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Abstract

At high Mach numbers the two-dimensional time-developing mixing layer develops

shock waves, positioned around large-scale vortical structures. A suitable numerical

method has to be able to capture the inherent instability of the flow, leading to the

roll-up of vortices, and also must be able to capture shock waves when they develop.

Standard schemes for low speed turbulent flows, for example spectral methods, rely on

resolution of all flow-features and cannot handle shock waves, which become too thin

at any realistic Reynolds number. The objective of this work is to study the perfor-

mance of a class of second-order explicit total variation diminishing (TVD) schemes

on a compressible mixing layer problem. The basic idea is to capture the physics of

the flow correctly, by resolving down to the smallest turbulent length scales, without

resorting to turbulence or sub-grid scale modeling, and at the same time capture shock

waves without spurious oscillations. The present study indicates that TVD schemes can

capture the shocks accurately when they form, but without resorting to a finer grid have

poor accuracy in computing the vortex growth. The solution accuracy also depends on

the choice of limiter. However a large number of grid points are in general required

to resolve the correct vortex growth. This phenomenon in computing time-dependent

problems containing shock waves as well as vortical structures is partly due to the in-

herent shock-capturing property of all TVD schemes. In order to capture shock waves

without spurious oscillations these schemes reduce to first-order near extrema and indi-

rectly produce 'clipping phenomena', leading to inaccuracy in the computation of vortex

growth. Accurate simulation of unsteady turbulent fluid flows with shock waves will

require further development of efficient, uniformly higher than second-order accurate,

shock-capturing methods.
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1. Introduction

Interest in supersonic combustion has led to renewed efforts to understand the

physics of high-speed turbulent flows. Mixing in supersonic combustors occurs in com-

pressible free shear layers, where there can be shock waves and large scale vortical struc-

tures, which arise from instabilities in the flow. Direct numerical simulations of such

flows will greatly aid in understanding compressible turbulence, and modeling mixing

and chemical reactions in high speed flows. The two-dimensional time-developing mix-

ing layer is a simple prototype of a free shear layer and has been selected for the current

study, where we investigate the merits of a class of TVD shock-capturing methods.

i The time-developing mixing layer, shown schematically on figure 1, consists of two

streams of fluid moving in opposite directions, with a smooth velocity profile in between.

The mean velocity profile has an inflection point and is unstable to small disturbances.

The linear stability characteristics of the flow have been presented by Sandham and

Reynolds (1989). It was found that compressibility damps the two-dimensional growth

of disturbances, and that three-dimensional waves become important at high Mach

numbers. The physics of the flow are described in detail in Sandham (1989), where it

is shown that there is a range of free-stream Mach numbers around 0.8 where the two-

dimensional disturbance is still amplified, leading to a large-scale vortical structure.

Flow around this vortex is accelerated to locally supersonic speeds and, in order to

reach the stagnation point in between the vortices, has to compress through a nearly-

normal weak (M _ 1.2) shock wave. In this flow regime there is an instability to

be captured, and shock waves to be handled, which represents a severe test for any

numerical method. The approach in Sandham (1989) was to use spectral and high-

order Pad_ finite differences (Lele, 1989) and rely on resolution of all relevant length

scales. In order to capture shock waves this meant that low Reynolds numbers had to be

used so that, with 7-8 grid points within the shock wave, there are no oscillations around

the shock - in fact the computed result is hopefully a full solution of the compressible

Navier-Stokes equations, including shock wave structure. Those computations were

limited to a small range of Reynolds numbers - high enough so that the instability

rolled up strongly enough to form shock waves, but low enough so that the shock waves

could be fully resolved. This becomes prohibitively expensive as the Reynolds number

is increased, since it is very inefficient to have to resolve the internal shock structure

in all the computations. The smallest length scale in the shock wave is of the order of

the molecular mean free path, while the smallest turbulent length scale is much bigger

than this. For the transitional mixing layer the smallest length scale to be resolved is

a Taylor diffusion scale, where strain balances diffusion, while for a general turbulent

flow the smallest scale would be of the order of the Kolmogorov scale.

Computations of the compressible mixing layer using TVD schemes were presented

by Soestrisno et al. (1988), where the inviscid equations were solved. These compu-
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tations showed the correct basic structure, but resolution was low. The spatially-

developing mixing layer was attempted by Guirguis et al. (1987), using an inviscid

flu.x-corrected transport (FCT) method. However the computations were at a very high

convective Much number where the instability is very weakly amplified. The resulting

flow fields show low resolution of flow features, indicating that an insufFicient number

of grid points were used in the computations. For turbulent flow computation, and

calculation of mixing, we need to resolve properly the diffusion length scales in the flow.

