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UNSTEADY STAGNATION-POINT HEAT TRANSFER DURING 
PASSAGE OF A CONCENTRATED VORTEX* 

David L. Rigby** and William J. Rae*** 
Department of Mechanical and Aerospace Engineering 

State University of New York at Buffalo 
Buffalo, NY 14260 

Abstract 

The unsteady boundary layer due to a single 
rectilinear vortex filament approaching a two- 
dimensional stagnation point is investigated. 
Assuming the vortex remains far from the surface, 
incompressible potential-flow theory is used to 
determine the time-dependent inviscid flow field. 
The unsteady boundary-layer equations are solved 
by an alternating-direction-implicit finite- 
difference method. Two mechanisms which cause 
fluctuations in heat transfer are the unsteady 
velocity field in the boundary layer and secondly, 
the unsteady total temperature at the edge of the 
boundary layer. The relative importance of these 
mechanisms is dependent upon the total temperature 
fluctuations relative to the imposed temperature 
difference. As a vortex approaches a stagnation 
point it may be forced to one side of the 
stagnation line or the other, depending on its 
initial position. Results are presented for both 
of these cases. 

Introduction 

High-frequency heat-transfer fluctuations are 
a source of concern in a number of gas-turbine 
flow environments, since the thermal stresses 
which they cause can limit fatigue life even when 
the time-averaged level of heat transfer is well 
within design limits. The Space Shuttle Main 
Engine (SSME) turbopumps are one instance where 
this phenomenon has received attention, as part of 
the SSME Durability Program. The research 
reported in the present paper is part of an 
experimental/analytical effort that has been 
supported by the Durability P o ram, at the 
Calspan-UB Research Center (CUBRC) 1.5 . 

In the experimental portions of the latter 
effort, time-resolved measurements of the 
distributions of heat-transfer rate have been made 
in a shock-tunnel facility, using full-scale 
turbine hardware operating under rated conditions. 
The data come from thin-film heat-transfer gages, 
which allow microsecond time-scale and millimeter 
spatial-scale resolution. 

The data taken in the experimental part of 
the effort display a very rich frequency content, 
including a number of very sharp 'spikes' which 
rise to factors as large as two above the mean 
level, and drop to values near zero, over an 
interval on the order of microseconds. The 
application of phase averaging to these data tends 
to remove most of this 'spikiness', allowing the 
fundamental blade-to-blade periodicity (with 
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periods on the order of 100 mi.croseconds) to stand 
out. The interpretation of this fundamental 
unsteadiness in terms of laminar/turbulent 
transition triggered by wake cutting 
pursued in other papers from this program . 23 been 

However, the question remains as to the 
source of the higher-frequency spikes, especially 
in regard to their property of displaying heat- 
transfer levels well below the mean. The lower 
limits of these excursions are difficult to 
explain in terms of fluctuations in the thermal 
boundary-iayer thickness; these might account for 
heat-transfer reductions on the order of a factor 
of two due to thickening of the thermal layer, but 
levels approaching zero exceed the bounds of this 
mechanism. 

An alternate explanation that may account for 
these down-going spikes is the passage of a 
concentrated vortex over the blade leading edge. 
These vortices, shed from the trailing edges of an 
upstream stator row, have decayed only slightly by 
the time they are intercepted by a downstream 
rotor. A number of recent studies have described 
the very rapid velocity-boundary-layer changes 
that occur duriy-the close approach of a vortex 
to the surface * .  In addition, the flow 
unsteadiness causes a gomentary redistribution of 
stagnation temperature , The present work was 
undertaken in an attempt to clarify whether the 
combined effects of velocity and temperature 
unsteadiness during vortex passage over a leading 
edge might explain the spikes seen in the 
experimental program. 

The net result of the research is an 
affirmative answer to this question: it does 
appear that the combined effects of the 
fluctuations in velocity and temperature induced 
by the motion of the vortex produce a heat- 
transfer 'signature' that is qualitatively similar 
to that seen in the experiments. 

