
6-54 CHEO vs Mach (D2L2) 190
6-55 CNF vs α (D2L2, $M=1.47$) 191
6.56 CSR vs α (D2L2, $M=1.47$) 192
6-57 CTR vs α (D2L2, $M=1.47$) 193
6-58 CBR vs α (D2L2, $M=1.47$) 194
7-1 Baseline Study LRB Configurations 196
7-2 Current SRB 197
7-3 Baseline Study LRB 198
7-4 Baseline Study Altitude vs Mach 199
7.5 Baseline Study Q vs Mach 200
7-6 Baseline Study Plume Angle vs Mach 201
1.7 Baseline Study SRB Total Base Drag 205
7.8 Baseline Study LRB Total Base Drag 206
7-9 Baseline Study LRB Delta Base Drag 207
7-10 Base Drag Calculation Code Flowchart 209
7-11 Base Drag Calculation Code Output 210
7-12 STS 2, 3, 5 Altitude vs Mach 211
7-13 STS 2, 3, 5 Q vs Mach 212
7-14 STS 2, 3, 5 Plume Angle vs Mach 213
7-15 STS 2, 3, 5 Total Base Drag 215
7-16 LRB1 (Martin Pump Fed) 216
7.11 LRBI Altitude vs Mach 217
7--18 LRB1 Q vs Mach 218
7-19 LRBl Plume Angle vs Mach 219
7-20 LRBl Total Base Drag 222
7-21 LRB1 Delta Base Drag 223
7-22 LRB2 (Martin Pressure Fed) 225
7-23 LRB2 Altitude vs Mach 226

List of Figures (Concluded)

Figure Page
7-24 L_RB2 Q vs Mach 227
7-25 LRB2 Plume Angle vs Mach 228
7-26 LRB2 Total Base Drag 231
7-27 LRB2 Delta Base Drag 232
7-28 LRB3 (General Dynamics 02H2 Pump Fed) 233
7-29 LRB3 Altitude vs Mach 234
7-30 LRB3 Q vs Mach 235
7-31 LRB3 Plume Angle vs Mach 236
7-32 LRB3 Total Base Drag 239
7-33 LRB3 Delta Base Drag 240
7-34 LRB4 (General Dynamics 02RP1 Pump Fed) 241
7-35 LRB4 Altitude vs Mach 242
7-36 LRB4 Q vs Mach 243
7-37 LRB4 Plume Angle vs Mach 244
7-38 LRB4 Total Base Drag 247
7-39 LRB4 Delta Base Drag 248
7-40 Launch Vehicle Total Base Drag 250
7-41 Orbiter Base Total Drag 251
742 Booster Total Base Drag 252
7. 43 External Tank Total Base Total 253
LIST OF TABLES
Table Page
2\%1 Phase I LRB Configurations 4
2. 2 Matrix of Data Files used to Generate the Phase I 6
LRB Incremental Data
2-3 Phase I LRB Dimensions 19
31
2.4 Analytical Uncertainties
45
2. 5 Summary of Vehicle Longitudinal Effects
3-1 Matrix of Data Files Used to Generate Phase II Data 56
3-2 Matrix of Data Files Used to Generate Phase I LRB Incremen- tal Data 59
$3-3$ Additional Test Runs Suggested to Redevelop Phase I Data Base 70
4-1 Diameter Effects of Phase II Configurations 112
7-1 Baseline Concept (SRB) 202
7-2 Baseline Concept (LRB) 203
7-- Baseline Concept (LRB) 204
7-4 STS 2, 3, 5 (SRB) 214
7-5 Martin Pump Fed (LRB1) 220
7-6 Martin Pump Fed (LRB1) 221
7-1 Martin Pressure Fed (LRB2) 229

List of Tables (Concluded)

Table Page
7-8 Martin Pressure Fed (LRB2) 230
7-9 General Dynamics 02H2 Pump Fed Total Base Drag 237
7-10 General Dynamics 02H2 Pump Fed Delta Base Drag 238
7-11 General Dynamics 02RP1 Puap Fed Total Base Drag 245
7-12 General Dynamics 02RP1 Pump Fed Delta Base Drag 246

NOMENCLATURE

α	angle of attack
B	yaw angle
C_{AF}	axial force coefficient
$C_{B R}$	wing bending moment coefficient
$C_{\text {d }}$	drag coefficient
CHEI	inner elevon moment coefficient
CHEO	outer elevon moment coefficient
C_{MF}	pitching moment coefficient
C_{NF}	normal force coefficient
C_{P}	pressure coefficient
$C_{P B}$	base pressure coefficient
$\mathrm{C}_{\text {PBET }}$	base pressure coefficient external tank
C_{RM}	rolling moment coefficient
${ }^{\text {c }}$ SR	wing shear force coefficient
C_{T}	thrust coefficient
${ }^{\text {ctir }}$	wing torque moment coefficient
C^{Y}	side force coefficient
${ }^{C}$ YM	yawing moment coefficient
DSRB	base diameter (booster)
ε	nozzle area ratio
MRP (WING)	wing moment reference point
P_{C}	chamber pressure
${ }_{P}$	ambient pressure
Q	dynamic pressure
T/A	thrust/base area
Sei	inner elevon deflection
Seo	outer elevon deflection
X	nozzle extension past base
ϕ	roll angle

ORIGINAL PAGE IS OF POOR QUALITY

Launch Vehicle Sign Convention

ALL DIMENSIONS IN INCHES mODEL SCALE IN PARENTHESES

Wing Coordiate Aree
(Ref. Dimeelone and Axee ere
the seat for all Detsbese)

ALL DIMEN:IONS IN INCHE? MODEL ECALE IN PARENTHESES

Elevon Coordinate Aree
(lief. Dleneslone and Axes are
the and for all Detabees)

Launch Vehicle Sign Convention

1. INTRODUCTION

Research was conducted to determine the feasibility of replacing the Solid Rocket Boosters on the existing Space Shuttle Launch Vehicle (SSLV) with Liquid Rocket Boosters (LRB). As a part of the LRB selection process, a series of wind tunnel tests was conducted along with aero studies to determine the effects of different LRB configurations on the SSLV. Final results were tabulated into increments and added to the existing SSLV data base.

The research conducted in this study was taken from a series of wind tunnel tests conducted at Marshall Space Flight Center's 14-inch Trisonic Wind Tunnel. The effects on CAF, CNF, CMF, CY, CSR, CTR, CBR were investigated for a number of candidate LRB configurations. The aero effects due to LRB protubecances, ET/LRB sep. distance, and aft skirts were also gathered from the test.s. Analysis was also conducted to investigate the base pressure and plume effects due to the new booster geometries

Section 2 of this study discusses the test results found in Phase I of wind tunnel testing. Section 3 discusses the results in Phase II of testing, along with a comparison to Phase I tests. Section 4 gives preliminary LRB lateval/directional data results and trends. Section 5 discusses the protuberance effects and section 6 the gap/skirt effects. Section 7 discusses and gives results of the base pressure/plume effects study.

2. PHASE I LIQUID ROCKET BOOSTER (LRB) TEST DATA

This section delineates the methods and results of the Phase I (TWT0707) wind tunnel test. Section 2.1 presents the test configurations and conditions used during testing, and the methodology of determining the incremental data is discussed in Section 2.2. Section 2.3 presents the interpolations performed on the LRB data.

2.1 TEST CONFIGURATIONS AND CONDITIONS

Testing was conducted to determine the effects of length and diameter on aerodynamic coefficients. The configurations tested used diameters of 12.2 $\mathrm{ft}, 15 \mathrm{ft}, 18 \mathrm{ft}$, and 21 ft . Three lengths were tested for each diameter configuration ranging from 144 ft to 190 ft . Figure 2-1 and Table 2-1 present the test configurations used in Phase I wind tunnel testing. Table $2 \cdots 2$ shows the test matrix for Phase I. The lengths were measured from nose tip to base, excluding the nozzle. The LRB/ET attach points were the same for all LRB configurations, and the base of the nose cones was not to extend aft of this point. The nose tip had a radius of 1.11 ft , and nose half angles were all 18 degrees. All LRB's were tested - without protuberances.

The angle of attack for the tests ranged from -10 degrees to +10 degrees in even increments. The Mach numbers used were $0.6,0.8,0.9,0.95,1.05$, $1.15,1.251 .48,1.96,2.74,3.48$, and 4.96 . The sideslip angle was zero. Nominal settings of 10 degrees/5 degrees were used for the inboard/outboard elevon settings.

Fig. 2-1 Phase I LRB Test Configurations

Table 2-1 PHASE I LRB CONFIGURATIONS

Length (ft.)	Diameter (ft.)	D1	D2	D3
	12.2^{*}	15	18	21
L1	144^{*}	149	154	158
L2	150	159	163	167
L3	170	172	175	177
L4	190	190	190	-

*Represents Current SSLV Configuration

2.2 TNGREMENT DEVELOPMENT METHODOLOGY

The development of the coefficient incremental data was initiated by the analysis of Phase I data obtained from wind tunnel testing. The data were compared to the current SSLV data and evaluated for validity. The increments were developed from the difference between a particular set of LRB data and that of the DlLl configuration, the latter being equivalent to the current SRB less the aft skirtand protuberances. The resulting increments could then be added directly to the SSLV data base. Increments were developed for each LRB configuration and test point.

For the LRB Phase I effort, the test Mach numbers are shown in Table 2-2. Incremental data at Mach numbers corresponding to $0.95,1.05,1.15$, and 3.48 were generated for the "D2", "D3", and "D4" configurations by subtracting experimental baseline (D1L1) data from data generated by linear interpolation using the method outlined in Fig. 2-2.

Analysis of the incremental data at the above transonic Mach numbers has shown that valid increments cannot be generated using this method. However, at higher Mach numbers where changes in the coefficient data with changes in Mach number are small, this method can be used with relatively good results.

Shown in Fig. 2-3 is a flowchart detailing the approach recommended for any future incremental data base development efforts. The new method differs from the old method only in that the interpolation for desired Mach numbers is not performed until after incremental data are generated. This new methodology for obtaining incremental data at desired Mach numbers (between Mach numbers for which experimental data are available) will assure that consistent increments will be generated.

Shown in Fig. 2-4 are several example plots which illustrate the differ ences between Phase I incremental data obtained using the previous interpol.ation method and the recommended future method. Figures 2-4 verifies
Table 2－2 matrix Of data files used to generate the phase i

$\begin{aligned} & 0 \\ & i \end{aligned}$				
$\underset{\sim}{7}$				
$\underset{\mathrm{N}}{\mathrm{~N}}$				
$\begin{aligned} & \dot{m} \\ & \dot{N} \end{aligned}$			呙品芯芯	E\％NE
$\underset{\sim}{\underset{\sim}{\sim}}$				
$\stackrel{\circ}{\stackrel{\circ}{\square}}$			NENN N N N	
$\stackrel{\circ}{\circ}$				
$\stackrel{\sim}{8}$	N N N N N N N	No		N~~~~~
$\stackrel{\square}{\square}$			N N N N N N	
$\begin{aligned} & \stackrel{\circ}{7} \\ & \hline \end{aligned}$				号으N
$\stackrel{\sim}{\sim}$				
$\stackrel{\sim}{\sim}$		EEE E		
$\xrightarrow{-1}$			豆玉	NE
$\stackrel{\square}{-}$		EEE		
$\stackrel{\square}{0}$			EEE	
－				
0	드으으응		品品宫宫	为易最
0				骨芯莫
		ゴッ3	ご3コ	$\underset{1}{2} \cong$

Fig. 2-2 Methodology used to Generate Incremental Data
for the Phase I LRB Effort

$\begin{array}{ll}\text { Fig. 2-3 Recommended Future Methodology that Should Be } \\ & \text { Used to Generate Incremental Data }\end{array}$

Fig. 2-4a Comparison of Increment Development Methods (\triangle CNF)

Fig. 2-4b Comparison of Increment Development Methods (ACSR)

Fig. 2-4c Comparison of Increment Development Methods (\triangle CTH)
that the previous increment development method used to generate the Phase I data is not responsible for the large differences that exist between the Phase I and the Phase II incremental data at transonic Mach numbers.

2.3 VERIFICATION OF INTERPOLATIONS PERFORMED ON LRB DATA

Once raw data were available and an incremental development chosen, the results were interpolated versus alpha and Mach and compared to existing SSLV data. Section 2.3.1 gives results for angle of attack interpolations, and section 2.3.2 gives results for Mach number interpolations.

2.3.1 Angle of Attack Interpolation

Phase I results were interpolated to even angles of attack ranging from -8 degrees to +8 degrees in 2 degree increments from the raw wind tunnel data. Attached are the plots of various coefficients as a function of attack (Figs. 2-5 to 2-10). As the plots show, the interpolated data overlay the raw data extremely well for relatively linear curves (CMF and CNF). For nonlinear curves (CAF), there are some slight differences in the curves representing raw and interpolated data.

These differences are due to using a linear interpolation on a nonlinear curve and not to faulty interpolation. In all cases, the differences are quite small and are well within the accuracy range of the experimental data. In future efforts, higher order interpolation methods will be used in interpolating non-1inear and/or critical data.

2.3.2 Mach Number Interpolation

The raw data from the wind tunnel testing were interpolated for Mach numbers within the LRB Phase I data base. Table 2-3 presents the LRB Phase I configurations represented in the data. The attached Mach numbers plots (Figs. 2-11 through 2-12) detail the data that were linearly interpolated from the raw data. The circled data points shown in the plots lie in a straight

TWT0707 MACH $=0.6$

Fig. 2-5 CMF vs α

TWT0707 MACH $=0.6$

Fig. 2-6 . CAF vs α

Fig. 2-7 CNF vs α

TWTOTOT MACH $=0.9$

\cdots D1L1

Fig. 2-8 CNF vs α

Fig. 2-9 CNF vs α

Fig. 2-10 CNF vs α

Table 2-3 PHASE I LRB DIMENSIONS

Length (ft)	D1	D2	D3	D4
	12.2^{*}	15	18	21
L1 (ft)	144^{*}	149	154	158
L3	150	159	163	167
L4	170	172	175	177

${ }^{*}$ Current SSLV configuration.

Fig. 2-11 CNF vs MACH ($\alpha=-4$)

TWT0707 ALPHA $=-4$

Fig. 2-12 CAF vs Mach $(\alpha=-4)$
line between the actual data points. From the plots it is evident that the data base generated was compatible with the existing operational Shuttle aerodynamic data.

2.4 EVALUATION OF PLUME EFFECTS

An analysis was conducted to investigate plume effects on Shuttle LRB configuration aerodynamic characteristics. The analysis included prediction of the correlation between base pressure and various parameters such as the number of nozzles, thrust, area ratio, chamber pressure and base geometry. The plume effects were evaluated with regard to axial force, normal force and pitching moment.

The method used to predict the correlation between base pressure and the parameters was determined by a review of the Compendium of Flight Vehicle and Base Pressure Techniques (Lockheed Missiles \& Space Co., Inc. August 1983). From this review, the base pressure technique used was developed. This technique is outlined as follows:

1. Define configuration, dimensions, etc.
2. Define trajectory and thrust history
3. Calculate thrust coefficient and thrust loading using base area
4. Determine generic base pressure
5. Determine correction for nozzle axial extension
6. Determine correction for flare
7. Determine correction for multiple nozzle plume effects
8. Calculate base pressure coefficient.

The base pressure technique was then applied to each LRB configuration to determine the base pressure coefficients. The resulting coefficients were compared to actual flight data for validation. The coefficients were then used to determine how a change in base configuration would affect aerodynamic characteristics and to predict base drag numbers and how base drag would affect vehicle performance. Section 7 discusses the effects of the base drag further.

The effect of a change in base configuration was analyzed with regard to normal force and pitching moment coefficient. The correlation between base pressure on the external tank base and pressure distribution on the oribiter's lower wing and fuselage was investigated. The investigation was based on previous analysis of solid and gaseous plume simulation test data. Figs. 2-13 through 2-18 present graphic representations of the analysis.