In this paper we assess the performance of a class of second-order explicit TVD

methods for the viscous time-developing mixing layer, and identify the advantages and

disadvantages of these methods. The basic idea is to try to resolve down to the smallest

turbulent length scales, and so capture the physics of the flow correctly, without resort

to turbulence or sub-grid scale modeling, and at the same time capture shock waves

without having spurious oscillations.

2. Problem Formulation

The governing equations are the two-dimensional time-dependent Navier-Stokes

equations, with no turbulence model.

cgU OF OG 1 [cgF,, cgG,,]
+ -O-;z+ Oy - Se LOz + Oy J (1)

where U is (p, pu,pv, e) T. The velocity components in the z and y directions are u and

v respectively. The density is p and the total energy per unit volume is e. F and G are

the Euler fluxes in the z and y directions, and F_ and Gv are the fluxes due to viscous

terms. Re is the Reynolds number of the flow. The complete formulation in generalized

coordinates is the same as described in Yee (1987). The mean profiles of velocity and

temperature are specified by the following relations:

u = 0.5 tanh( 2y ) (2)

T= 1 + M 2(7- 1)(1 -u2). (3)
2

The temperature profile satisfies the compressible boundary-layer energy equation, as-

suming a Prandtl number of unity. The free-stream Mach number is M, and in the

current work we assume that the free-streams have equal and opposite velocities and

equal temperatures. Pressure is assumed uniform initially so the mean density profile

can be obtained directly from the temperature profile. The viscosity p is assumed to
follow Sutherlands Law:

p/z1 = (c2/c )l"s(1 + 110.3/T,.d
c2/c_ + ll0.3/Tr,f (4)



where c is the sound speed, subscript I refers to the upper free-stream and the reference

temperature T_,t is set to 300 K. The various non-dimensional parameters in the flow are

the free-stream Math number, Reynolds number, Prandtl number and Schmidt number.

The Reynolds number is based on the initial vorticity thickness of the mixing layer, the

velocity difference across the layer, and the free-stream viscosity. The Prandtl number

is set to unity, as is the Schmidt number which is required for calculation of diffusion

terms in the passive scalar equation that is solved alongside the continuity, momentum

and energy equations. The passive scalar is initialized with a hyperbohc tangent profile

and tags fluid from each of the free-streams separately, so that mixing of two species in

the layer can be visualized.

The flow is periodic in the streamwise direction, z, so periodic boundary conditions

are applied. Slip-wall boundary conditions are imposed in the normal direction, y, where

a stretched mesh maps the walls to a large enough distance from the centerline that

they do not interfere with the computation.

The flow is unstable to small disturbances. This instability is forced, by adding

small perturbations, u' and v', to the initial mean flow.

=, = ampl-  sin(2,  /L)e -'2/1° (5)

v' = amp cos( 2_rz / L )e -_2 /1° (8)

where 'amp' is the amplitude of the disturbance. The perturbation shape on the normal

velocity component in the y direction is made to resemble the linear ¢igenfunction, and

decays to zero in the free-stream. The perturbation in the streamwise velocity is chosen

so that the entire disturbance is divergence-free.

In this paper, the disturbance amplitude is chosen to be 0.05 and the wavelength

L is set to 20 initial vorticity thicknesses. The Mach number is 0.8 and the Reynolds
number 400.

3. Numerical Methods

The Napier-Stokes equations are discretized in conservation law form. The nu-

merical methods are given here only for one space direction, since terms for the other

direction are identical. The viscous terms are treated by second-order central differ-

ences, and for simplicity of presentation are not included here. Let U_ be the solution

at grid point j and at time step n, and let At be the time step and Az the grid spacing.

A base method, used for comparison purposes, is the explicit MacCormack method:

(7a)



U;+I 1_- +u;- - (78)
where )_ = At/Az. Equation (7) can be modified to have the TVD-type property in a

manner described in Yee (1987,1989). These predictor-corrector TVD-type methods for

the nonlinear hyperbolic conservation laws (Euler equations) using Roe's approximate

Riemann solver can be expressed as:

u_ = u; - _IF; - F;'_,) (s,,)

U}2)_ 1 1) + U) - )_(/'j+l - FJ (8b)
2

v?+' =v__)+ _(Rj+_,j+, - R__,%__). (So)

When the TVD part (the second term in equation (8c)) is evaluated at UJ 2) the scheme

is referred to as PC1 and when it is evaluated at U_* it is referred to as PC2. The PC2

method is proven TVD for the scalar constant coefficient case but requires more storage

than PC1. See LeVeque and Yee (1988) and Yee (1989) for more details on the behavior

of PC1 and PC2. The matrix R is the right-eigenvector matrix of the flux Jacobian

A = cgF/OU. The specific form used in the current study is shown in Yee (1985). The

elements of Rj+ x are determined by Roe's averaging (an approximate Riemann solver),•
which can be written as follows:

uj + Duj+l

uj+½ = 1 + D ' (9a)

vj + Dvj+l

vj+½- I+D ' (gb)