The analysis that leads to this conclusion 
invokes a number of simplifying assumptions, in an 
effort to gain as much analytical understanding as 
possible. It assumes a low mach-number inviscid 
flow, makes use of incompressible potential-flow 
theory as a source of the time-dependent vortex- 
induced portions of the flow-field, and employs 
laminar, noninteracting boundary-layer theory to 
describe the viscous layer. The geometry 
considered is a two-dimensional stagnation point; 
thus the baseline flow and heat transfer that 
occur long before passage of the vortex arfOgiven 
by the c assical solutions of Hiemenz and 
Frossling . When the vortex comes near the 
surface, it speeds up considerably; thus the time- 
dependent contributions to the velocity and 
temperature fields become pronounced. 
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, 
The unsteady boundary-layer equations are 

an alternating-direction-implicit 

The temperature at the boundary-layer edge is 
allowed to have a constant level different from 
the wall temperature, and in addition to undergo 
the fluctuation caused by energy segregation 
during the vortex passage. At this level of 
approximation, the velocity and temperature fields 
are uncoupled, and the temperature in the boundary 
layer can be expressed as the sum of two terms, 
corresponding to the imposed temperature 
difference plus the induced fluctuation. The 
resulting heat-transfer rate is the sum of two 
corresponding terms. It is clear that very low 
heat-transfer levels with very short duration are 
possible with certain combinations of the 
amplitudes of the two temperature fields. 

I 
~ ~ : h v o e d d 7 7 , ’ <  for a prescribed vortex trajectory. , 

I 

Formulation 

Consider a steady two-dimensional stagnation- 
point flow; let the flow be directed toward a wall 
located at the plane 7 - 0, with the stagnation 
point at x = 7 - 0, see Figure 1. The overbar is 
used to denote dimensiona-1 quantities. The 
temperature at the wall, Tw, as well-as the 
stagnation temperature far from the wall, To, will 
be constant. 

Now, in addition, let a singl_e inviscid two- 
dimensional vortex with strength, I’, approach from 
upstream infinity. A vortex Reynolds number may 

be defined as Rev = - , where is the kinematic 

viscosity. It is assumed that Rev is large so 
that the vortex can affect the thin viscous region 
near the wall while remaining in the effectively 
inviscid region far from the wall. 

- 
r 
2nJ 

The motion of the vortex and unsteady 
velocities and temperature outside the boundary 
layer can be found using standard potential flow 
techniques13. The techniques actually used are 
those of classical incompressible flow, which may 
at first seem surprising, since they are being 
applied to a subsonic compressible-flow problem. 
The justification for this simplification is as 
follows: the temperature in the inviscid flow is 
governed by the compressible-flow energy equation: 

The solution of this equation, for isentropic 
flow, is the compressible Bernoulli equation: 

The middle term in this equation describes the 
adiabatic-compression mechanism of heating, while 
the third term is what accounts for the time- 
dependent fluctuations in the external 
temperature. The former set tends to be spatially 
uniform in the vicinity of a stagnation point, 
whereas the latter shows significant spatial and 
temporal variations. (The middle term also 
contains a fluctuating part, in an unsteady flow). 

The steady portion of the middle term is 
proportional to the square of the freestream Mach 
number, while the appropriate scale for the time- 
dependent potential term is the square of the 
vortex strength divided by its distance from the 
surface. Since the latter scale is not affected, 
to first order, by the freestream Mach number, it 
is legitimate to approximate the vortex motion by 
incompressible-flow potential theory. 

Because the distance of closest approach of 
the vortex is unknown in advance, there is no 
convenient length scale that can be used to define 
a dimensionless measure of the relative importance 
of time-dependent temperature fluctuations 
compared to those of steady adiabatic compression. 
The portion of the solutions below that reflect 
this unsteadiness will become large whenever the 
vortex approaches sufficiently close to the 
surface. Of course, the distance of closest 
approach must be greater than that value where the 
viscous core and the boundary layer might 
interact; the cases shown below are far removed 
from this limit, so that the model of a potential 
vortex approaching a thin boundary layer can be 
used. 

Introducing the following non-dimensional 
variables 

r-- 

U - u / %  ; v - V / k  
- J” 

r--- I 

- 
t - At (3 )  

where and 7 are coordinates tangent and normal 
to the surface-respectively; also is time, p is 
the pressure, T is the temperature and 5 and are 
the tangent Cnd normal velocities respectively. 
The constant A is the stagnation- point velocity 
gradient which determines the rate at which the 
velocity increases in the x direction; also the 
constants 5, and To are the steady total pressure 
and total temperature, respectively. 