From the evaluation of the wind tunnel data the following relationships were derived for the LRB study:

$$
\begin{aligned}
& \Delta C_{N}=0.28 \Delta C_{P B} \\
& \Delta C_{M}=-0.27 \Delta C_{P B}
\end{aligned}
$$

where $\Delta C_{N}, \Delta C_{M}$ are increments relative to the current Shuttle. $\quad \Delta C_{P B}$ is the ET base pressure coefficient increment of the LRB configuration relative to the
current Shuttle. $\frac{\Delta C_{M}}{\Delta C_{N}}$ is the value consistent with plume effects acting in the
aft region of the vehicle. It was concluded that the mated vehicle normal force and pitching moment effects can be predicted if the ET base pressure effects can be predicted.

The LRB plume effects study utilized five different booster configurations. These configuration are presented in Fig. 2-19. The lack of a definite configurations necessitated the estimation of certain parameters. These uncertainties are outlined in Table 2-4.

Fig. 2-13 Δ Normal Force Coefficient (TWT 675)

Mated Vehicle

Fig. 2-14 Δ Pitching Moment Coefficient (TWT 675)

Mated Vehicle

Fig. 2-15 Δ Normal Force Coefficient (IA300)

Mated Vehicle
Pitching Moment Coefficient Increment Due to Plume Effects (IA 300)

Fig. 2-16 Δ Pitching Moment Coefficient (IA300)

Fig. 2-17 Δ Normal Force Coefficient (TWT 675 \& IA300)

Fig. 2-18 Δ Pitching Moment Coefficient (TWT $675 \&$ IA300)

Fig. 2-19 Shuttle LRB Configurations Used In Study

Table 2-4 ANALYTICAL UNCERTAINTIES

PARAMETER	CONFIGURATION			
	2 LRB	3 LRB	4 LRB	5 LRB
SKIRT DIMENSION	E	E	E	E
NOZZLE AXIAL POSITION	E	E	E	E
SKIRT FLARE EFFECTS	EX	EX		EX
ENGINE THRUST		E		
ENGINE CHAMBER PRESSURE		E		
NO2ZLE AREA RATIO		E		E
PLUME ANGLE VS ALTITUDE		E		E
MULTIPLE ENGINE PLUME EFFECTS			EX	
BASE PRESSURE ABOVE M $=2.0$			EX	
ENGINE SPACING	E	E	E	E
ALTITUDE AND DYN PRESSURE VS MACH NO.	(1)	(1)	(1)	(1)
THRUST VS MACH NO.	(2)	(2)	(2)	(2)

E = ESTIMATED VALUE BASED ON MEASUREMENTS/CALCULATIONS Ex $=$ EXTRAPOLATION BEYOND EXISTING DATA BASE WAS PERFORMED. (1) $=$ ASSUMED SAME AS CURRENT SHUTTLE PROFILE (2) $=$ ASSUMED CONSTANT THRUST

The base pressure prediction technique was used to determine the base pressure coefficient for each booster configuration. Figures 2-20 and 2-21 present the Booster base pressure coefficients and external tank base pressure coefficients for each configuration at the Mach numbers used in the analysis. The base drag increment for the mated vehicle was determined and compared to current Shuttle data. Figure 2-22 presents the base drag increments for the booster configurations in comparison to the current STS. It was determined that the drag for the LRB is greater than that of the current shuttle because of the larger base area and the base pressure.

The normal force and pitching moment effects were calculated and compared to the current STS. Figs. 2-23 and 2-24 graphically present the comparison. Results showed that, for the LRB's, at $M>1$, the pitching moment was significantly increased while normal force was significantly decreased. This was attributed to the decrease in ET base pressure due to a larger base area in the recirculation base from environment. Furthermore, the greater nozzle area ratios of the LRB configurations resulted in lower plume expansion angles and decreased base pressure.

The study recomended that delta base values not be incremented to account for plume effects for the following reasons:

1. Configuration uncertainties and assumptions are a significant factor
2. Drag increment is not large compared to total vehicle drag and thrust
3. Normal force increment is not larger compared to total vehicle values
4. Pitching moment has the most significant impact and could be an important factor.

It is recommended that an update to the plume analysis be conducted when more definition becomes available on LRB designs. This updated analysis was conducted and is discussed in section 7.

Fig. 2-20 Booster CPB vs Mach

Fig. 2-21 ET CPB vs Mach

Fig. 2-22 CD Increment vs Mach

Fig. 2-23 CN Increment vs Mach

Moted Vehicle Pitching
Moment Increment

Fig. 2-24 CM Increment vs Mach

2.5 DATA ANALYSIS REVIEW

2.5.1 Data Analysis Review of Longitudinal Effects

Test data were analyzed to determine longitudinal effect at negative angles of attack. From the test data, it was concluded that the axial force coefficient (C_{AF}) increases with the diameter and length. The maximum C_{AF} occurs between 170 and 180 ft . See Fig. 2-25 for a plot of C_{AF} vs booster length and diameter.

The normal force coefficient (C_{N}) is relatively unaffected by changes in length. However, increases in diameter do produce a decrease or more negative C_{N}. This decrease is partially due to the larger nose of the vehicle. Since the nose of the LRB generated the majority of the normal force, increasing the nose area will increase the normal force produced, whereas increasing the length will have very minimal effect on C_{W}. The increased plan form area is also a contributing factor. See Fig. 2-26 for a plot of $C_{N F}$ vs booster length and diameter.

The pitching moment coefficient decreases with an increase in length due to the forward movement of the LRB nose. An increase in diameter has minimal effects on C_{M}. The LRB length also changes the moment arm. See Fig. 2-27 for a plot of CMF vs booster length and diameter.

The aerodynamic center location moves forward with increases in length and diameter due to the increased loading and forward movement of the LRB nose. See Fig. 2-28 for a plot of $X_{A C}$ vs booster length and diameter. A summary of vehicle longitudinal effects can be found in Table 2-4.

2.5.2 Data Analysis Review on Wing Loads

Analysis of the data with regard to wing loads indicated the wing root coefficients and elevon hinge moments are relatively unchanged by increase in length. However, an increase in diameter increases all wing loads including wing shear, root bending, root torsion, and inboard/outboard elevon hinge moments.

Fig. 2--25 CAF vs Mach (Length and Diameter Effects)

TWT0707 ALPHA $=-4$

Fig. 2-26 CNF vs Mach (Length and Diameter Effects)

TWT0707 ALPHA $=-4$

Fig. 2-27 CMF vs Mach (Length and Diameter Effects)

Table 2-5 SUMMARY OF VEHICLE LONGITUDINAL EFFECTS

- AXIAL FORCE
- C AF Increases with Diameter (increased frontal area) and Length
- Maximum $C_{A F}$ Occurs at LRB Lengths between 170 and 180 ft .
- NORMAL FORCE
- C_{N} Relatively Unaffected by Changes in Length
- C_{N} Decreases (becomes more negative) with Increases in Diameter
- Larger Nose is Partially Responsible
- Increased Plan Form Area a Possible Contributor
- C Increases with Increase in Diameter
- C_{Na} Relatively unaffected by Change in Length
- PITCHING MOMENT
- C_{M} Decreases with Increase in Length
- Caused by Forward Movement of LRB Nose
- Increased Diameter Affects C_{M} as a Function of LRB Length - LRB Length changes Moment Arm
- $C_{\text {Ma }}$ Decrease (slope becomes less negative) with Increases in Length and Diameter
- AERODYNAMIC CENTER LOCATION
- X_{AC} moves Forward with Increases in Diameter - Increased loading on LRB Nose
$-X_{A C}$ moves Forward with Increases in Length
- Forward movement of LRB Nose

Fig. 2-29 $C_{\text {SR }}$ vs Mach (Length and Diameter Effects)

Fig. 2-30 $C_{T R}$ vs Mach (Length and Diameter Effects)

Fig. 2-31 $C_{B R}$ vs Mach (Length and Diameter Effects)

Fig. 2-32 CHEI vs Mach (Length and Diameter Effects)

Fig. 2-33 CHEO vs Mach (Length and Diameter Effects)

3. PHASE II LIQUID ROCKET BOOSTER TESTING

The analysis of Phase I data indicated that increasing the diameter over 15 ft produced wing load levels that were unacceptable. In order to reduce the level of wing loads, various innovative configurations were designed and tested. Phase II data were the result of the wind tunnel testing for the new configurations. This section delineates the results of the Phase II configurations and a comparison between Phase I and II data.

3.1 TEST CONDITIONS AND CONFIGURATIONS

During Phase II a number of configurations were tested which included comparable Phase I designs (Fig. 3-la), Hammerhead designs (Fig. 3-1b), a stacked booster design (Fig. 3-lc) and a rotated stack design Fig. 3-1d). Test conditions for these configurations can be found in Table 3-1.

3.2 TEST RESULTS

The majority of this section presents a comparison of Phase I and Phase II results. Therefore, most of the discussion will pertain to configurations SD12LI and SD15. For a look at the results dealing with other configurations tested see Figs. 3-8a to 3-8i for increments vs Mach number and Figs. 3-9a to 3-9e for increments vs LRB diameter. Table 3-3 summarizes the effects of L.RB diameter on increments for the hammerhead, stacked, and rotated stack configurations.

3.3 PHASE I AND II COMPARISONS

Comparison between Phase I and Phase II LRB wind tunnel test data revealed discrepancies in the incremental data of identical configurations at transonic Mach numbers. Through analysis it was determined that the cause of the differences was bad baseline data obtained during Phase I testing.

Fig. 3-1a Phase II Configurations (Phase I Comparison)

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 3-1b Phase II Configuration (MDXXXX Runs)

ORIGINAL PAGE IS

 OF POOR QUALITY

Fig. 3-1c Phase II Configuration (STXXXX Runs)

Fig. 3-1d Phase II Configuration (OSXX Runs)

Thiolil LRB WLW TUNNEL DATA EIFES													
Nac̃i／													
COLTG	0.60	0.80	0.90	0.95	1.05	1.10	1.15	1.					
SSEV－SD：5	TWE001								6	1.96	74	3.43	4.85
SSEV－V15	2W：014	TWLOO2	TWT003	TW：OC4	TWI005	TWr006	TH：007	TWT003	THT009	Twioio	TWTO11	TWIO12	Tw－：3
SSEV－ND1a	TW5027	TW：028	TWL029	TW2030	TWi031	TW5032	TWI033	TWT021	TWT022	25．023	TW：024	TWH025	－
								TW：034	TWTO35	TW2036	TW：037	TW2038	TW：
SSLV－OS3	TWI053	TWT054	TWT055	TWTO56	TWro57	TWT058					\％－037	＋．03a	－W．．こり
SSEV－OS7	TWT066	TWT067	\％WT068	TWrocs	TWT070	TWT071	TWros9	TWT060	TW2061	TWT062	TWT063	TW2064	TWTCES
SSLV－OS10	TWT079	TWT080	TWT08：	TNT062	TW2083	TWTC84	TWTC85	TWT086		TWIO75	TW5C76	TWT077	ゼっここさ
	009							WWIC86	IWi087	TWT088	TWT089	TWT090	TN゙この：
SSEV－Si：20S	TWT105	IWI093	TWT094	－wices	WWT096	TW4097	TWT098	TWTC99	TWE100	TW： 01	TW：102	TWT103	No：
SSEV－SD1251	TWT118	TWI：：9	TWe： 20	－	2W：C9	TWE：：0	TWT：il	TW：：22	TW： 13	TW2：14	TW：is	TWr：i6	3－：
		＋W＋19	TWLI20	1N． 21	TW． 22	IWA123	TWT124	TWI：25	TWT126	TWI： 27	TWT： 28	TWT129	Th： 30

This section discusses the analysis performed to determine the validity of both sets of data. The conclusions and recomendations resulting from this analysis are presented at the end of the section.

3.3.1 Data Analysis

Figure 3-2 represents a sketch of the configurations for which data were obtained during Phase I tests. Table 3-2 provides the Phase I test matrix for wind tunnel tests. In order to distinguish between the Phase I and Phase II test data of identical configurations different nomenclatures were used. Similarly, SD12L1 represents the D1L1 (baseline) configuration. It is important to note that all coefficient data have been interpolated to even angles of attack. No data were generated by interpolating between test Mach numbers.

Comparisons between Phase I and Phase II incremental data are presented in Figs. 3.3a through 3.4f for the D2L2/SD15 configuration. The agreement between CNF, CMF, CSR, and CBR data is reasonably good except at the transonic Mach numbers of 1.10 and 1.25 . The CAF and CTR data are in good agreement over the entire Mach number range.

Shown in Figs. 3.4a through $3.4 f$ are comparisons between Phase I and Phase II total data obtained for the D2L2/SD15 configuration for Mach numbers ranging from 0.6 to 1.46 . The agreement between the two sets of data is quite good for all coefficients. Figures 3.5 a through $3.5 f$ compare Phase I and Phase II total data obtained for the D1LI/ SD12LI configuration. All of the data at Mach numbers less than 1.10 agree reasonably well. Additionally, CAF and CTR data continue to agree well throughout the entire transonic Mach number range. At Mach numbers ranging between 1.10 and 1.25 , there is considerable difference between Phase I and Phase II results for CNF, CMF, CSR, and CBR.

From the data comparisons made thus far, it is clear that the cause of differences seen between the Phase I and Phase II incremental data is invalid baseline (D1L1/SD12L1) data. The problem now is to determine which set of data is incorrect.

STS/LRB Wind Tunnel Test Configurations

Fis. 3-2 Phase I LRB Wind Tunnel Test Configurations

ORIGNAL FAGE IS
OF POOR QUALITY

Fig. 3-3 Phase I/Phase II Incremental Data, D2L2/SD15 Configuration

TWT0707-THTO711 INC ALPHA $=-4$

d. GSR; $\alpha=-4$

Fig. 3-3 Phase I/Phase II Incremental Data, D2L2/SD15 Configuration (Continued)

Fig. 3-3 Phase I/Phase II Incremental Data, D2L2/SD15 Configuration (Concluded)

$$
\begin{array}{r}
0-02 L 2 \\
0 \\
0
\end{array}
$$

a. CNF; $\alpha=-4$

Fig. 3-4 Phase I/Phase II Total Data Comparison, D2L2/SD15 Configuration

Fig. 3-4 Phase I/Phase II Total Data Comparison, D2L2/SD15 Configuration (Continued)

Fig. 3-4 Phase I/Phase II Total Data Comparison, D2L2/SD15 Configuration (Concluded)

Fig. 3-5 Phase I/Phase II Total Data Comparison, D1L1/SD12Ll Configuration

Fig. 3-5 Phase I/Phase II Total Data Comparison, D1L1/SD12L1 Configuration (Continued)

Fig. 3-5 Phase I/Phase II Total Data Comparison, D1L1/SD12Ll Configuration (Concluded)

3.3.2 Angle of Attack Trends.

From the analyses conducted thus far, it is obvious that the Phase I DILI/SDI2LI CNF, CMF, CSR, and CBR data are incorrect at Mach numbers between 1.10 and 1.25 at an angle of an attack of -4 deg. Presented in Figs. 3-6a through 3-6h are plots of total coefficient data which show both angle of attack trends and diameter trends for different LRB configurations. From Figs. 3-6a through 3-6h; it is quite clear that there are significant differences between Phase I and Phase II results for the D1L1/SD12L1 configuration at angles of attack ranging from -4 deg to 0 deg. Although positive angle of attack data are not presented in Figs. 3-6a through 3-6h, previous analyses have shown that significant differences between Phase I and Phase II DILI/SD12LI data do exist throughout the entire angle-of-attack range.

Figures 3-6a through 3-6h also show that the Phase I and Phase II D2L2/SD15 data are in good agreement at angles of attack between -4 deg and 0 deg. Once again, previous analyses have shown that this agreement continues at positive angles of attack.

3.3.3 Results of Data Comparison

It has been determined that the Phase I DILI/SD12LI total CNF, CMF, CSR, and CBR data are invalid at Mach numbers between 1.10 and 1.25 . Thus, all of the Phase I incremental data that were generated at these Mach numbers are also invalid.

Most likely, the cause of the bad Phase I data is potential tunnel operating errors. Table $3-2$ is a matrix of the Phase I test runs. It has been shown that runs TWT033, TWT0037, and TWT041 contain bad data. If indeed the potential tunnel errors resulted in the bad data, then it is quite likely that all of the "D1" data at Mach numbers between 1.10 and 1.25 (runs TWT033 through TWT044) are also bad due to the consecutive order in which the runs were conducted.