Hj + DHj+1

Hi+½ = 1 + D ' (9c)

[ 1 _ )]c_+_=(_- 1) zj+, - _(,_+_+vj+_ , (9d)

where D = 4/-_-j+l e + p
Y _ and H= _p (9e)

For more details of the development of the schemes the reader is referred to Yee

(1987,1989). For a symmetric second-order TVD scheme the elements of @j+ ½, denoted
1

by (¢j+½)s, l = 1,..,4 are given by

(10)
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where

(11)

The value a_+½ is the local characteristic speed a I evaluated at a symmetric average

of Uj and Uj+1, using equation (9). For the Euler terms considered here the local
^1

characteristics are (u - c,u,u,u + c). The following symmetric limiters Q j+½ were
tested:

_))+ minmod(a/, t l½ __ ,aj+½) +minmod(alj+½ l l= aj+]) - (12a), aj+½,

_))+_ = minmod(a)_½ a' ', j+½,aj+]), (12b)

_+½ = minmodr2al, t,2al. ' t,2al. ' _ 1 lL ,-_ ,._ _._,_(___ +_s+_)], (12c)

where the minmod of two arguments z and y is defined as

minmod(z,y) = sgn(z)max{0,min(lzl,ysgn(z))} (13)

with sgn(z)=sign(z). These llmiters, equations (12a-c), will be referred to as SI, $2

and $3 respectively in the test calculations.

For a second-order upwind TVD scheme the elements of _S+ ½, denoted by (¢j+½)l u,
are

=- (aj+½)(gs+, +gj)+[laJ+½ +'b+½l-&(a)+½ 2 ,)]aS+ ½ (14a)

where

and

_(z) = _(Izl- _z2) (14b)

7S+ ½ ½ - gs)/aj+½ (14c)

l is set to zero. The following upwind limiterexcept when atS+½ = 0, in which case 7S+½
functions were tested:

' = minmod(a__½,a_+½) (15a)gs

1 l l I 1 Ot 1

1 l z )2 l 1 )2 6] I )_ 2

as'= S. max[O, min(2la_+½ l, Sa_. ½), min(la_+ x1,2Sa_,_x_ . _)]; S = sgn(a ,._(.x2) (15d)

' = minmod(2a',_x,2al.., _(a)+½ + 'gj _ . _ ;. , aj_½)). (15e)
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In the third limiter the constant/_ was chosen to be 10 -7.

One can modify the limiter easily to obtain a uniformly second-order non-oscillatory

scheme, which can maintain second-order accuracy at extrema. A variation of the total

variation bounded (TVB) scheme introduced by Shu (1987) can be obtained (Yee, 1989)
z function asby redefining the 9j

1 l

l _minmod(aj+ ,_a__ + MAz_sgn(aj+½))gJ= ½ }

1 l
+ _minmod(aj_½,wa_+½ + MAz2sgn(aj_ ½)). (16)

In the current implementation w was set to 1, and the value of M was chosen to be 50,

following the recommendation of Shu from tests using Burgers' equation. No attempt

was made to optimize the values of ¢0 and M.

The above upwind TVD llmiters, equations (15a-e), will be referred to as U1-U5,

and the TVB limiter, equation (16), as U6 in the following sections. Equations (10)

and (14) are written in the non-entropy satisfying forms since unsteady computations

are involved. These equations can be easily modified to satisfy an entropy inequality

(see Yee (1989) for an example).

4. Results

The computations were run with a variable time step, at a CFL number, based on

the convective and viscous terms (MacCormack, 1985), of 0.8. The basic grid used for

calculation of a single structure was 75 x 75, when 800 time steps were computed. A

uniformly spaced grid was used in the z direction with box length 20, and a geometric

stretching was used in the y direction to map the walls to about y = +50. For com-

paxison purposes we first present results for the growth of a single vortical structure at

M = 0.8 on a 75 x 75 grid, computed using the basic MacCormack method with no

artificial dissipation term. A measure of the width of the mixing layer is the vorticity

thickness, which is computed based on the mass-weighted velocity profile:

AU
_ = (17)

where _ and _ are spatial averages in the homogeneous z direction. The developed

structure is shown in contour plots of mixture fraction, density, vorticity and Mach

number on figures 2a-d. To assess the accuracy of the various schemes a simulation

with a finer grid was made, hereafter referred to as the high resolution run. Contour

plots for this case, using a 150 x 150 grid with symmetric TVD scheme (10) and limiter



$3, are shown on figure 3. The growth in vorticity thickness is shown on figure 4.

First the small disturbance grows in the linear regime, and the mean flow grows by

viscous diffusion. Then the disturbance becomes large and grows non-linearly. It finally

saturates out when the structure has filled the computational box and the periodicity

constraint prevents it, or any subharmonics, growing any more.