- 

The velocity of the vortex is 

Yv(t) - -Yv(t) (5) 

It can be shown that if the vortex is located 
at (so., y ) at t-0 then the position of the 
vortex is g % m  by 
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The unsteady tangential velocity and the 
un teady temperature induced at the wall are given 
bJ4 

Be(X,t) - 1 - E 
c 

also the total temperature is given by 

where 

and 
- ~ 

AT 

2?rc (To-T,) 
- -  E -  

P 

The importance of the bracketed term in 
equation (10) will depend on the value of E and 
also on how large the terms within the bracket 
become during the passage of the vortex. To get 
an idea of an appropriate value for E, consider 
flow over a leading edge of radius a with 
freestream velocity G,. Then it can be shown that - r 

and - - O(U,ZX) where X is a consta.nt 
der opunity (i.e. X-0.2)8. So 

- 2  
is the Eckert number. - -  where E, - 

cp (T,-T,) 

Notice this can also be written in terms of  the 

mach number M - S where for an ideal gas 

c, - E,, 7 is the ratio of specific heats, R is 
the gas constant. Then 

- 
U 

‘rn - 

To assume incompressible flow, as has been done in 
the present-formulation, the double limit as M2 -> 

r T >  

0 and 11 - CJ -t 0 must be taken. 
From the above equation one can see that it is not 
inconsistent to choose a finite value of E. 

Since both X and E, are expected to have 
values somewhat less than one, values of E which 
are quite small are investigated. Results are 
presented for E - 0.0 and E - 0.02.  

Even for a small value of E, the bracketed 
term in equation (10) can be important during the 
passage of the vortex. The major effect of the 
vortex occurs directly beneath the vortex where 
(x-xv) is small, so in general the fluctuation in 
total temperature is directly proportional to the 
tangential velocity of the vortex and inversely 

proportional to its distance from the surface. 
The non-dimensional boundary layer equations for 
mass, x-momentum, and energy are 

au av 
ax all 

au au au ap + fi 
at ax at, ax aq2 

- + - - 0  

+ u - + v - - - -  - 

where the pressure is known from the solution of 
the inviscid problem. Also, Pr is the Prandtl 
number and E is defined by equation (12). 
Equations (13-15) are subject to the following 
boundary conditions 

at 7 - 0  u - v - 8 - 0  

as v - + m  u + U, , e -t e, (16) 

where u 
respectively.. 

and 0, are given by equations (8) and (9) e 

To facilitate the numerical solution of 
equations (13) and (14) an unsteady stream 
function is defined by 

It may be shown that equations (17) satisfy the 
continuity equation identically and the x-momentum 
equation can be written 

with the following boundary conditions 

at 

as 

The freestream velocity is often included in 
the definition of the stream function to simplify 
the boundary condition. In the present case this 
is not convenient since the unsteadiness of ue 
will cause it to vanish at x-positions where the 
velocity profile is not identically zero. 

Owing to the linearity of the energy equation 
(15), it is possible 
fields such that 

e - e, + Ee, 

where 8, and 0 ,  must 

-. ~ 

to define two new temperature 

(20) 

satisfy 

as 1 a2e2 + au 2 ap ap 
at ax av Pr aqz [G] at ax 

+-+u- as ae, + u2 + v--2 - - - 

3 



subject to the boundary conditions with boundary conditions 

at q - 0  e ,  - e ,  - o 

as 

Notice that a parametric investigation of the 
effect of E on 6’ requires solving for 8 ,  and 8 ,  
only once. 

Initial Condition 

To begin the numerical calculation the 
solution over the entire (x,y) plane must be known 
at the initial time t-0. It is possible to find 
an asymptotic solution, valid when the vortex is 
far from the wall, which can be used for the 
initial condition. as follows: 

Expanding in powers of (l/yv) the inviscid 
results for ue and 8, become 

ue (x,t) = x + - + 0 3 
YV L:I (24) 

Oe(x,t) - 1 - E - x2 + ”} + Ok , $1 (25) c: Yv 
also 

4 
- a -  

ax YV 

By expanding the unsteady stream function and 
temperatures as 

and introducing these relations into equations 
(18), (21) and (22) the following set of ordinary 
differential equations results 

1 
Pr 
- e ; ;  + $ ,e ; ,  = o 

0 1 1  - 0 

(33) 

(34) 

(37) 

as 9 + m $ 6 ,  $;, e,,, e , , ,  azo, e,, + 1 

Note that equations (31) and (33) with the 

E8 boundary conditions of equation (37) correspond 
the steady stailjnation-point problems of Hiemenz 
and Frossling . Each of equations (31)-(36) 
together with boundary conditions (37) are solved 
numerically using methods which are second-order 
accurate. 