Figures 3-7a through 3-7f contain comparisons of Phase I "D1" data and Phase II DlLI/SD12LI data. Figures 3-7a through 3-7f show that some of the inconsistencies seen in the Phase I D1L1/SD12L1 data at Mach numbers between 1.10 and 1.25 are also present in the D1L2, D1L3, and D1L4 data. Thus, the validity of the Phase I D1L2, D1L3, and D1L4 total data at Mach numbers between 1.10 and 1.25 cannot be confirmed.

It appears that the extent of the bad Phase I data is limited to runs TWT033 through TWT044 (i.e., only the "D1" configurations). Referring back to Figs. 3-6a through 3-6h, the trends produced by the larger diameter configurations appear to follow the initial trends of the valid (Phase II) D1L1/SD12L1 data and the D2L2/SD15 data. Unfortunately, there are no Phase II data available to confirm the validity of the Phase I "D3" and "D4" data.

It is recommended that a modified Phase I data base be developed. This would be a relatively simple task requiring an additional six test runs. The additional runs that would be needed are given in Table 3-3. It is further recommended that the increment development method documented in LockheedHuntsville IDC 88 FT44 be used in creating the new Phase I LRB incremental data base.

Table 3-3 ADDITIONAL TEST RUNS SUGGESTED TO REDEVELOP PHASE I DATA BASE

Configuration	$M=1.10$	$M=1.25$
D1L2	\mathbf{X}	\mathbf{X}
D1L3	\mathbf{X}	\mathbf{X}
D1L4	\mathbf{X}	\mathbf{X}

CNF VS DIAMETER, M $=1.10$

a. \quad CNF; $M=1.10$

CMF VE OANETER, M $=1.10$

b. CMF; $M=1.10$

Fig. 3-6 Angle of Attack and Diameter Effects on Phase I/Phase II Data

CSA vS DIAMETER, M = 1.10

Fig. 3-6 Angle of Attack and Diameter Effects on Phase I/Phase II Data (Continued)

CNF vs DIAMETER, $M=1.25$

e. CNF; $M=1.25$

CMF vg DIAMETER, $M=1.25$

f. CMF; $M=1.25$

Fig. 3-6 Angle of Attack and Diameter Effects on Phase I/Phase II Data (Continued)

Fig. 3-6 Angle of Attack and Diameter Effects on Phase I/Phase II Data (Concluded)

Fig. 3-7 LRB Diameter Effects

Fig. 3-7 LRB Diameter Effects (Continued)

Fig. 3-7 LRB Diameter Effects (Concluded)

Fig. 3-8a Normal Force Increments

Fig. 3-8b Normal Force Increments

Fig. 3-8c Normal Force Increments

Fig. 3-8d Pitching Moment Increments

Fig. 3-8e Pitching Moment Increments

Fig. 3-8f Pitching Moment Increments

Fig. $3 \cdots$ 8g Axial Force Increments

TWT0711 INCREMENTS ALPHA $=-4$

Fig. 3-8h Axial Force Increments

Fig. 3-8i Axial Force Increments
c-2

Fig. 3-9a \triangle CAF vs Diameter

Fig. 3-9b \triangle CNF vs Diameter

$$
M=1.46 \quad \alpha=-4^{\circ}
$$

Fig. 3-9c Δ CN-Wing vs Diameter

$$
M=1.46 \quad \alpha=-4^{\circ}
$$

Fig. 3-9d Δ CSR vs Diameter

Fig. 3-9e Δ CTR vs Diameter

4. LRB LATERAL/DIRECTIONAL WIND TUNNEL DATA

The LRB Lateral/Directional incremental data were taken from Wind Tunnel Test TWT0716. The test was conducted from April 1988 to June 1988 to investigate length and diameter effects on the lateral/directional aerodynamic characteristics of the SSLV. Figure 4-1 presents the scope of the test. The configurations used in the test are presented in Figure 4-2.

The aerodynamic increment coefficients were for the total vehicle and were generated using the following equation:
\triangle DXLY $=$ DXLY - DILI

```
where: X = either 2 or 3 (15' or 18' diameter)
    Y = either 1,2,3, or 4 (length variations ranging from 149' to 190').
```

The increments can be used to determine the coefficient increment for any LRB configuration. New LRB coefficients equal the current SSLV values plus the increments.

The wing data (bending, shear, torsion) increments are for the right wing. The elevon data (inboard and outboard) increments are for the left wing. All data are for alpha - 0 and have been uniformly shifted by an incremental value so that beta $=0$. Sign conventions for the launch vehicle, wing, and elevon data are shown in Figure 4-3.

$$
\begin{aligned}
M= & 0.6,0.8,0.9,0.95,1.05,1.10,1.15,1.25, \\
& 1.46,1.96,2.75,3.48,4.45
\end{aligned}
$$

$\alpha=0^{\circ}, B=-6.0$ to 6.0

Fig. 4-1 Scope of Test (TWT 016)

Fig. 4-2 Test Configurations (TWT 716)

ORIGNAL PAGE IS OF POOR QUALITY

Fig. 4-3a Launch Vehicle Sign Convention

ORIGINAL PAGE: IS OF POOR QUALTTY

ALL DHAENSHONS IN INCMES
MOOEL SCALE IN PAREMTMES mOOEL SCALE IM PARENTMEEE

Win Ceordinate Are
(Ref. Dieenelong and Ares are
the eave for all betabeseal

ALL OIMENEIONS IM INCHE MOOEL SCAL IN PARENTHESES

Eleven Coordimate Aroe (tor. Dimenicul and Aree are the sue for all melabees)

Fig. 4-3b Launch Vehicle Sign Convention

During analysis of the LRB lateral/directional data, some basic trends were observed. The trends are for unshifted increments and are given below.

1. CY Trends

- Generally $\left|C Y_{B}\right|$ increases in diameter. Thus, for a given B, $|\triangle C Y|$ increases with increases in diameter.
- For $M \leq 1.05$, LRB length variation has no significant effect on CY_{B}.
- For $1.05<M<1.80,\left|C Y_{B}\right|$ generally decreases with increases in LRB length.
- For $M \geq 1.80$, length trends switch so that $\left|C Y_{B}\right|$ generally increases in LRB length.
- Typically, LRB length and diameter effects on SSLV CY ${ }_{B}$ values are less than 15\%.

2. CYM Trends

- Generally, $\left|C Y M_{B}\right|$ increases with increases in diameter. Thus, for a given $B,|\triangle C Y M|$ increases with increases in diameter.
- Generally, $\left|C Y M_{B}\right|$ decreases with increases in LRB length.
-- Typically, length and diameter effects on SSLV CYM Values $_{B}$ are less than 20\%.

3. CRM Trends

- Generally, $\left|C R M_{B}\right|$ decreases with increases in diameter. Thus, for a given B, | $\triangle C R M \mid$ increases with increase in diameter.
- LRB length generally has a small effect on $\triangle C R M$ and thus $C R M B_{B}$.
- Typically, length and diameter effects on SSLV CRM ${ }_{B}$ values are less than 20\%.

4. CSR Trends - Right Wing

- For all B values, $\triangle C S R$ generally increases as LRB diameter increases.
- For B>0 and a given diameter, $\triangle C S R$ generally increases as B increases for all M.
- LRB length effects on $\triangle C S R$ are small.

5. CBR Trends - Right Wing

- For all B values, $\triangle C B R$ generally increases with increases in LRB diameter.
- For $B>0$ and a given diameter, $\triangle C B R$ typically decreases as B becomes more negative.
- LRB length effects on $\Delta C B R$ typically decreases as β becomes more negative.
- LRB length effects on $\Delta C B R$ values are small.

6. CTR Trends - Right Wing

- For $1.80 \leq M<3.48$, diameter increases typically cause $\Delta C T R$ to decrease for all B. For other Mach numbers, $\triangle C T R$ usually increase with increases in LRB diameter.
- No consistent 8 trends appear to exist for the Mach numbers tested.
- LRB length effects on $\Delta C T R$ values are small.

7. Hinge Moment Trends - Left Wing

- Inboard - \triangle CHEI
- \triangle CHEI generally increases with increases in diameter except for $1.8 \leq M \leq 2.5$, where it decreases as B increases.
- \triangle CHEI typically decreases as B increases.
- LRB length effects on $\triangle C H E I$ are small.
- Outboard - ACHEO
- \triangle CHEO generally increases with increases in diameter except for $1.8 \leq M \leq 2.5$, where it increases in diameter.
- No consistent β trends are apparent.
- LRB length effects on \triangle CHEO are small.

8. Additional Trends

- Beffects on \triangle CNF, $\triangle C M F, \triangle C A F$ are small for all configurations.

The data from the wind tunnel test were analyzed with regard to yaw angle effects of shuttle wing loads. At Mach $=1.96$ the incremental wing loads are a strong function of both LRB length and yaw angle. Unlike the longitudinal data, the LRB diameter was found to have a small effect on wing loads.

Analysis of the test data for the various configurations leads to the conclusion that the aft skirt on D1L1 configurations does not significantly affect wing loads. It was also determined that the MD15 (hammerhead) configuration greatly reduces the wing loads over the entire yaw angle range tested. The maximum incremental loading on a wing occurs when it is on the leeward side.

Fig. 4-4 CY_{B} vs Length

Fig. 4-5 $\quad C Y_{\beta}$ VS DIAMETER

Fig. 4-6 CYM $_{\beta}$ VS LENGTH

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 4-7 CYM ${ }_{B}$ vs Diameter

Fig. 4-8 CRM ${ }_{B}$ vs Length

Fig. 4-9 CRM $_{B}$ vs Diameter

D2 CONFIG(UNSHIFT), $M=1.25, A L P H A=0$

Fig. 4-10 $\Delta C_{S R}$ vs Length

L1 CONFIG(UNSHIFT), $M=1.25$, ALPHA $=0$

Fig. 4-11 $\Delta C_{S R}$ vs Diameter

D2 CONFIG(UNSHIFT), MACH $=1.25$, ALPHA $=0$

Fig. 4-12 $\Delta C_{T R}$ vs Length

L1 CONFIG(UNSHIFT), $\mathrm{M}=\mathbf{1 . 2 5}, \mathrm{ALPHA}=0$

Fig. 4-13 $\Delta C_{T R}$ vs Diameter

D 2 CONFIG(UNSHIFT), $M=1.25$, ALPHA $=0$

Fig. 4-14 $\Delta C_{B R}$ vs Length

L1 CONFG(UNSHIFT), $M=1.25$, ALPHA $=0$

Fig. 4-15 $\Delta C_{B R}$ vs Diameter

Table 4-1 DIAMETER EFFECTS OF PHASE II CONFIGURATIONS

- DIAMETER EFFECTS - AN INCREASE IN DIAMETER INCREASES DCNF, MOVES $X_{C P}$ FORWARD, INCREASES BOTH ΔC_{N}-WING AND $\Delta C_{T R}$
- LRB ROTATION EFFECTS (OSXXXX RUNS) - ROTATING THE LRBS DOWNWARD HAS A SMALL EFFECT ON $\triangle C_{\text {MF }}$ VALUES, PLACE $X_{C P}$ OF THE INGREMENTAL LOADING ON THE MOON, HAS A SMALL EFFECT ON BOTH ΔC_{N}-WING AND $\Delta C_{T R}$
- HAMMERHEAD EFFECTS (MDXXXX RUNS) - MULTI-DIAMETER LRBs CREATE LARGE CHANGES IN $\Delta C_{N F}$ VALUES, HAVE A SMALL EFFECT ON $\Delta C_{\text {MF }}$ VALUES MOVE $X_{C P}$ FORWARD, CAUSE A DECREASE IN $\triangle C_{N}-$ WING AND $\Delta C_{T R}$
- STACKED CONFIGURATION EFFECTS (STXXXX RUNS) - STACKING LRBS CREATE LARGE CHANGES IN $\Delta \mathrm{C}_{\mathrm{NF}}$ VALUES AND $\Delta_{\text {mF }}$, places X_{CP} AT THE BASE OF THE ORBITER, CAUSES A SMALL INCREASE IN C $C_{\text {-WING }}$
- HAMMER GAP AND FLOW EXPANSION ARE EFFECTIVE IN REDUCING WING LOADS .

5. PROTUBERANCE EFFECTS

Wind tunnel testing was conducted to investigate the aerodynamic effects of protuberances on the SSLV. This section details the results of protuberance analysis from wind tunnel testing. Three configurations were tested: a baseline SRB, an SRB without protuberances, and an SRB with out the IEA Cover. The fairing configurations were also varied. Figures 5-1 and 5-2 present the four configurations analyzed. A Mach number range of 0.8 to 4.45 was used for testing. Results from the test can be found in Figs. 5-3 to 5-20 which depict protuberance and fairing efforts.

5.1 PROTUBERANCE EFFECTS

Analysis indicated that SRB protuberances have major effects on wing loads. A significant increase in the vehicle normal force increment is exhibited in the presence of SRB protuberances. The majority of the increase can be attributed to orbiter wing shear. Further, the SRB/ET aft attach ring/ IEA position and geometry have adverse effects on the orbiter ascent wing loads. Wind tunnel testing suggested that ascent wing load reduction can be accomplished by removal or modification of the IEA/attach ring. Additional efforts, however, would be required to study the impact of the IEA relocation. Also a trajectory analysis should be considered to determine performance or launch probability increase due to wing load reduction. Finally, a complete evaluation of the fairing configurations should be performed with regard to aerodynamic enhancement.

Fig. 5-1 SRB Protuberance Configurations

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 5-2 SRB Fairing Configurations

Fig. 5-3 CNF (Protuberance Effects)

Fig. 5-4 CMF (Protuberance Effects)

Fig. 5-5 CSR (Protuberance Effects)

Fig. 5-6 CTOR (Protuberance Effects)

Fig. 5-7 CRBM (Protuberance Effects)

Fig. 5-8 CHMIE (Protuberance Effects)

Fig. 5-9 CHMOE (Protuberance Effects)

Fig. 5-10 CAF (Fairing/Protuberance Effects)

Fig. 5-11 CSR (Fairing/Protuberance Effects)

Fig. 5-12 CTOR (Fairing/Protuberance Effects)

Fig. 5-13 CRBM (Fairing/Protuberance Effects)

Fig. 5-14 CHMIE (Fairing/Protuberance Effects)

SRB FAIRING EFFECTIVENESS JUN 1988 ALPHA $=-4$

Fig. 5-15 CHMOE (Fairing/Protuberance Effects)

```
SRB FAIRING EFFECTIVENESS JUN 1988 ALPHA \(=-4\)
```


Fig. 5-16 CSR (Fairing/Protuberance Effects)

Fig. 5-17 CTOR (Fairing/Protuberance Effects)

SRB FAIRING EFFECTIVENESS JUN 1988 ALPHA $=-4$

Fig. 5-18 CRBM (Fairing/Protuberance Effects)

SRB FAIRING EFFECTIVENESS JUN 1988 ALPHA $=-4$

Fig. 5-19 CHMIE (Fairing/Protuberance Effects)

Fig. 5-20 CHMOE (Fairing/Protuberance Effects)
for an identical SSLV configuration less protuberances. Analysis of the SRB protuberance data increments can be summarized as follows:

- The longitudinal and wing total data show uniform shifts between BLSRB and SD12Ll+AS. Corresponding increment plots show data scatter only.
- Hinge moment protuberance total data do not always give consistent changes for changes in alpha. A single number will not always give a good representation of the protuberance increment.
- For $M=1.46$, the change in normal force at $\alpha=-2$ is 0.04 . The corresponding change in shear is 0.0191 ($2 \times 0.0191-0.0382$). Hence an increase in normal force is mostly due to an increase in wing shear. This shows that the data are consistent.
- All increment data fall within a reasonable band, as shown in the maximum and minimum coefficient table.
- Some Xcp values are questionable at higher Mach numbers (\geq 2.74).
- Wing Xcp values are reasonable, moving aft and slightly inward with higher Mach numbers. The exception is $M=4.43$, where the wing Scp values are located within the body.

It was then determined that LRB configurations that do not utilize the SRB type protuberances need to have the protuberance increments subtracted from the aerodynamic data base. To completely exclude the effects of SRB protuberances from a configuration using Phase I LRB data bases, the coefficients should be subtracted from the corresponding coefficients of that configuration.

5.2 SRB INCREMENT DATA BASE SUMMARY

Data analysis resulted in the generation of a protuberance incremental data base. The protuberance incremental data were generated by taking the difference between the baseline aerodynamic coefficient data of the SSLV with the baseline protuberances included and the aerodynamic coefficients obtained for an identical SSLV configuration less protuberances. Analysis of the SRB protuberance data increments can be summarized as follows:
o The longitudinal and wing total data show uniform shifts between BLSRB and SD12LI+AS. Corresponding increment plots show data scatter only.

- Hinge moment protuberance total data do not always give consistent changes for changes in alpha. A single number will not always give a good representation of the protuberance increment.

0 For $M=1.46$, the change in normal force at $a=-2$ is 0.04 . The corresponding change in shear is 0.0191 ($2 \times 0.0191-0.0382$). Hence an increase in normal force is mostly due to an increase in wing shear. This shows that the data are consistent.
o All increment data fall within a reasonable band, as shown in the maximum and minimum coefficient table.
o Some Xcp values are questionable at higher Mach numbers (\geq 2.74).

0 Wing Xcp values are reasonable, moving aft and slightly inward with higher Mach numbers. The exception is $M=4.43$, where the wing Scp values are located within the body.

It was then determined that LRB configurations that do not utilize the SRB type protuberances need to have the protuberance increments subtracted from the aerodynamic data base. To completely exclude the effects of SRB protuberances from a configuration using Phase I LRB data bases, the coefficients should be subtracted from the corresponding coefficients of that configuration.

6. GAP AND AFT SKIRT EFFECTS

Abstract

The effects of the LRB/ET separation gap width and the aft skirt on the aerodynamics of the SSLV were analyzed. Data were obtained from wind tunnel testing on two configurations at Mach speeds from .9 to 1.5. Figures 6-1 and 6-2 present the configurations analyzed and the corresponding nomenclatures. The gap width was varied on both configurations from 12 in to 33 in. Angles of attack ranged from -4 to zero in increments of two. Analysis of the gap width was conducted with respect to changes in $C_{N F}, C_{A F}, C_{S R}, C_{B R}$, and $C_{T R}$ values. The objectives of the aft skirt analysis were to determine the protuberances, diameter, and length effects on wing loading.

6.1 GAP EFFECTS SUMMARY

The data from the wind tunnel were analyzed to determine the effect of gap width on the aerodynamic coefficients. Figures 6-3 to 6-17 show results for DILI configurations, Figs. 6-18 to 6-32 for the D2L2 configurations. It was determined that increasing the gap width causes an increase in $C_{N F}$ values and a decrease in $C_{M F}$ values at negative angles of attack and transonic Mach numbers. $C_{A F}$ values tend to increase with increasing gap size in the transonic and supersonic image.

At Mach 1.46 , increases in the gap width cause a slight increase in $C_{S R}$ values for both the D1L1 (baseline) and D2L2 configuration. However, at Mach 1.25 a slight increase occurs in the $C_{S R}$ values for the D1LI configuration where as a slight decreases occurs in the D2L2 values. At the same Mach numbers, it was observed that the $C_{B R}$ values for both configurations increase as the gap width increases. The $C_{T R}$ values and elevon hinge moments decrease slightly on both configurations as gap width increases.

Fig. 6-1 Gap Effect Configurations (D1L1)

Fig. 6-2 Gap Effect Configurations (D2L2)

TWT0711 ALPHA $=-4$

Fig. 6-3 C_{AF} vs Mach (D1L1)

Fig. 6-4 $C_{N F}$ vs Mach (D1L1)

TWTOT11 ALPHA $=-4$

Fig. 6-5 $\quad \mathrm{C}_{\mathrm{SR}}$ vs Mach (D1L1)

Fig. 6-6 $\mathrm{C}_{\text {TR }}$ vs Mach (D1L1)

Fig. 6-7 $\quad C_{B R}$ vs Mach (D1L1)

Fig. 6-8 CHEI vs Mach (D1L1)

Fig. 6-9 CHEO vs Mach (D1L1)

Standard Gap vs Standard Gap + 21"

Fig. 6-10 C_{AF} vs Gap (D1L1)

Standard Gap vs Standard Gap + 21"

Fig. 6-11 $\quad C_{N F}$ vs Gap (D1L1)

Standard Gap vs Standard Gap +21"

Fig. 6-12 $\quad C_{M F}$ vs Gap (D1L1)

Standard Gap vs Standard Gap + 21"

Fig. 6-13 $C_{S R}$ vs Gap (D1L1)

Fig. 6-14 $C_{B R}$ vs Gap (D1L1)

Standard Gap vs Standard Gap + 21"

Fig. 6-15 $C_{T R}$ vs Gap (D1L1)

Fig. 6-16 CHEI vs Gap (D1L1)

Fig. 6-17 CHEO vs Gap (D1LI)

Fig. 6-18 $C_{A F}$ vs Mach (D2L2)

Fig. 6-19 $C_{\text {NF }}$ vs Mach (D2L2)

Fig. 6-20 $C_{\text {SR }}$ vs Mach (D2L2)

Fig. 6-21 C_{TR} vs Mach (D2L2)

TWTOT11 ALPHA $=-4$

Fig. 6-22 $C_{B R}$ vs Mach (D2L2)

Fig. 6-23 CHEI vs Mach (D2L2)

Fig. 6-24 CHEO vs Mach (D2L2)

Standard Gap vs Standard Gap + 21"

Fig. 6-25 C_{AF} vs Gap (D2L2)

Standard Gap vs Standard Gap +21"

Fig. 6-26 C_{NF} vs Gap (D2L2)

Standard Gap vs Standard Gap + 21"

Fig. 6-27 C_{MF} vs Gap (D2L2)

Standard Gap vs Standard Gap + 21"

Fig: 6-28 $C_{S R}$ vs Gap (D2L2)

Standard Gap vs Standard Gap + 21"

Fig. 6-29 $C_{T R}$ vs GAP (D2L2)

Standard Gap vs Standard Gap + 21"

Fig. 6-30 $\quad C_{B R}$ vs GAP (D2L2)

Fig. 6-31 CHEI vs GAP (D2L2)

Standard Gap vs Standard Gap + 21"

Fig. 6-32 CHEO vs GAP (D2L2)

6.2 AFT SKIRT EFFECTS SUMMARY

Data were also obtained from the wind tunnel test to determine the effects of aft skirts on aerodynamic coefficients. The two types of configurations tested, D1L1 and D2L2, can be found in Figs. 6-33 and 6-34. The test results can be found in Figs. 6-35 to 6-48 for D1L1 configurations, and in Figs. 6-49 to 6-58 for D2L2 configurations.

The conclusion from the analysis of the aft skirt effect is that the addition of the aft skirt had little effect on either total vehicle data or wind data. The addition of the skirt also had little effect when analyzing diameter and length effects.

Fig. 6-33 Aft Skirt Configurations (D1L1)

Fig. 6-35 $C_{\text {NF }}$ vs Mach (D1L1)

Fig. 6-36 $\quad \mathrm{C}_{\mathrm{SR}}$ vs Mach (DlLi)

Fig. 6-37 C_{TR} vs Mach (D1L1)

Fig. 6-38 $C_{B R}$ vs Mach (D1L1)

TWT0711 ALPHA $=-4$

Fig. 6-39 CHEI vs Mach (D1L1)

Fig. 6-40 CHEO vs Mach (D1LI)

Fig. $6 \cdots-41 C_{N F}$ vs $\alpha($ D1L1, $M=1.25)$

Fig. 6-42 $C_{S R}$ vs $\alpha(D 1 L 1, M=1.25)$

TWTOT11 MACH $=1.25$

Fig. 6-43 $C_{T R}$ vs $\alpha(D 1 L 1, M=1.25)$

TWTOT11 MACH $=1.25$

Fig. 6~44 $C_{B R}$ vs $\alpha(D 1 L 1, M=1.25)$

TWTOT11 MACH $=1.47$

Fig. 6-45 $C_{N F}$ vs α (D1L1, $M=1.47$)

Fig. 6.46 C_{SR} vs α (D1LI, $M=1.47$)

TWTOT11 MACH $=1.47$

Fig. 6-47 C_{TR} vs α (D1L1, $M=1.47$)
c-3

TWTOT11 MACH $=1.47$

Fig. 6.48 $\quad C_{B R}$ vs α (D1L1, $M=1.47$)

TNTUTII ÁLFTHA $=-4$

Fig. 6-49 C_{NF} vs Mach (D2L2)

Fig. 6-50 $C_{S R}$ vs Mach (D2L2)

Fig. 6-51 $C_{\text {TR }}$ vs Mach (D2L2)

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 6-52 $C_{B R}$ vs Mach (D2L2)

Fig. 6-53 CHEI vs Mach (D2L2)

Fig. 6-54 CHEO vs Mach (D2L2)

TWTOT11 MACH $=1.47$

Fig. 6.55 $C_{N F}$ vs α (D2L2, $M=1.47$)

Fig. 6-56 $C_{S R}$ vs $\alpha(D 2 L 2, M=1.47)$

TWTOT11 MACH $=1.47$

Fig. 6-57 $C_{T R}$ vs $\alpha(D 2 L 2, M=1.47)$

TWTOT11 MACH $=1.47$

Fig. 6-58 $\quad C_{B R}$ vs α (D2L2, $M=1.47$)

7. LRB BASE DRAG STUDY

As part of the effort in selecting a booster in the proposed LRB concept for the space shuttle program, Lockheed Missiles and Space Co. conducted a base drag study on a number of candidate boosters. At the root of the study was the development of a computer code which would calculate base drag based on the methods found in the Compendium of Flight Vehicle Base Pressure and Base Drag Prediction Techniques (Lockheed Missiles and Space Co.; August 1983. Once the code was operational it was used to obtain base drag estimates on two Martin Marietta and two General Dynamics LRB configurations. These results were compared with those found in an earlier base drag study, conducted by Lockheed. The final results were then selected, and included in the shuttle aerodynamic data base.

7.1 ORIGINAL BASE DRAG ESTIMATES

A study hereafter was conducted in late 1987 called the baseline study on base drag effects for a number of generic LRB configurations, having $1,2,3$, 4, and 5 nozzles (see Fig. 7-1) The study used as its basis the same base drag compendium mentioned above. The results were calculated for an STS vehicle with SRB's (see Fig. 7-2) and with an average LRB, Fig. 7-3. The trajectory used in these calculations can be found in Figs. 7-4 to 7-6. Results for total base drag were calculated for each (see Figs. 7-7, 7-8, and Tables 7-1, 7-2). To obtain delta base drag values (Fig. 7.9 and Table 7-3), the SRB results were subtracted from the LRB results. These delta base drag values were the proposed results to be included in the shuttle aerodynamic data base.

SHUTTLE BOOSTER CONFIGURATIONS IN STUDY

Fig. 7-1 Baseline Study LRB Configurations

SRB

Fig. 7-2 Current SRB

LRB

Fig. 7-3 Baseline Study LRB

BASELINE STUDY (SRB,LRB)

BASELINE STUDY (SRB,LRB)

Fig. 7-5 Baseline Study Q vs Mach

Fig. 7-6 Baseline Study Plume Angle vs Mach

Table 7-1 BASELINE CONCEPT (SRB)

BASELINE CONCEPT (SRB)
TOTAL BASE DRAG

MACH	ALT(ft)	Q(psf)	LV(lbs)	ORB (lbs)	2SRB(lbs))
0.60	9169.00	383.80				
0.74	13188.39	503.84	97314.00	20696.00	19973.00	44839.00
0.87	17772.60	588.80	100753.00	23465.90 24465.40	20358.00	53491.00
1.01	22832.80	644.33	106169.00	24465.40 28484.40	18761.10	57527.30
1.14	27418.19	683.19	112520.00	28484.40 32424.20	17515.40	60169.20
1.29 1.48	32386.86	711.47	69953.00	32424.20 21842.33	16575.20 5638.74	63520.60
1.71	37932.33 44451.32	724.01	30910.00	14765.33	5638.74 -3091.34	42472.41 19236.06
1.98	51310.85	699.98 663.64	2197.00 -19574.00	8564.36	-8530.64	2163.47
2.26	58188.39	615.26	-19574.00	3390.80 -535.40	-11330.00	-11635.05
2.82	78577.51	401.67	-39647.00	-535.40	-12541.40	-22575.80
3.44	105414.84	176.63	- 34905.00	-2593.00	-10327.48	-26727.16
4.03	130953.59	2.05	-30393.00	-2050.50	-6368.16 -2600.42	-26487.22

Table 7-2 BASELINE CONCEPT (LRB)

BASELINE CONCEPT (LRB)

total base drag

MACH	ALT(ft)	Q(psf)	LV(lbs)	ORB(lbs)	2LRB(lbs)	ET(lbs)
0.60	9169.00	383.80	136013.00	20696.00	70478.00	44839.00
0.74	13188.40	503.85	154065.30	23465.90	77108.40	53491.00
0.87	17772.00	558.80	159681.00	24633.00	77661.00	57527.00
1.01	22832.80	644.33	163921.41	28484.40	73288.40	62160.60
1.14	27418.20	683.19	167289.41	32424.20	66598.80	68288.00
1.29	32386.87	711.48	120595.48	21842.33	48409.20	50343.94
1.48	37932.34	724.01	77027.26	14765.33	30752.46	31557.46
1.71	44451.32	699.98	46252.27	8564.36	15576.88	22130.64
1.98	51310.85	663.64	21057.50	3390.80	1627.15	16028.55
2.26	58188.40	615.26	787.00	-535.40	-10060.40	11382.80
2.82	78577.52	401.68	-6680.68	-2593.00	-18194.00	14106.32
3.44	105414.84	176.64	-2712.06	-2050.50	-20240.00	19578.44
4.03	130953.59	2.05	1064.53	-1534.25	-22187.00	24785.78

Table 7-3 BASELINE CONCEPT (LRB)

BASELINE CONCEPT (LRB)
DELTA BASE DRAG

MACH	ALT(FT)	Q(psf)	LV(lbs)	ORB(lbs)	2RB(lbs)	ET(lbs)
0.60	9169.00	383.8	50505.00	0.00	50505.00	0.00
0.74	13188.39	503.8	56751.30	0.00	56750.40	0.00
0.87	17772.60	588.8	58928.00	0.00	58899.90	0.00
1.01	22832.80	644.3	57752.41	0.00	55773.00	1991.40
1.14	27418.19	683.2	54769.41	0.00	50023.60	4767.40
1.29	32386.86	711.5	50642.48	0.00	42770.46	7871.53
1.48	37932.33	724.0	46117.26	0.00	33843.80	12321.40
1.71	44451.32	700.0	44055.27	0.00	24107.52	19967.17
1.98	51310.85	663.6	40631.50	0.00	12957.15	27663.60
2.26	58188.39	615.3	36439.00	0.00	2481.00	33958.60
2.82	78577.51	401.7	32966.32	0.00	-7866.52	40833.48
3.44	105414.84	176.6	32192.94	0.00	-13871.84	46065.66
4.03	130953.59	2.0	31457.53	0.00	-19586.58	51044.67

Fig. 7-7 Baseline Study SRB Total Base Drag

BASELINE STUDY (LRB)

Fig. 7-8 Baseline Study LRB Total Base Drag

Fig. 7-9 Baseline Study LRB Delta Base Drag

7.2 BASE DRAG CALCULATION CODE

Prediction of base drag for a given configuration can be a tedious effort, considering all the variables associated with it. A faster means of calculation was needed. Using the methods found in the Compendium of Flight Vehicle Base Pressure and Base Drag Prediction Techniques, Lockheed developed a FORTRAN computer code. It takes into account all the trajectory and geometry effects found in the compendium, and obtains base drag predictions. See Fig. 7-10 for a flow diagram of the code and Fig. 7-11 for sample results.