Assuming the initial vortex position is 
chosen large enough, equations (28)-(30) will 
produce an accurate initial condition for the 
problem. 

Numerical Method 

The numerical method used to solve the 
boundary-layer problem described by equations 
(18), (21) and (22) is similar o that described 
by Peridier and Walker (1988) . The method is 
a factored alternating-difference-implicit method 
(ADI) which uses upwind-downwind differencing f o r  
the first-order derivatives. The following is a 
brief description of the method. For a more 
complete description see Peridier and Walker 
(1~188)~ 12. 

7,lg 

A rectangular grid is defined, where the 
indices i, j ,n denote the x-direction, the q -  
direction and time, respectively. Constant grid 
spacing is used, where Ax, Aq and At denote the 
respective step sizes. Consider in general the 
following equation 

aZF aF aF - T - + P - + Q - + M  aF - 
at a+ aq ax 

where Table 1 shows how this equation can 
represent each of equations (18), (21) and (22). 
A finite-difference approximation to equation (38) 
is written at the point (i,j,n+l/2). The 
coefficients are approximated using a simple 
average, for example 

(39) 

where the overbar here denotes that averaging has 
been done. The derivatives are also averaged in 
this manner. The second derivative is 
approximated by a central difference. The first 
derivative terms are approximated using an 
upwind-downwind scheme according to the sign of 
the coefficient. For example 

r 
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Equation 40 may be written more compactly by from the previous iterate. The procedure is 
clefining the operators X+ and X- as repeated until the maximum difference between 

iterates is below a given tolerance. Notice that 
for a linear equation, as is the case for the 

6 Esgn(Pij)/2 ; 6 E-sgn(Pi j )I2 (41) energy equations (21), (22), the coefficients need 
not be iterated upon. However, as will be 
discussed below, the application of the downstream 

where 6 is the central difference operator boundary condition may require iteration. To 
update the coefficients in the case of the 
momentum equation (18), the tangential velocity u 

rl 9 

x i -  r l r l  r) rl 

tl 

SqFP , j = FP , j +1/2 - FP , j -1/2 (42) must be integrated to get 11. 
Simpson's 1/3 rule''. 

This is done using 

and is defined by Boundarv Conditions 
0 

Boundary conditions are applied around the 
(43) entire perimeter of the numerical domain. At the 

surface, i.e., q-0 

It follows that equation (40) can be written 11 - u - e ,  - e, - o 

aF 
the approximation to Q - can be written ax 

The finite difference approximation to equation 
(38), written in factored form is 

At 
(47) 

(44) A s  q + OD the solution must asymptotically approach 
the freestream values. The freestream boundary 
conditions are applied at q - qmax where qmax is 
chosen large enough so that increasing qmax does 
not affect the solution. A typical value of qmax 
is - 9. 

The x-domain is [-sax, where sax is 
(45) chosen large enough so that increasing does 

not affect the solution. The effect of the vortex 
varies inversely with the distance from the vortex 
so the boundaries of the x-domain are not expected 
to experience much unsteadiness. This fact makes 
it possible to use a first-order-accurate 
extrapolation at the x-boundary without 
introducing any appreciable error in the region 
near the vortex. The method is developed by 
writing a Taylor series expansion about the grid 

(46) point just inside the boundary. For example, if 
x(1) - - lax, x(2) = - %ax + Ax and so on, then 

where 

- 
+ AtMi , j (49) 

This method is second order accurate in space 
and time. The solution procedure is as follows, 
Equation (47) is solved along all lines of 
constant q .  Then equation (48) is solved along 
all lines of constant x. The solution of equation 
(47), as well as equation (48), is accomplished 
using a direct method of solution for tridiagonal 
problems. The thod involves a combination of 
cyclic reductionyg and the Thomas algorithm17. If 
equation (38) is nonlinear several iterations may 
be required to advance the solution in time. The 
coefficients are first estimated using previous 
time-plane values and then updated using values 