7.3 STS FLIGHTS 2, 3 , and 5

In order to obtain delta base drag values using the new prediction code, an STS vehicle with SRB's, on a typical STS trajectory, had to be found to submit from. This typical case was found by using an average of STS flights 2, 3, and 5. The typical trajectory used can be found in Figs. 7-12 to 7-14. The base drag results appear in Fig. 7-15 and Table 7-4.

7.4 MARTIN PUMP FED (I,RB1)

The first LRB candidate configuration used in the base drag code was the Martin Pump Fed, shown in Fig. 7-16. The trajectory provided by Martin for this case can be found in Figs. 7-17 to $7-19$. The base drag results obtained for this case can be found in Fig. 7-20 and Table 7-5. After subtracting these results with those from STS 2, 3, and 5 the delta base drag values are obtained (see Fig. 7-21 and Table 7-6). It is important to note the large value for delta base drag found in the Mach $2.0->3.5$ range.

Fig. 7-10 Base Drag Calculation Code Flowchart

Fig. 7-11 Base Drag Calculation Code Output

Fig. 7-12 STS 2, 3, 5, Altitude vs Mach

Fig. 7-13 STS 2, 3, 5 Q vs Mach

STS 2,3,5 (SRB)

Fig. 7-14 STS 2, 3, 5 Plume Angle vs Mach

Table 7-4 STS 2, 3, 5, (SRB)

TOTAL BASE DRAG

MACH	ALT(FT)	Q(psf)	LV(lbs)	ORB(lbs)	2RB(lbs)	ET(lbs)
0.60	9065.00	383.79	82508.93	16917.90	20155.25	45435.77
0.74	13447.70	493.69	92581.52	18578.35	21273.24	52729.92
0.87	17979.00	576.15	97112.17	19921.74	21016.70	56173.72
1.01	23256.00	626.44	107046.77	22951.75	21263.98	62831.03
1.14	28248.40	648.84	105831.92	25638.99	17478.22	62714.70
1.29	33622.93	657.06	71643.03	17901.90	9384.42	44356.70
1.48	39848.53	648.33	30772.77	11223.04	-5422.03	20091.76
1.71	46490.44	625.93	242.14	6507.47	-7259.87	994.54
1.98	53950.90	585.98	-21445.04	1472.69	-10187.36	-12730.37
2.26	61880.59	525.74	-35010.25	-2402.45	-11259.30	-21348.49
2.82	83994.19	323.72	-36647.77	-3974.51	-8090.34	-24582.91
3.44	111853.90	131.95	-31002.95	-3127.16	-4140.62	-23735.16
4.03	138365.56	2.05	-25631.26	-2320.82	-382.02	-22928.42

* AVERAGE VALUES FROM STS 2,3,5 FLIGHTS

[^0]
LRB1

Fig. 7-16 LRB1 (Martin Pump Fed)

Fig. 7-17 LRB1 Altitude vs Mach

Fig. 7-18 LRB1 Q vs Mach

Fig. 7-19 LRB1 Plume Angle vs Mach

Table 7-5 MARTIN PUMP FED (LRB1)

TOTAL BASE DRAG

MACH	ALT(FT)	Q(psf)	LV(lbs)	ORB(lbs)	2RB(lbs)	ET(lbs)
0.60	11439.00	354.1	90121.27	22647.26	25439.72	42034.27
0.74	15188.00	470.9	97449.14	24769.23	27356.17	45323.73
0.87	18884.00	565.0	100679.61	26067.21	28357.47	46254.92
1.01	23056.00	635.9	126811.89	33016.43	34399.14	59396.33
1.14	27677.00	672.8	116658.11	30605.34	30472.93	55579.84
1.29	32728.00	692.0	91287.60	25161.46	20321.63	45804.51
1.48	38282.00	701.0	50612.79	16100.30	5776.70	28735.79
1.71	44439.00	697.6	36313.83	13497.04	-235.69	23052.48
1.98	51272.00	666.2	1891.44	8644.59	-18148.03	11394.88
2.26	58804.00	588.9	-38116.73	2935.08	-40194.39	-857.42
2.82	75818.00	399.1	-85398.99	-3402.95	-65108.59	-16887.46
3.44	95308.00	241.4	-64089.47	-3830.44	-38310.08	-21948.95
4.03	117102.00	128.1	-33940.29	-2794.35	-17728.64	-13417.30

Table 7-6 MARTIN PUMP FED (LRBI)

DELTA BASE DRAG

MACH	ALT (FT)	Q(psf)	LV(lbs)	ORB (1bs)	2RB (lbs)	ET(lbs)
0.60	9065.00	354.1	7612.34	5729.36	5284.47	-3401.50
0.74	13447.70	470.9	4867.62	6190.88	6082.93	-7406.19
0.87	17979.00	565.0	3567.44	6145.47	7340.77	-9918.80
1.01	23256.00	635.9	19765.12	10064.68	13135.16	-3434.70
1.14	28248.40	672.8	10826.19	4966.35	12994.71	-7134.86
1.29	33622.93	692.0	19644.57	7259.56	10937.21	1447.81
1.48	39848.53	701.0	19840.02	4877.26	6318.73	8644.03
1.71	46490.44	697.6	36071.69	6989.57	7024.18	22057.94
1.98	53950.90	666.2	23336.48	7171.90	-7960.67	24125.25
2.26	61880.59	588.9	-3106.48	5337.53	-28935.09	20491.07
2.82	83994.19	399.1	-48751.22	571.56	-57018.25	7695.45
3.44	111853.90	241.4	-33086.52	-703.28	-34169.46	1786.21
4.03	138365.56	128.1	-8309.03	-473.53	-17346.62	9511.12

[^1]

Fig. 7-20 LRB1 Total Base Drag

[^2]Fig. 7-21 LRB1 Delta Base Drag

7.5 MARTIN PRESSURE FED (LRB2)

The next LRB candidate configuration used in the base drag code was the Martin Pressure Fed, shown in Fig. 7-22. The trajectory provided by Martin for this case can be found in Figs. 7-23 to 7-25. The base drag results obtained for this case can be found in Fig. 7-26 and Table 7-7. After subtracting these results with those from $\operatorname{STS} 2,3$, and 5 the delta base drag values are obtained (see Fig. 7-27 and Table 7-8). It is important to note the large value for delta base drag found in the Mach $2.0->3.0$ range.
7.6 GENERAL DYNAMICS $02 / \mathrm{H} 2$ PUMP FED (LRB3)

The next LRB candidate configuration used in the base drag code was the General Dynamics $02 / \mathrm{H} 2$ Pump Fed, shown in Fig. 7-28. The trajectory provided by General Dynamics for this case can be found in Figs. 7-29 to 7-31. The base drag results obtained for this case can be found in Fig. 7-32 and Table 7-9. After subtracting these results with those from STS 2, 3, and 5 the delta base drag values are obtained (see Fig. 7-33 and Table 7-10). It is important to note the large value for delta base drag found in the Mach 1.5 > 3.5 range.

7.7 GENERAL DYNAMICS 02/RP1 PUMP FED (LRB4)

The next LRB candidate configuration used in the base drag code was the General Dynamics Pump Fed shown in Fig. 7-34. The trajectory provided by Martin for this case can be found in Figs. 7-35 to 7-37. The base drag results obtained for this case can be found in Fig. 7-38 and Table 7-11. After subtracting these results with those from STS 2,3 , and 5 the delta base drag values are obtained (see Fig. 7-39 and Table 7-12. It is important to note the large value for delta base drag found in the Mach $2.0->3.5$ range.

LRB2

Fig. 7-22 LRB2 (Martin Pressure Fed)

Fig. 7-23 LRB2 Altitude vs Mach

MARTIN PRESSURE FED (LRB2)

Fig. 7-24 LRB2 Q vs Mach

MARTIN PRESSURE FED (LRB2)

Fig. 7-25 LRB2 Plume Angle vs Mach

Table 7-7 MARTIN PRESSURE FED (LRB2)
total base drag

MACH	ALT(FT)	Q(psf)	LV(lbs)	ORB(lbs)	2RB(lbs)	ET(lbs)
0.60	8224.00	398.9	111153.84	25512.55	38288.93	47352.36
0.73	12404.00	503.9	115526.58	26845.83	39516.39	49164.35
0.94	20182.00	625.4	127219.05	30258.93	43060.29	53899.32
1.07	24713.00	671.0	138130.73	33027.53	45859.09	59244.11
1.21	29714.00	698.0	118996.87	29539.59	36713.43	52743.85
1.38	35229.00	706.1	79519.70	20898.54	21128.10	37493.05
1.57	41319.00	689.0	42197.63	14026.65	2531.22	25639.75
1.81	48042.00	652.5	16510.84	10483.26	-13790.10	19817.68
2.05	55422.00	576.2	-9962.88	5000.08	-24159.76	9196.80
2.28	63460.00	473.6	-49951.26	276.37	-49719.78	-507.85
2.75	81442.00	292.6	-69105.40	-3948.87	-55328.49	-9828.04
3.30	101970.00	165.5	-45803.08	-5598.42	-29895.52	-10309.15
3.86	125165.00	84.4	-27067.54	-2439.16	-15062.38	-9566.00

Table 7-8 MARTIN PRESSURE FED (LRB2)

DELTA BASE DRAG

MACH	ALT(FT)	Q(psf)	LV(1bs)	ORB (1 bs)	2RB(lbs)	ET(lbs)
0.60	9065.00	398.9	28644.91	8594.65	18133.68	1916.59
0.73	13134.65	503.9	23664.53	8386.08	18323.01	-3044.56
0.94	20460.00	625.4	26567.23	8827.58	23086.47	-5346.82
1.07	25687.20	671.0	25395.14	8093.05	24272.83	-6970.72
1.21	30776.00	698.0	28257.98	7358.78	23106.31	-2207.09
1.38	36752.53	706.1	31916.80	7834.00	16607.88	7474.92
1.57	42516.68	689.0	24036.60	3979.94	6961.17	13095.48
1.81	49317.55	652.5	28352.84	6404.33	-4649.43	26597.95
2.05	55858.75	576.2	15436.35	4600.55	-13541.41	24377.21
2.28	62525.13	473.6	-14561.76	2846.27	-38554.68	21146.64
2.75	80848.75	292.6	-31820.31	121.31	-46792. 22	14850.58
3.30	105563.00	165.5	-13525.49	-2279.92	-24863.03	13617.43
3.86	130726.59	84.4	111.50	113.99	-13597.38	13594.87

* DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5

Fig. 7-26 LRB2 Total Base Drag

[^3]Fig. 7-27 LRB2 Delta Base Drag

LRB3

Fig. 7-28 LRB3 (General Dynamics 02H2 Pump Fed)

Fig. 7-29 LRB3 Altitude vs Mach

Fig. 7-30 LRB3 Q vs Mach

Fig. 7-31 LRB3 Plume Angle vs Mach

Table 7-9 GENERAL DYNAMICS 02H2 PUMP (LRB3)

MACH	ALT(FT)	Q(psf)	LV(lbs)	ORB(lbs)	2RB(lbs)	ET(lbs)
-0.60	8967.00	382.1	99706.46	24435.51	29917.63	45353.33
0.74	12248.00	511.6	108641.82	26912.14	32484.75	49244.93
0.87	15627.00	618.8	113187.52	28548.44	33981.34	50657.73
1.01	21627.00	648.6	135482.20	33748.65	39947.76	61785.79
1.14	25321.00	651.0	115992.51	29424.86	31099.15	55468.50
1.29	33079.00	637.1	72657.88	21992.71	7210.25	43454.92
1.48	38191.00	659.0	10533.36	13895.38	-26411.73	23049.71
1.71	44691.00	641.8	-22206.24	10495.01	-49562.45	16861.20
1.98	52458.00	594.8	-58799.78	6412.80	-72319.77	7107.20
2.26	60462.00	528.7	-85485.80	2142.89	-84820.01	-2808.68
2.82	76703.00	382.1	-80961.48	-3439.34	-51074.26	-26447.89
3.44	94896.00	245.1	-64203.41	-3781.56	-28020.01	-32401.84
4.03	113267.00	146.6	-35320.96	-2895.41	-15719.96	-16705.59

MACH	ALT (FT)	$Q(p s f)$	LV(lbs)	ORB (lbs)	2RB (1bs)	ET (lbs)
0.60	9065.00	382.1	17197.53	7517.61	9762.38	-82.44
0.74	13447.70	511.6	16060.30	8333.79	11211.51	-3484.99
0.87	17979.00	618.8	16075.35	8626.70	12964.64	-5515.99
1.01	23256.00	648.6	28435.43	10796.90	18683.78	-1045.24
1.14	28248.40	651.0	10160.59	3785.87	13620.93	-7246.20
1.29	33622.93	637.1	1014.85	4090.81	-2174.17	-901.78
1.48	39848.53	659.0	-20239.41	2672.34	-25869.70	2957.95
1.71	46490.44	641.8	-22448.38	3987.54	-42302.58	15866.66
1.98	53950.90	594.8	-37354.74	4940.11	-62132.41	19837.57
2.26	61880.59	528.7	-50475.55	4545.34	-73560.71	18539.81
2.82	83994.19	382.1	-44313.71	535.17	-42983.92	-1864.98
3.44	111853.90	245.1	-33200.46	-654.40	-23879.39	-8666.68
4.03	138365.56	146.6	-9689.70	-574.59	-15337.94	6222.83

* DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5

Fig. 7--32 LRB3 Total Base Drag

* DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5

Fig. 7-33 LRB3 Delta Base Drag

LRB4

Fig. 7-34 LRB4 (General Dynamics 02RP1 Pump Fed)

Fig. 7-35 LRB4 Altitude vs Mach

Fig. 7-36 LRB4 Q vs Mach

Fig. 7-37 LRB4 Plume Angle vs Mach

Table 7-11 GENERAL DYNAMICS 02RP1 PUMP FED (LRB4)

TOTAL BASE DRAG

MACH	ALT(FT)	$Q(p s f)$	LV(lbs)	ORB (1 bs)	2RB (1bs)	ET(lbs)
0.60	8825.00	384.2	111958.64	24570.46	41784.38	45603.80
0.74	12268.00	511.3	120945.38	26895.31	44835.93	49214.13
0.87	15612.00	617.2	125708.64	28476.93	46700.87	50530.83
1.01	19749.00	703.2	163307.53	36849.52	59631.35	66826.65
1.14	25233.00	707.0	143871.08	32579.33	51236.24	60055.51
1.29	30997.00	700.3	113054.79	25700.65	37776.69	49577.44
1.48	37812.00	670.9	48943.43	14535.58	3492.97	30914.87
1.71	46603.00	588.5	24445.61	7992.53	-3005.13	19458.21
1.98	55905.00	505.2	-18465.70	3344.40	-33081.82	11271.73
2.26	65080.00	425.0	-54432.28	-445.97	-57637.99	3651.69
2.82	79785.00	329.8	-73499.05	-3327.81	-55249.38	-14921.86
3.44	96629.00	226.9	-47778.41	-2166.37	-31608.99	-14003.06
4.03	116507.00	129.2	-31993.45	-1015.14	-18291.99	-12686.32

Table 7-12 GENERAL DYNAMICS 02RP1 PUMP FED (LRB4)

MACH	ALT(FT)	Q(psf)	LV(lbs)	ORB (lbs)	2RB (lbs)	ET(lbs)
0.60	9065.00	384.2	29449.71	7652.56	21629.13	168.03
0.74	13447.70	511.3	28363.86	8316.96	23562.69	-3515.79
0.87	17979.00	617.2	28596.47	8555.19	25684.17	-5642.89
1.01	23256.00	703.2	56260.76	13897.77	38367.37	3995.62
1.14	28248.40	707.0	38039.16	6940.34	33758.02	-2659.19
1.29	33622.93	700.3	41411.76	7798.75	28392.27	5220.74
1.48	39848.53	670.9	18170.66	3312.54	4035.00	10823.11
1.71	46490.44	588.5	24203.47	1485.06	4254.74	18463.67
1.98	53950.90	505.2	2979.34	1871.71	-22894.46	24002.10
2.26	61880.59	425.0	-19422.03	1956.48	-46378.69	25000.18
2.82	83994.19	329.8	-36851.28	646.70	-47159.04	9661.05
3.44	111853.90	226.9	-16775.46	960.79	-27468.37	9732.10
4.03	138365.56	129.2	-6362.19	1305.68	-17909.97	10242.10

[^4]GENERAL DYNAMICS O2RP1 PUMP FED (LRB4)

Fig. 7-38 LRB4 Total Base Drag

* DELTA DRAG VALUES ARE bASED ON DELTA FROM STS FLIGHTS 2,3,5

Fig. 7-39 LRB4 Delta Base Drag

The next step was to choose which of the base drag values to use in the shut le aerod! namic data base. The baseline study provided average values for a set of LRB configurations, and the LRB base drag study a different set of values for each specific configuration. If the base drag values have little variance from one configuration to another and are a small percentage of the total launch vehicle base drag, the baseline study results will be sufficient. If the opposite case is true the values from the LRB base drag study should be used. Shown in Figs. 7-40 to 7-43 are a comparison of total base drag from both studies. In Fig. 7-42 the same $100,000 \mathrm{lb}$ variation occurs in booster base drag. In Fig. 7-43 up to $40,000 \mathrm{lb}$ variation is found when comparing ET base drag.

When comparing the results from both studies a large variation can be seen from one configuration to another and the difference is a significant part of the total base drag. It is for this reason that Lockheed recommends using the results from the new LRB base drag study.

LAUNCH VEHICLES

Fig. 1-40 Launch Vehicle Total Base Drag

Fig. 741 Orbiter Base Total Base Drag

Fig. 7-42 Booster Total Base Drag

Fig. 7-43 External Tank Total Base Drag

8. SUMMARY

Phase I and Phase II of wind tunnel tests comprise a number of LRB configurations varying in length and diameter, with and without protuberances and aft skirts and varying ET-LRB gap width.

Conclusions drawn from these tests, with regard to varying length/diameter, included the following Longitudinal Trends:

- CAF increased with both length and diameter.
- CNF was relatively unaffected by changes in length, but a more negative CNF was produced by an increase in diameter.
- CMF was relatively unaffected by changes in diameter, but CMF decreases with an increase in length.
- The aerodynamic center moves forward with an increase in both length and diameter.
- Wing loading coefficients CSR, CRB, CTR, and elevon coefficients CHEI, and CHEO were relatively unchanged by increase in length but were all increased by increase in diameter.

Conclusions drawn from the tests, with regard to varying length/diameter, included the following lateral/directional trends:

- |CYB| increases with increase in diameter. Length has little effect on $|\triangle C Y B|$ below $M=1.05$, |CYB| decreases with increase in length for $1.05<M<1.80$, and increases with increase n length for $M>1.80$.
- |CYMB| increases with increase in diameter, and | $\triangle C Y M F \mid$ decreases with increase in length.
- |CRMB| decreases with increase in diameter, and is relatively unaffected by increase in length.
- | \triangle CSR| generally increases with increases in diameter (for all $B)$, and has little length effect.
- | $\triangle C T R \mid$ for $1.80<M<3.48$, an increase in diameter produces a decrease in $|\Delta C T R|$ (for all B); for all other M an increase in diameter shows an increase in CTR. Length effects on CTR are small.
- \triangle CHEI general'y increases with increase in diameter except for 1.8 < $M<2.5$ where \triangle CHEI decreases. Length has little effect.
- \triangle CHEO generally increases with increase in diameter except for $1.8<$ $M<2.5$ where $\triangle C H E O$ decreases. Length has little effect.

Analysis of SRB protuberances showed that they had a major effect on both wing loads and SSLV normal force coefficient. The test first recommended modification of certain protuberances. It was later decided that since proposed LRB configurations did not have these protuberances, the coefficients should be removed for the LRB data base.

Conclusions drawn from the tests, with regard to varying gap width, included the following trends:

- CAF increases as gap width increases for transonic and supersonic Mach numbers.
- CNF increases as gap width increases in the transonic range (for negative alpha).
- CMF decreases as gap width increases in the transonic range (for negative alpha).
- Effects of gap width on CSR vary with configuration.
- CBR increases as gap width increases.
- CTR, CHEI, CHEO decreases as gap width increases.

Conclusions drawn from these tests, with regard to aft skirt variation, showed that, with the exception of a slight increase in CAF, the aft skirt had little effect on either wing or total vehicle data.

Finally, on the subject of base drag/plume effects it was concluded that the effects were significant. It was recommended that each specific LRB configuration's base drag be calculated before adding to the LRB data base.

Appendix A

BASE DRAG CALCULATION CODE USERS GUIDE

BASE DRAG CALCULATION CODE USERS GUIDE

A-1 INTRODUCTION

The Base Drag calculation code, BASE4, is based on the methods found in the Compendium of Flight Vehicle Base Pressure and Base Drag Prediction Techniques, (Lockheed Missiles and Space Co., 1983). Sections 2 and 3 of this document give a detailed background of base drag theory, which the code follows. The remainder of this appendix will deal only with issues involved in running the BASE 4 Code, and assumes the user has some knowledge of the parameters involved. If any questions arises the reader should refer to the above document for more detail.

A-2 CODE ALGORITHM

BASE4 is presently set up to handle a SSLV, with the Orbiter, external tark and a user selected pair of boosters. The boosters can vary in size, configuration, and thrust profile. The user supplies the booster geometry, thrust profile, and trajectory. Among the factors the code takes into account during calculation are corrections for nozzle extension, non-cylindrical shape, addition of fins, and nozzle spacing. A flow chart for BASE4 can be found in Fig. A-1. A program listing can be found at the end of this section.

A-3 PARAMETERS

A list of parameters used in the BASE4 code can be found in Table A.1. Al. 1 units in the code assumed to be in the English system except where noted otherwise. Those parameters in Table A-1 noted with an asterisk "*" are inputs supplied by the user, those with a "夫*" are tabular inputs supplied by the user. Figures $A-2$ and $A-3$ depict these input parameters and their usage.

A-4 PROGRAM I.NPUT/OUTPUT

All $1 / 0$ in BASE4 is handled via files. For input the user creates and specifies the input file, which the code prompts for, and the code generates five ouput files. The following describes these I/O files:

Filename
xxxxx. INP

BASE4. OUT

BASE4.TRACE

BASE4.TRAJ

BASE4.THRUST

BASE4.PLUME

User supplied input file, See Fig. 1-4 for a sample input case.

Tabular Listing of Mach, Altitude, Q, Total Base Drag, Orbiter Base Drag, Booster Base Drag, and External Tank Base Drag at each of the specified trajectory points. See Fig. A-5 for a sample case.

Listing of the calculation of base drag at each of the specified trajectory points. See Fig. A-5 for a sample case.

Tabular listing of Mach, Altitude, and Dynamic Pressure. See Fig. A-7 for a sample case.

Tabular listing of Mach, Alttitude, Orbiter Thrust, Single Booster Thrust, and Total Thrust, at each of the specified trajectory points. See Fig. A-8 for a sample Case.

Tabular listing of Mach, Altitude, Orbiter Plume Angle and Booster Plune Angle at each of the specified trajectory points. See Fig. A-9 for a sample case.
TABLE A.I LIST OF FARAMETERS

ORIGINAL PAGE IS
OF POOR QUALTY
TABLEA.I LIST OF PARAMETERS (cont.)

Orbiter Reforence Area
External Tank (Thrust
External Tank (Thrust/Area ITused for nozzie effect on ET)
Booster (ThrustiÁea;)
Orbiter (Thrust/Area,
Orbiter Tail Thickness
Orbiter Wing Thickness
Booster Thrust (one booster)
Orbiter Thrust
Total Thrust
Booster Nozzie Extension
Booster (ThrustiÁrea,
Orbiter (Thrust/Area,
Orbiter Tail Thickness
Orbiter Wing Thickness
Booster Thrust (one booster)
Orbiter Thrust
Total Thrust
Booster Nozzie Extension
Booster (ThrustiÁrea,
Orbiter (Thrust/Area,
Orbiter Tail Thickness
Orbiter Wing Thickness
Booster Thrust (one booster)
Orbiter Thrust
Total Thrust
Booster Nozzie Extension
Booster (ThrustiÁrea,
Orbiter (Thrust/Area,
Orbiter Tail Thickness
Orbiter Wing Thickness
Booster Thrust (one booster)
Orbiter Thrust
Total Thrust
Booster Nozzie Extension

Dynamic Pressure
Orbiter Reference Area

Booste
Orbite
Booste
Booster Nozzle Spacing Ratio
Orbiter Nozzle Spacing Ratio
Bocster Nozzle Spacing
Orbiter Nozzle Spacing

Fig. A-1 BASE4 Flowchart

Fig. A- 2 Geometric Inputs

```
EELRB - Nozzle Expansion Ratio
PCLRB - Motor Chamber Pressure
KOLRB - Motor Constant
```

(All three are inputs which determine the Booster's plume angle effects at each given altitude in the trajectory)

$$
D j=K 0 *(a 1 t) *(P c)^{0.8} *(E E)^{-0.5}
$$

The inputs EEET, PCET and KOET, are the similar inputs for the plume effects on the External Tank. These Values in general use the same EE, $P c$ and $K 0$ as the Booster.

```
AFLRB - Base Area Multiplying Factor
    For l Nozzle- AFLRB = 1.0
    For 2 Nozzles - AFLRB = 0.333
    For 3 Nozzles - AFLRB = 0.333
    FOR 4 Nozzles - AFLRB = 0.333
```

(This quantity accounts for the CP distribution that occurs in the inner area between multi-nozzle set-ups)

TABULAR TRAJECTORY INPUTS

Trajectory inputs should be in the following form:

Mach(1)	Altitude(1)	Q (1)	THTOT(1)	THLRB(1)
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
$\operatorname{Mach}(\mathrm{n})$	Altitude(n)	$Q(n)$	THTOT(n)	THLRB(n)

> THTOT is the total mated vehicle thrust THLRB is the thrust of one booster

Fig. A-3 Motor Characteristics and Irajectory Inputs

Fig. A-4 Sample Input File

$$
A-8
$$

ORIGINAL PAGE ls OF POOR QUALITY

xxxxxxxx xxxxxxxx (xxx)

TOTAL BASE DRAG

MAOH	ALT(FT)	$Q(p s F)$	$\mathrm{LV}(1 \mathrm{bs})$	ORB (1 bs)	2RB(1bs)	ET(1bs)
0.60	9065.00	383.8	88103.11	24546.79	17996.44	8
9. 74	13447.70	493.7	92256.71	25968.50	18769.99	47518.21
$\bigcirc .87$	17979.00	576.2	92559.63	26581.64	18810.24	47167.74
1. 1	23256.00	626.4	106989.99	26947.87	22794.83	57247.29
!. 14	28248.40	648.8	95184.19	31010.86	13959.38	50213.95
1. 29	33622.93	657.1	66081.19	25314.08	4729.38	36037.72
1.48	39848.54	648.3	24157.26	14983.85	-5636.19	14809.60
1.71	46490.44	625.9	4889.39	10445.44	-11735.59	14179.54
1. 38	53950.90	586.0	-18516.41	6899.03	-16862.33	-8553.11
2. 26	61880.60	525.7	-35989.62	2291.34	-16975.81	-21305.15
2. 42	83994.20	323.7	-39757.47	-3714.92	-13536.17	-22506.38
3.4	111853.91	132.0	-26571.28	-3002.27	-6822.41	-16746.60
4	: $38: 65.56$	\cdots. 0	-3863.47	-58.35	-144.85	-3660.27

Fig. A-5 Sample BASE4.OUT File

ABGFB	235.0618	ABORB	433.7361	ABET	598.2849
AELRB	116.8987	AEORB	132.5359	AEFET	1502.145
AEFLRB	118.1631	AEFORB	301.2002	AEET	350.6960
ACYLRB	183.8539	LIORB	17.50000	DEET	21.13102
ARLRB	1.278525	L2ORB	17.50000	ANET	299.1425
LILRB	12.20000	L3ORB	15.15544	XSDET	1.975768
I2LRB	12.20000	ANORB	$7.4203491 E-02$		
ANLRB	31.94133	XSDORB	1.333333		
XSDLRB	$0.0000000 E+00$				

MACH		0.60	00000		
ALT'	(FT)		. 000		
!	(PSF)		8000		
PRESS	(PSF)		. 280		
THRUST TOT	(LB)		333.		
BOOSTER THRUST	(LB)		7000 。		
- 5 THRUST	(LB)		3333.		
Crsooster	28.	897			
CTORB		3487			
CTer		165			
PUiME ANGLE	(RB ORB)		6.072794	3.171308	
1. ACORRECTED	(RB ORB	ET)	0.9500000	0.9500000	0.9500000
VO? LLE EXT	(RB ORB	ET)	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$
\therefore ¢ CYLINDER	(RB ORB	ET)	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$
FINS	(RB ORB	ET)	$0.0000000 \mathrm{E}+00$	$-3.5100002 \mathrm{E}-03$	$0.0000000 \mathrm{E}+00$
rotal Pb/Pi	(RB ORB	ET)	0.9500000	0.9464900	0.9500000
CPB	(RB ORB	ET)	-0.1984127	-0.2123413	-0.1984127
Cob	(RB ORB	ET)	$8.7156398 \mathrm{E}-03$	$2.3775930 \mathrm{E}-02$	$4.4129126 \mathrm{E}-02$
OFP (wo/NS)	(RB ORB	ET)	17996.44	24546.79	45559.88
TFE (wo/NS)	(TOTAL)		88103.11		
NOZ SP Pb/Pi	(RB ORB	ET)	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$
NOZ SP Pb	(RB ORB	ET)	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$
NOZ SP DRAG	(RB ORB	ET)	$0.0000000 \mathrm{E}+00$	$0.0000000 \mathrm{E}+00$	$0.0000000 E+00$
i) FB (F / NS)	(RB ORB	ET)	17996.44	24546.79	45559.88
DFB (w/NS)	(TOTAL)		88103.11		

MACH (n)
UFB: ! !

MACH
0.6000000
0.7400000
0.8700000
1.010000
1.140000

1. 290000
1.480000
1.710000
1.980000
2.260000
2.820000
3.440000
4.030000

Altitude
 (FT)

9065.000
13447.70
17979.00
23256.00
28248.40
33622.93
39848.54
46490.44
53950.90
61880.60
83994.20
111853.9
138365.6

Q
(PSF)
383.8000
493.7000
576.1500 626.4400 648.8400 657.0667 648.3400 625.9360 585.9850 525.7401 323.7240 131.9580
2.050000

Fig. A-7 Sample BASE4.TRAJ file

MACH
0.5000000
0.7400000
0.8700000
1.010000
1.140000

1. 290000
1.480000
1.710000
2. 980000
2.260000
2.820000
$\because .44000$

- 03000 ?

ALTITUDE
(FT)
9065.000
13447.70
17979.00
23256.00
28248.40
33622.93
39848.54
46490.44
53950.90
61880.60
83994.20
111853.9
138365.6

ORBITER (LBS)

1223333 . 2607000 . 1091033 . 2474000 . 1047400 . 2369633. 3656867 . 956333.2 1039534 . 2283134 . 1187845. 1296000 . 1372213. 1385234 . 1395134 . 1403560 . 1408520 . 1413240 .

BOOSTER
(LBS) 2369200 。 2461623 . 2522293 . 2554483 . 2539000 . 2211054 . 1810740 . 1429796.

TOTAL (LBS)
6437333. 6039033 . 5786666 . 5569533. 5605801 . 5926245 . 6219245 . 6416800 . 6494200 . 6473133 . 5825667. 5030000 。 4272833 .