(-AX) . . .  F(1 ,j )-F(2 ,j )'ax "3 i-2, j (-AX)%] i-2, j 2 
(50) 

The quantity - is then approximated 

using values from the previous iteration. 

where the prime ( ) '  denotes the previous 
iterates. Thus the boundary condition at x = xmax 
is 

F(1,j) - F(2,j) - - - '[(FV(3,j) - F'(1,j) + O(Ax2) 2 

Similarly at x - xmax (52) 

1 F( imax , j )-F( imax- 1, j ) - F' (imax , j )-F' ( imax- 2, j ) 

+ O(Ax2) (53) 

Notice that by applying the boundary 
conditions in this way more iterations may be 
required. Typically only 2 iterations are 
required for the endpoints to come within the 
tolerance. 
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TABLE 1 

Equation F T P Q  M 

21 8, 1/Pr -V -U 0 

au + ap + .,ap 
[G] at ax 

22 8, 1/Pr -V -U 

Results 

It is possible to investigate all cases by 
choosing the sense of the vortex to be 
counterclockwise, since changing the sense of the 
vortex and the sign of would result in a 
mirror image of the prevlous results. Two 
representative cases are presented. Each case is 
determined by the initial vortex position 
(xvo,yvo). For each of the two cases heat 
transfer results are presented for E-0.0 and 
E-0.02. The Prandtl number is held fixed and 
taken to be Pr - _0.72. Notice that since the 
vortex strength, - I?, and the stagnation point 
gradient, A, are included in the 
nondimensionalization they do not appear 
explicitly in the calculation. 

For the first case the initial vortex 
position is (5 R, yyo) - (0.025,20.0). This is 
referred to as t e right case, since as the vortex 
approaches the surface it is pushed to the right 
of the geometric stagnation point, refer to Figure 
2(a). In Figure 2(a) the vortex path is shown and 
three points are marked corresponding to t - 1.50, 
3.00 and 3.40 as shown. Results are then 
presented as functions of x at these three times. 
A s  noted earlier, the sense of the vortex is taken 
to be counterclockwise. The vortex causes an 
increase in the external velocity, Figure 2(b), 
and its effect is felt mainly beneath the vortex. 
The resulting wall shear stress is shown in Figure 
2(c). The wall shear stress increases beneath the 
vortex, but as the vortex comes nearer to the 
surface, the shear stress takes on values below 
the steady-state value in the region in front of 
the vortex (i.e. x > s). This occurs because the 
pressure gradient in this region is not as 
favorable as the steady value. At later times the 
pressure gradient would become adverse in front of 
the vortex and cause flow reversal, eventually 
causing a breakdown of the boundary-layer 
approximation. Figure 2(d) shows the displacement 
thickness as defined by 

- 
6* r" r. 

(54) 

There is a tendency for the boundary layer to thin 
behind the vortex and thicken in front of it. 
Note that near x-0 the displacement thickness 
fails to give meaningful information, since it is 
undefined when ue - 0. Plots of the 
streamfunction, Figure 3 ,  also give the indication 
of thinning behind and thickening in front of the 
vortex. 

Figure 4 shows the external total 
temperature, the thermal boundary layer thickness, 
and the resulting heat transfer for E-0.0 and for 
E-0.02. The thermal boundary layer thickness is 
defined by 

(55) 

Figure 4(a) shows that the external total 
temperature for E-0.02 increases by as much as 30% 
below the vortex. For E-0.0 the external total 
temperature is identically equal to one. In 
Figure 4(b) 6T is shown only for E-0.02 because 
the differences between E-0.00 and E-0.02 are very 
slight. Note that as with the displacement 
thickness the trend is to thin behind the vortex 
and thicken in front of it. 