Fig. A-8 Sample BASE4.THRUST File

MACH
0.6000000
0.7400000
0.8700000
1.010000
1.140000
1.290000
1.480000
1.710000
1.980000
2.260000
2.820000
3.440000
4.030000

Altitude (FT)
9065.000
13447.70
17979.00
23256.00
28248.40
33622.93
39848.54
46490.44
53950.90
61880.60 83994.20 111853.9 138365.6

ORB ANGLE (DEG)
3.171308
4.704556
6.289790
8. 135902
9.882447
11.76268
13.94065
16.26426
18.87423
21.64837
29.38461
39.13108
48.40594

RB ANGLE (DEG)

6.072794
9.008839
12.04443 15.57958
18.92407
22.52456
26.69519
31.14472
36.14260
41.45484
56.26911
74.93279
92.69341

Fig. A-9 Sample BASE4. PLUME File

BASEA PROGRAM LISTING

INTEGER INLRB, INORB, IWORB, ITORB, IEL, ILRB
REAL SREF, MACH, ALT, $Q, P I$, THTOT, THLRB, THORB, THET, PP, PP 1, PPI (21), ALTI (21)
DBLRB, DELRB , DCYLRB, XJLRB ,DXJLRB,LRB,
KELRB, KLRB, EELRE,DJLRB, PCLRB, XSDLRB, ANLRB,L1LRB,L2LRB,
DBORB, DEORB, XJORB, DXJORB,XSORB, TCW, TCT, KgORE, KORB , EEORB, DJORB, PCORB, XSDORB, ANORB,LIORB,L2ORB,L3ORE,
DBET , DEET, XSET , XSDET, ANET, KEET, KET, EEET,
DJET, PCET,
ABLRB, AELRB, AEFLRB, ACYLRB, AFLRB, PRLRB, PLRB1,
PLRB2,CTLRB, TAALRB, CPBLRB, CDBLRB, DFBLRB,
ABORB, AEORB, AEFORB, PBWORB, PBTORB, CTORB, TAAORB, CPBORB, CDBORB, DFBORB,
ABET, AEFET, CTET, TAAET, CPBET, CDBET, DFBET,
PBLRB1, PBLRB2, PBLRB3, PBLRB4, PBLRBA, PBLRB6, PBLRBT,
PBORB1, PBORB2,PBORB3, PBORB4, PBORBA, PBORBE, PBORBT,
PBET1, PBET2, PBET3, PBET4, PBETA, PBETE, PBETT,
DFBLRB1,DFBORB1,DFBET1,OFTOT1,PBLRB4A, PBORB4A, PBET4A, DFNLRB, OFNORB, DFNET
CHARACTER:1 LINE
CHARACTER*26 FNAME1, FNAME2, FNAME3, FNAME4, FNAMES, FNAMEB
DATA PBLRB1,PBLRB2, PBLRB3 /0.0,0.0.0.0/
DATA PBLRB4, PBLRB6, PBLRBT / $0 . \varnothing, \varnothing . \varnothing, \varnothing . \varnothing /$

DATA PBORB4, PBORB5,PBORBT /0.0,0.0,0.0/

Fig. A-10 BASE4 PROGRAM LISTING

```
DATA DBORB,DEORB,AFORB /23.5,7.5,.333/
DATA KgORB,EEORB,PCORB /.0060983,77.5,427690./
DATA XJORB,XSORB /9.2,10.0/
DATA TCW,TCT /.06,..06/
```


data fname2 /'basea.trace'/
DATA FNAME3 /'BASE4.OUT'/
DATA FNAME4 /'BASE4.PLUWE'/
data fname5 /'basea.traj'/
DATA FNAMEE /'BASE4.THRUST'/
WRITE ($6, *$)
WRITE $(5,1666)$
READ ($5,16 \Phi_{1}$, ERR=5) FNAME1
WRITE $(6, *)$
$\operatorname{OPEN}(19$, FILE $=$ FNAME1, STATUS $=$ 'OLD')
$\operatorname{OPEN}(20, F I L E=F N A M E 2, S T A T U S=' N E W$ ')
OPEN (21, FILE=FNAME3, STATUS='NEW')
$\operatorname{OPEN}(22, F I L E=F N A M E 4$, STATUS $=$ 'NEW')
DPEN $(23$, FILE=FNAMES, STATUS = 'NEW')
$\operatorname{OPEN}(24, F I L E=F N A M E 6, S T A T U S=' N E W ')$

READ (19,1601, ERR=998	
8	
$\operatorname{READ}(19,1601, \mathrm{ERR}=998)$	8) LI
READ ($19,1601, E R R=998)$	8)
$\operatorname{READ}(19,1691, E R R=998)$	8) LI
$\operatorname{READ}(19,1601, \mathrm{ERR}=988)$	
$\operatorname{READ}(19, *, E R R=998)$ I	INLRB
$\operatorname{READ}(19, *, E R R=998)$ D	RB
$\operatorname{READ}(19, *, \mathrm{ERR}=998)$	DELRB
EAD (19,*, ERR=998) D	dCYLR
$\operatorname{READ}(19, *, E R R=998) \times$	XJLRB
$\operatorname{READ}(19, *, E R R=998) \times$	XSLRB
$\operatorname{READ}(19, *, E R R=998) \mathrm{K}$	KglRB
AD ($19, *, E R R=998$)	EELRB
READ (19,* ${ }^{\text {c ERR }}=998$) P	PCLRB
READ (19,*, ERR=998) K	KEET
READ (19,*, ERR=998) E	EEET
READ ($19, *$, ERR=998) P	
READ (19,*, ERR=998) A	
AD ($19,1601, E R R=998)$	8) LIN
(19,1601, ERR=998	
READ ($19,1001, \mathrm{ERR}=998$	8) LINE
AD ($19,1661, E R R=998$	8) LINE
19,1001, ERR	

ABLRB $=$ PI * (DBLRB/2.0) **2
AELRB $=$ (PI * (DELRB/2. $) * * 2$) * FLOAT (INLRB)
$A E F L R B=A B L R B-A E L R B$
ACYLRB $=P I *(D C Y L R B / 2 . \varnothing) * * 2$
ARLRB $=$ ABLRB/ACYLRB
LILRB $=$ XSLRB + DELRB ! NOTE - L1 AND L2 ARE SET UP HERE FOR
L2LRB $=$ XSLRB + DELRB I A 4 NOZZLE CONFIGURATION, THIS SHOULD

Fig. A-10 BASE4 PROGRAM LISTING (Continued)

```
ANLRB = L1LRB * L.2LRB - AELRBB
XSDLRB = XSLRB/DELRB
\begin{tabular}{|c|c|}
\hline ABORB AEDRB & ```
= PI * (DBORB/2.0)**2
=(PI * (DEORB/2.|)**2) * FLOAT(INORB)
``` \\
\hline AEFORB & \(=\) ABORB - AEORB \\
\hline L10RB & \(=\) XSORB + DEORB \\
\hline L20RB & \(=\) XSORB + DEORB \\
\hline L30RB & \(=\) SQRT (L10RB**2-(L20RB/2.0)**2) \\
\hline ANORB & \(=0.5\) L20RB L30RB - AEORB \\
\hline XSOORB & \(=\times\) SORB/DEORB \\
\hline
\end{tabular}
```

```
ABET = PI * (DBET/2.6)**2
```

ABET = PI * (DBET/2.6)**2
AEFET = ABET + ABORB + 2*(ABLRB)
AEFET = ABET + ABORB + 2*(ABLRB)
AEET = 3.0 * AELRB
AEET = 3.0 * AELRB
DEET = 2.0* SQRT (AEET/PI)
DEET = 2.0* SQRT (AEET/PI)
ANET = 0.6 ABET
ANET = 0.6 ABET
XSDET = XSET/DEET
XSDET = XSET/DEET
WRITE (20,*)
WRITE $(20,2 \theta \theta 6)$ ABLRB, ABORB, ABET
WRITE $(20,2067)$ AELRB, AEORB, AEET
WRITE $(20,2068)$ AEFLRB, AEFORB, AEFET
WRITE $(20,2069)$ ACYLRB,L10RB,DEET
WRITE $(26,2010)$ ARLRB, L20RB, ANET
WRITE $(20,2011)$ L1LRB,L30RB,XSDET
WRITE $(26,2612)$ L2LRB, ANORB
WRITE $(26,2013)$ ANLRB, XSDORB
WRITE $(20,2014) \times S D L R B$
WRITE (20,*)

```


```

WRITE $(2 \%, *)$
WRITE $(21,2606)$
WRITE $(21,2061)$
WRITE $(21, *)$
WRITE $(21,2002)$
WRITE $(21, *)$
WRITE $(21,2003)$
WRITE $(21,2604)$
WRITE $(22, *)^{\prime}$, MACH ALTITUDE ORB ANGLE ',
WRITE (22,*), (FT) (DEG) ',
( (DEG)
WRITE $(22, *), \quad$ MACH
WRITE $(23, *), \quad 2$
WRITE $(23, *)$,
WRITE $(23, *)$
WRITE $(24, *)$, MACH
'BOOSTER
WRITE $(24, *)^{\prime}, \quad$ (LBS)
WRITE (24, *)
ORB CALCULATIONS
$A E D R B=(P I *(D E O R B / 2.6) * * 2) *$ FLOAT (INORB)
AEFORB $=$ ABORB - AEORB
= XSORB + DEORB
L30RB $=$ SQRT (L10RB**2-(L20RB/2.6)**2)
ANORB $=\varnothing .5$ L2ORB $\cdot$ L3ORB - AEORB
XSOORB = XSORB/DEORB

```
```

THORB = THTOT - 2.0.THIRB
THET = THTOT
CTLRB = THLRB/ (Q*ABLRB)
CTORB = THORB/(Q*ABORB)
CTET = THET/(Q+AEFET)

```
TAALRB \(=\) THLRB/ABLRB
TAAORB = THORB/ABORB
TAAET = THET/AEFET
```

DXJLRB = ABS (XJLRB/DBLRB - 0.34)

```
CALL EXTDXJ (MACH, DXJLRB, PBLRE2)
IF (XJLRB/DBLRB.LT.6.34) PBLRE2 = -PBLRB2
DXJORB \(=\) ABS (XJORB/DBORB -0.34)
CALL EXTDXJ(MACH, OXJORB, PBORB2)
IF (XJORB/DBORB.LT.0.34) PBORB2 = -PBORB2
CORRECTION FOR NON-CYLINDRICAL - (1.50 .GE. M .LE. 3.5; LRB)
IF (MACH.LT. 1.0) THEN
 PLRB1 \(=6.6\)
 PLRB2 \(=0.0\)
 PBLRB3 \(=0.0\)
ENDIF
IF (MACH.GE.1.D.AND.MACH.LT. 1.6) THEN
 CALL EXTCYL (ARLRB, MACH, PRLRB)
 PLRB1 \(=\) PBLRB1 + PBLRB2 + PBLRB3
```

    PLRB2 = PLRB1/PRLRB
    PBLRB3 = PLRB2 - PLRB1
    PBLRB3 = PBLRB3 * ((2.0 WACH) - 2.0)
    ENDIF
IF (MACH.GE.1.5.AND.MACH.LT.3.6) THEN
CALL EXTCYL (ARLRB,MACH, PRLRB)
PLRB1 = PBLRB1 + PBLRB2 + PBLRB3
PLRB2 = PLRB1/PRLRB
PBLRB3 = PLRB2 - PLRB1
ENDIF
IF(MACH.GE.3.5.AND.MACH.LT.4.ש) THEN
CALL EXTCYL (ARLRB,MACH, PRLRB)
PLRB1 = PBLRB1 + PBLRB2 * PBLRB3
PLRB2 = PLRB1/PRLRB
PBLR83 = PLRB2 - PLRB1
PBLRB3 = PBLRB3 * ((-2.0 * MACH) + 8.0)
ENDIF
IF (MACH.GE.4.b) THEN
PLRB1 = 0.0
PLRB2 = 0.0
PBLRB3 =0.0
ENDIF
CORRECTIONS FOR FINS - (ALL M; ORB)
CALL EXTFIN(MACH,PBWORB)
CALL EXTFIN(MACH,PBTORB)
PBWORB = PBWORB (TCW/\sigma.1) * (IWORB/4.6)
PBTORB = PBTORB * (TCT/6.1) * (ITORB/4.g)
PBORBG = PBWORB + PBTORB
tOTAL ALL Pb/Pi
PBLRBT $=$ PBLRB1 + PBLRB2 + PBLRB3 + PBLRB5
PBORBT $=$ PBORE1 + PBORB2 + PBORB3 + PBORB5
PBETT $=$ PBET1 +PBET2 +PBET3 +PBET5
BASE PRESSURE COEFF
CPBLRB $=($ PBLRBT -1.0$) /(10.7 * M A C H * * 2)$
CPBORB $=($ PBORBT -1.0$) /(13.7 * M A C H * * 2)$
CPBET $=(P B E T T-1.0) /(13.7 * M A C H * * 2)$
BASE DRAG COEFF
CDBLRB $=-($ CPBLRB * AEFLRB/SREF)
CDBORB $=-($ CPBORB AEFORB/SREF)
CDBET $=-$ (CPBET * ABET/SREF)
CORRECTION FOR NOZZLE SPACING - (ALL M; LRB, ORB,ET)

```
```

DJLRR = KচLRB * (ALT/1060.) * (PCLRB)**0.8 * (EELRB)**(-0.5)

```
DJLRR = KচLRB * (ALT/1060.) * (PCLRB)**0.8 * (EELRB)**(-0.5)
DJORB = KGORB * (ALT/1G66.) * (PCORB)**@.8 (EEORB)** (-D.E)
DJORB = KGORB * (ALT/1G66.) * (PCORB)**@.8 (EEORB)** (-D.E)
DJET = KGET * (ALT/1600.) * (PCET)**0.8 * (EEET)**(-0.5)
DJET = KGET * (ALT/1600.) * (PCET)**0.8 * (EEET)**(-0.5)
WRITE (22,*) MACH,ALT,DJORB,DJLRB
WRITE (22,*) MACH,ALT,DJORB,DJLRB
WRITE (23,*) MACH,ALT,Q
WRITE (23,*) MACH,ALT,Q
WRITE (24,*) MACH, ALT, THORB, THLRB, THTOT
WRITE (24,*) MACH, ALT, THORB, THLRB, THTOT
IF (XSDLRB.GT.g.6) THEN
IF (XSDLRB.GT.g.6) THEN
 CALL EXTXS1 (DJLRB,XSDILRB,PBLRB4)
```

    CALL EXTXS1 (DJLRB,XSDILRB,PBLRB4)
    ```

Fig. A-10 BASE4 PROGRAM LISTING (Continued)

ENDIF
```

IF (XSDORB.GT.0.D) THEN
CALL EXTXS2(DJORB,XSDORB,PBORB4)
ENDIF

```

IF (XSDET.GT.ø.ø) THEN
 CALL EXTXS2 (DJET, XSDET, PBET4)
ENDIF

NOZZLE SPACING EFFECT DRAG
CALL ATP (ALT, ALTI, PPI, 21, PP)
PP1 \(=\) PP 2.089
PBLRB4A \(=\) P8LRB4 : PPI
PBORB4A = PBORB4 * PP1
PBET4A \(=\) PBET4 *PP1
DFNLRB \(=-\) PBLRB4A * AFLRB * ANLRB DFNORB \(=-\) PBORB4A * AFORB * ANORB DFNET = -PBET4A * AFET * ANET

BASE DRAG

WRITE (20,*)
WRITE (20,*)' MACH ', MACH
WRITE (20,*), ALT
WRITE (20,*)' Q
 (FST):,ALT
WRITE \((20, *), ~ Q\)
WRITE \((2 \sigma, \phi), ~ P R E S S\)
 (PSF) ,'PP1

WRITE \((20, *)\), BOOSTER THRUST (LB) ',THLRB
WRITE (20,*), ORB THRUST (LB) ', THORB
WRITE (20,*)' ORB THRU
IF (MACH.LT.2. \(\boldsymbol{E}\)) THEN
 WRITE (26,*); CTBOOSTER \(\quad\), CTLRB
 WRITE (20,*), CTORB ,'CTORB
 WRITE \((2 \sigma, *)\) ' CTET ',CTET
ENDIF
IF (MACH.GE.2.6) THEN
 WRITE \((20, *)\); \(1 /\) B BOOSTER ,TAALRB
 WRITE \((20, *)\), T/A ORB \(\quad\),TAALRB
 WRITE \((20, *)\) ' \(T / A E T\),TAAET
ENDIF
WRITE (20,*)' PLUME ANGLE (RB ORB) ',DJLRB,DJORB
WRITE \((20, *)\)
WRITE (20,*)' UNCORRECTED (RB ORB ET) ',PBLRB1,PBORB1,PBET1
WRITE \((20, *)\), NO2ZLE EXT (RB ORB ET) ',PBLRB2,PBORB2,PBET2
WRITE (20,*)' NON CYLINDER (RB ORB ET) ',PBLRB3,PBORB3,PBET3
WRITE (20,*)' FINS (RB ORB ET) ', PBLRB5, PBORB5, PBET5
WRITE (20,*), TOTAL Pb/Pi (RB ORB ET) ','PBLRBT,PBORBT,PBETT
WRITE \((20, *)\)

Fig. A-10 BASE4 PROGRAM LISTING
```

    WRITE (20,*)', CPB (RB ORB ET),',CPBLRB,CPBORB,CPBET
    WRITE (20,*)' CDB (RB ORB ET) ',CDBLRB,CDBORB,CDBET
    WRITE (20,*)', DFB (wo/NS) (RB ORB ET) ',DFBLRB1,DFBORB1,DFBET1
    WRITE (20,*)' DFB (wo/NS) (TOTAL) ';DFBTOT1
    WRITE (20,*)
    WRITE(20,*)' NOZ SP Pb/Pi
    WRITE(20,*)' NOZ SP Pb
    WRITE (20,*)' NOZ SP DRAG
    WRITE (20,*)
    WRITE (20,*)', DFB (w/NS) (RB ORB ET) ',DFBLRB,DFBORB,DFBET
    WRITE (20,*), DFB (w/NS) (TOTAL) ,'DFBTOT
    WRITE (20,*)
    WRITE (20,*)'**********************************************'
    WRITE (20,*)
    WRITE(21,2ø65) MACH,ALT,Q,DFBTOT,DFBORB,DFBLRB,DFBET
    GO TO 100
    C
1000 FORMAT(' ENTER INPUT FILE NAME --> *, %)
1001 FORMAT (A)
1862
FORMAT (A)
, 1-SRB 2-MLRB1 3-MLRB2 4-GDLRB3 5-GOLRB4 --> ',3)
FORMAT (2 (/))
FORMAT (28X, 8 ('X'), 1X, 8('X'), 2X,'(XXX) ')
FORMAT (36X, 'TOTAL BASE DRAG')
FORMAT (5X,'MACH ALT(FT) Q(psf) LV(lbs),
ORB(lbs) 2RB(Ibs) ET(lbs)')
FORMAT (3X,74('-'))
FORMAT (6X,F4.2, 2X,F16.2,2X,F6.1, 2X,F10.2, 2X,F10.2, 2X,
F10.2,2X,F16.2)
FORMAT(T2 ,'ABLRB',T13,F11.5,T28,'ABORB ',T38,F11.5,
T53,'ABET ,,T63,F11.5)
FORMAT (T2,'AELRB ',T13,F11.5,T28,'AEORB ',T38,F11.5,
T53,'AEET ',TB3,F11.5)
FORMAT(T2 ,'AEFLRB',T13,F11.5,T28,'AEFORB',T38,F11.5,
T53,'AEFET ',T63,F11.5)
FORMAT (T2,'ACYLRB',T13,F11.5,T28,'L10RB ',T38,F11.5,
T53,'DEET ',T63,F11.6)
FORMAT (T2,'ARLRB ',T13,F11.5,T28,'L20R8 ',T38,F11.5,
T53,'ANET ',T63,F11.5)
2011 FORMAT(T2 ,'LILRB ',T13,F11.5,T28,'L30RB ',T38,F11.5,
T63,'XSDET ;'T83,F11.5)
FORMAT(T2 ,'L2LRB ',T13,F11.5,T28,'ANORB ',T38,F11.5)
FORMAT(T2 ,'ANLRB ',T13,F11.6,T28,'XSDORB',T38,F11.5)
FORMAT(T2 ,'XSDLRB',T13,F11.6)
WRITE (B,*) AL.T, MACH,Q,THTOT, THLRB
WRITE (6;*)' READ ERROR ',IER
END
c
C*
C SUBROUTINE EXTCT (MACH,CTHRUST,PBB7)
C
EXTRAPOLATE Pb/P; vs M and CT PB(M,CT)
REAL M(9),CT (7),PB(9,7),MACH, CTHRUST, PERM, PERCT,
PBB1, PBB2, PBB3, PBB4, PBB6,PBB6, PBB7
DATA M /0.00,0.60,0.90,1.00,1.10,1.25,1.50,1.75,2.00/
DATA CT / 0.0, 5.0,10.0,16.0,20.0,25.0,30.0/

```

Fig. A-10 BASE4 PROGRAM LISTING (Continued)
DO \(I=2,9\)
 IF (M(I).GT.MACH) THEN
 \(I M=I\)
 GO TO 20
 ENDIF
 \(\operatorname{IF}(\mathrm{I} . \mathrm{EQ} .9) \mathrm{IM}=9\)
ENDDO
DO \(\mathrm{J}=2,7\)
 IF (CT(J).GT.CTHRUST) THEN
 ICT = J
 GO TO 30
 ENDIF
 IF (J.EQ.7) ICT \(=\mathrm{J}\)
ENDDO
\(C\)
 30
c
PERM \(=(M(I M)-M A C H) /(M(I M)-M(I M-1))\)
PERCT \(=(C T(I C T)-C T H R U S T) /(C T(I C T)-C T(I C T-1))\)
PBBI \(=P B(I M-1, I C T-1)\)
PBB2 \(=P B(I M, I C T-1)\)
PBB2 \(=P B(I M, I C T-1)\)
\(P B B 3=P B(I M-1, I C T)\)
PBB4 \(=P B(I M, I C T)\)
PBB5 \(=\) PBB2 \(-(\) PBB2 - PBB 1\() *\) PERM
PBB6 \(=\) PBB2 \(-(\) PBB2 - PBB1 \()\) *PERM
PBB
PBB7 \(=\) PBB6 \(-(\) PBB6 - PBB6 \()\) *PERCT
RETURN
END
\(c\)

C
SUBROUTINE EXTCA(ALT, TAAA, PBB7)
EXTRAPOLATE \(P b / P i\) vs \(C / A\) and ALT PB(TAA,H)
REAL TAA (8), H (14), PB (6, 14), ALT, TAAA, PERTAA, PERH,
 PBE1, PBB2, PBE3, PBE4, PBB5, PBB6,PBB7
DATA TAA /3000.,3500,4000.,5060.,8000., 10000./

 \(\begin{aligned} & 60600.0, 70060.0, \\ & 120060.0,130000.0,\end{aligned}\)
\(c\)
DATA PB /0.50,0.65,0.66,0.73,0.78,0.88,
 6. \(58,0.65,0.70,0.86,0.90,0.98\),

Fig. A-10 BASE4 PROGRAM LISTING (Continued)
\(0.63,0.76,0.78,0.96,1.06,1.88\),
\(0.70,0.76,0.85,1.00,1.10,1.26\),
\(0.78,0.85,0.93,1.11,1.23,1.30\),
\(0.85,0.93,1.06,1.20,1.33,1.40\),
\(0.96,0.98,1.13,1.33,1.46,1.50\),
\(0.98,1.13,1.36,1.55,1.66,1.73\),
1.08,1.28,1.50, 1.80,1.96,1.95,
\(1.18,1.43,1.70,2.63,2.25,2.20\),
\(1.30,1.80,1.93,2.36,2.45,2.48\),
1. \(43,1.86,2.18,2.66,2.76,2.85\),
\(1.65,2.60,2.45,2.95,3.20,3.35\),
\(1.68,2.36,2.85,3.45,3.85,4.16 /\)
```

    DO I=2,6
    IF(TAÁ(I).GT.TAAA) THEN
        ICA = I
        60 TO 20
    ENDIF
    IF(I.EQ.B) ICA = I
    ENDDO

```
C
\(20 \quad 00 \mathrm{~J}=2,14\)
 IF (H(J).GT.ALT) THEN
 IH \(=\mathrm{J}\)
 GO TO 30
 ENDIF
 IF (J.EQ.14) IH = J
ENDDO
\({ }^{\text {C }} 36\) PERTAA \(=(\) TAA (ICA \()-\) TAAA \() /(\) TAA \((I C A)-T A A(I C A-1))\)
PERH \(=(H(I H)-A L T) /(H(I H) \cdots H(I H-1))\)
PBB1 \(=P B(I C A-1, I H-1)\)
PBB2 \(=P B(I C A, I H-1)\)
PBB3 \(=\mathrm{PB}\left(\right.\) ICA \(^{2} 1\), IH \()\)
PBB4 \(=P B(I C A, I H)\)
PBB6 \(=\) PBE2 \(-(\) PBB2 - PBB1 \()\) *PERTAA
PBB \(=\) PBB \(=\) PBB4 \(-(\) PBB4 - PBB3 \()\) \&PERTAA
PBB7 \(=\) PBB6 \(-(\) PBB \(6-\) PBB5 \() *\) PERH
\(c\)
RETURN
END
C

C
 SUBROUTINE EXTDXJ(MACH,DELXJ,DPBB7)
\(C\)
\(C\)
 EXTRAPOLATE DPb/Pi vs \(M\) and DXJ DPB (M,DXJ)
 REAL M(18), DXJ(11), DPB(18,11), MACH,DELXJ, PERM, PERXJ,
 DPBB1,DPBB2,DPBB3,DPBB4,DPBBE,DPBB6,DPBB7
\(C\)
 DATA M \(\quad\) 日. \(0,0.4,0.8,1.2,1.6,2.6,2.4,2.8,3.2,3.6,4.0,4.4\),
 \(4.8,5.2,5.6,8.6,8.4,6.8 /\)

C
DATA DPB /0.000, 0.000, 0.060,0.000,0.000,0.000,0.000,
 \(0.000,0.000,0.000,0.000,0.000,0.000,0.006\),
 \(0.000,0.000,0.000,0.000\),
 \(0.060,0.600,0.060,0.067,0.024,0.032,0.028\),
 \(0.020,0.012,0.067,0.003,0.060,0.000,0.000\),
 ๑.000, ס.000,0.061, б.0日0,

Fig. A-10 BASE4 PROGRAM LISTING (Continued)
\(0.000,0.005,0.006,0.016,0.048,0.082,0.056\), \(0.046,0.032,0.024,6.616,0.008,0.062,0.066\), \(0.066,0.660,0.060,0.660\),
\(0.010,0.012,0.614,0.032,0.080,0.094,0.088\), 0.072,0.056,0.040,0.036,0.618,0.066,0.000, \(0.606,0.600,6.000,0.060\),
0.020, 0.022, 6. 624, 6.053, 0.116,0.132, 0.120, \(0.100,8.080,6.063,0.046,0.028,0.012,0.063\), \(0.060,0.600,0.060,0.060\),
\(0.629,0.631,0.638,0.677,6.166,0.168,0.150\), 0.128,6.164,6.683,6.662,0.646,0.022,0.008, \(0.606,0.06,6.806,0.060\),
\(0.639,6.046,0.052,0.103,0.188,0.204,0.184\), \(0.166,0.129,6.104,0.678,0.654,0.034,0.015\), \(0.662,0.000,0.000,0.060\),
\(0.647,0.666,0.666,0.125,0.224,0.240,6.216\), \(0.184,0.153,0.125,0.095,0.068,0.044,0.624\), 0.669,6.660,6.606,0.060,
0.066,6.068,6.686, 0.153,0.264, 6.276,0.244, \(0.212,0.179,0.147,6.114,0.684,0.656,0.032\), \(0.615,6.063,6.066,6.000\),
\(0.685,6.070,0.162,6.184,6.300,0.316,0.276\), 6.240,0.203,0.161, 6.130,0.098,0.086,0.041, \(0.623,0.067,6.060,6.600\),
0.677, ©.081,0.130, 0.213, 6. 336, 0.348,0.308, \(0.268,0.229,0.187,0.146,6.110,6.678,0.649\), \(0.030,6.013,0.000,0.006 /\)

DO \(I=2,18\)
IF (M(I).GT.MACH) THEN
\(I M=I\)
GO TO 20
ENDIF
\(\operatorname{IF}(I . E Q .18) I M=18\)
ENDDO
DO \(\mathrm{J}=2,11\)
IF (DXJ(J).GT.DELXJ) THEN
\(I X J=J\)
GO TO 30
ENDIF
\(\operatorname{IF}(J . E Q .11) \quad I X J=J\)
ENDDO
\({ }_{36}\)
PERM \(=(\) M (IM) - MACH \() /(M(\) IM \()-M(I M-1))\)
PERXJ \(=(D X J(I X J)-D E L X J) /(D X J(I X J)-D X J(I X J-1))\)
DPBB1 \(=\) DPB \((I M-1, I \times J-1)\)
DPBB2 \(=\) DPB \((I M, I X J-1)\)
DPBB3 \(=\operatorname{DPB}(I M-1, I X J)\)
DPBB4 \(=\mathrm{DPB}(I M, I X J)\)
DPBB5 \(=\) DPBB2 \(-(\) DPBB2 - DPBE1 \()+\) PERM
DPBB6 \(=\) DPBB4 \(-(\) DPBB4 - DPBB3 \() * P E R M\)
DPBB7 \(=\) DPBB6 \(-(\) DPBB6 - DPBB5 \() * P E R X J\)
RETURN
END
C
C**
\(C\)
SUBROUTINE EXTCYL (AR,MACH,PR)

Fig. A-10 BASE4 PROGRAM LISTING (Continued)

```

        PBB2 = PB(IPL,IXSD-1)
        PBB3 = PB(IPL-1,IXSD)
        PBB4 = PB(IPL,IXSD)
        PBB6 = PBB2 - (PBB2 - PBB1) +PERPL
        PBB6 = PBB4 - (PB84 - PBB3)*PERPL
        PBB7 = PBB6 - (PBB6 - PB86)*PERXSD
        IF(PBB7.LT.0.0) PBB7 =0.0
        IF(PBB7.GT.8.0) PBB7 = 8.0
    RETURN
    END
    C
C******************************************************************************
C
C
C
C
C
C
DATA XSD/1.06,1.22,3.00/
C
DO I=2,10
IF(PL(I).GT.DJ) THEN
IPL = I
GO TO 26
ENDIF
IF(I.EQ.10) IPL = 10
C
20
DO J=2,3
IF (XSD(J).GT.XSDD) THEN
IXSO = J
GO TO 30
ENDIF
IF(J.EQ.3) IXSD = J
ENDDO
PERPL = (PL (IPL)-DJ)/(PL(IPL)-PL (IPL-1))
PERXSD = (XSD (IXSD)-XSDD)/(XSD (IXSD) -XSD (IXSD-1))
PBB1 = PB(IPL-1,IXSD-1)
PBB2 = PB(IPL,IXSD-1)
PBB3 = PB (IPL-1,IXSD)
PBB4 = PB (IPL,IXSD)
PBB5 = PBB2 - (PB82 - PBB1)*PERPL
PBB6 = PBB4 - (PBB4 - PBB3) *PERPL
PBB7 = PBB6 - (PBB6 - PBB5 ) *PERXSD
IF (PBB7.LT.0.0) PBB7 = 0.0
C
RETURN
END
C

```

Fig. A-10 BASE4 PROGRAM LISTING (Continued)
```

C***************************************************************************
C EXTrapolate Pb/Pi for fins vs M PB(M)
C REAL M(9),PB(9),MACH,PBB1,PBB2,PBB3
c
DO I=2,9
IF(M(I).GT.MACH) THEN
IM = I
GO TO 20
ENDIF
IF(I.EQ.9) IM = 9
ENDDO
C
20 PERM = (M(IM)-MACH)/(M(IM)-M(IM-1))
PBB1 = PB(IM-1)
PBB2 = PB(IM)
PBB3 = PBB2 - (PBB2 - PBB1)*PERM
C
RETURN
END
c
C**************************************************************************
C
SUBROUTINE ATP (ALT,ALTI,PPI,N,PP)
DIMENSION ALTI(21),PPI(21)
C
DO 10 I=2,N
IF(ALT.LE.ALTI(I)) GO TO 20
continue
I=N
c
20 PCT=(ALT-ALTI(I-1))/(ALTI (I)-ALTI (I-1))
PP=PPI(I-1)+PCT*(PPI (I) -PPI (I-1))
RETURN
END

```
```


[^0]:    Fig. 7-15 STS 2, 3, 5 Total Base Drag

[^1]:    - DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5

[^2]:    - DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5

[^3]:    - DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3.5

[^4]:    * DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5