Figure 4(c) shows heat transfer results for 
E-0.0 and E-0.02. The dimensionless heat transfer 
is defined by 

qw = 
7 
ao V=O 

I I ' I  
where 

(57) 

Notice that for E-0.0 the heat transfer is 
higher where the boundary layer is thinner and 
vice versa. For E-0.02 there is an additional 
increase in heat transfer due to the increased 
external total temperature. Figure 5 shows the 
heat transfer as a function of time for x - -2, 
-1,0,1,2. From this it can be seen that the 
vortex passage has little effect on negative 
values of x and even at x-0. It is interesting to 
note that a time average of the heat transfer 
would result in a net increase for this case. 
This is most easily seen at x=2.0. Since the time 
is non-dimensionalized by A, and A may take on 
very large values, the time scale in Figure 5 is 
greatly exaggerated. 

The second case corresponds to an initial 
vortex position of (so,yvo) - (-.185,20.0) and 
will be referred to as the left case. Figure 6(a) 
shows the vortex path for this case. As in the 
right case results are presented as functions of x 
for the three times corresponding to the points 
marked in Figure 6(a). For this case, the vortex 
is pushed toward the left (i.e. x<O) where the 
sceady external velocity is negative, Figure 9(b). 
As in the right case the vortex causes a positive 
addition to the external velocity which drives it 
towards zero. When the vortex gets close enough a 
region of "inviscid flow reversal" occurs beneath 
the vortex. As can be seen in the plots of wall 
shear, Figure 6(c), and streamfunction, Figure 7, 
a region of flow reversal forms beneath the 
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vortex. This however, does not imply a breakdown 
of the bounda er approximation since the flow 
is unsteady fY31s3. Note that the displacement 
thickness becomes singular where the outer 
velocity goes through zero and thus loses its 
usefulness for the present case. As a qualitative 
check on the boundary layer approximation, the 
maximum normal pressure gradient was calculated 
numerically from the results. This is done by 
using the y-momentum equation which was neglected 
in arriving at the result: 

The right case which showed no signs of separation 
was found to have maximum normal pressure 
gradients comparable to the left case. Flow 
separation would be expected to occur eventually 
for either case. 

Figure 8 shows the external total 
temperature, thermal boundary-layer thickness, and 
heat-transfer results for the left case. Note 
that the external total temperature (Figure Ea) is 
decreased as the vortex passes. The thermal 
boundary layer thickness (Figure 8b), behaves 
similar .to the right case, i.e. thinning for x < 
\ and thickening for x > 5. Figure 8c shows the 
resulting heat transfer. As expected it is higher 
where the thermal boundary layer has thinned and 
lower where the thermal boundary layer is thicker 
for E-0.0. For E-0.02 however, the heat transfer 
is lower than the E-0.0 result because of the drop 
in external total temperature. The time traces of 
heat transfer, Figure 9, show that values of x > 0 
and even x - 0 are only slightly affected by the 
passage of the vortex. For this case there 
appears to be a net decrease in the heat transfer. 

For each case the numerical domain was 0 5 
5 9 , -6 5 x 5 6, with constant spatial grid sizes 
of A? = .125 and Ax - .05. The time step was 
At - .01 for t I 2.5 and .005 for t > 2.5. Each 
case took approximately 300 seconds of CPU time on 
a CRAY-XMP. 

Concluding Remarks 

The research described above grew out of a 
desire to find a mechanism for unsteady heat- 
transfer fluctuations in a turbine rotor that lie 
both above and below the mean. The intuitive 
notion that the local heat-transfer rate is 
inversely proportional to the thermal-layer 
thickness is not adequate for explaining 
excursions that go well below the mean. Thus, the 
major focus of this effort was to determine 
whether the unsteady temperature fluctuations 
experienced during the passage of a vortex could 
produce heat-transfer fluctuations comparable to 
those of the mean flow. The results described 
above suggest an affirmative answer to this 
question: within the range of vortex trajectories 
and freestream conditions admitted by the 
approximations used, the heat-transfer levels from 
these two mechanisms are comparable, and the 
fluctuations are a significant fraction of the 
steady-state values. 

It should be stressed that there are many 
features of the experiment that are not accounted 
for here, such as the complete rotor-blade 
geometry, the passage of multiple vortices, the 
effect of nonzero viscous core radii, and 

departures from two-dimensionality, to name just a 
few. Thus, it is not possible to make a direct 
comparison with the measurements. However, 
further study of these effects can now be carried 
out with confidence that the basic mechanism is a 
significant one in producing heat-transfer 
fluctuations in the stagnation region. 
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