The contour plot for the mixture fraction (figure 2a) shows how fluid from the

upper side (solid contours) and fluid from the lower side (dashed contours) have become

wrapped around each other. There is a steep gradient formed between the two free-

stream fluids in the saddle-point region between two structures. The width of this

strained diffusion layer is the characteristic small length scale of this flow. Contour

plots of the density and Mach number show that fluid around the top and bottom of

the vortical structure is accelerated to locally supersonic speeds (peak Mach number

1.2), and then compresses through nearly-normal shock waves. With the MacCormack

method we see the development of oscillations, especially on the downstream side of

the shock wave. There is enough natural viscosity in the flow that the MacCormack

scheme, with no artificial dissipation term, does not actually fail with the development

of these weak shock waves. More accurate methods such as spectral methods, would

show strong oscillations at this point.

The growth history of the mixing layer computed using the three symmetric TVD

schemes is shown on figure 4, and compared with the MacCormack computation, and

with the high-resolution run (150 x 150, S3). It can be seen that there is a wide variation

between the symmetric limiters. We are in a region of the flow physics where the growth

rate is very sensitive to the Reynolds number, and any extra damping introduced by

the numerical method (or 'clipping' with a TVD scheme) makes a large difference.

One could run the simulations at a very high Reynolds number and get less difference

between the schemes. However in that case the smallest length scales would not be

resolved by the grid, and the numerical scheme itself would be acting as a sub-grid scale

model, which defeats the purpose of a direct simulation, where we try to compute all the

turbulent scales of motion with no modeling errors. We find that all the symmetric TVD

schemes are more dissipative than MacCormack's method (without an added numerical

dissipation term), and have lower growth rates and smaller developed structures. The

least dissipative limiter is $3 followed by $2 and S1. The developed structure for the S3

limiter is shown on figure 5. The shock wave is well captured in 3 grid points, but the

developed structure is smaller than with MacCormack's method. The correct growth

for this Reynolds number would lead to a structure even bigger than that obtained with

MacCormack's method (c../. figure 2)

The upwind schemes on a 75 x 75 grid are compared on figures 6a and fib. These

show different characteristics to the symmetric schemes. The start of the non-linear

growth region is reached earlier in time, which agrees with the higher resolution run.

However the growth rate in the non-linear region, determined by the slope of the curves
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at a time of approximately 60, is reduced. In this region the limiter U5 is the least

dissipative followed by U2, U3 and U1. In general it was found that the reduction in

growth rate was tied to the usual descriptor of limiters as compressive or dissipative:

the more compressive the limiter the sharper the shock waves are captured and, in this

case, the better the growth rate. The most compressive limiter that was tried was the

'superbee' limiter, U4, which is designed for contact discontinuities. This limiter was

found to over-predict the growth rate.

The two methods of implementing the TVD part of the predictor-corrector time

advance were investigated. Method PC1 advances the TVD part at the predictor step

U (2), while PC2 advances it at step U'* (equation (8)). PC2 is TVD for the scalar

constant coefficient case, but requires more storage than PC1. Plots of growth against

time are compared on figure 7. At this Mach number there is no significant difference

between the methods. At lower Math numbers it was found that PC2 is slightly more

dissipative than PC1.

The cost of the methods, relative to the basic MacCormack method, were assessed

for a 75 x 75 computation run on the Cray X-MP 4/8 at NASA Ames. The symmetric

TVD schemes were 17°'/0 more expensive than the basic MacCormack method for this

problem, and the upwind schemes were 93% more expensive. The reason for the large

difference between the upwind and symmetric schemes lies in the ability of the methods

to be vectorized on the Cray X-MP. For the symmetric schemes with no entropy correc-

tion all conditional statements can be removed from the TVD loops and these vectorize.

However the upwind schemes still have to check for a zero in the denominator of equa-

tion (14c) and this conditional statement prevents vectorization of the main TVD loop.

Note that an arbitrary small parameter can be added to the denominator of (14c) to

remove the conditional statement, be we chose to use (14c) to avoid an added parame-

ter. The simulations of the compressible mixing layer without shock waves presented in

Sandham (1989) cost about twice as much as the MacCormack method. However those

simulations had spectral accuracy, and were fully resolved.

Based on cost and performance for the mixing layer problem the choice of best

method is between the symmetric TVD scheme with limiter $3, and the upwind schemes

with limiters U5 or U6. The U6 limiter is a TVB scheme with uniform second-order

accuracy, and is as good as the best TVD schemes. The upwind schemes U5 and U6

have the best results for a given grid, but in the current implementation cost 65% more.

The effect of resolution for the symmetric scheme was evaluated by running four

simulations with grids of 53 x 53, 75 × 75, 106 × 106 and 150 × 150. The convergence

of the upwind schemes is expected to be similar. If the scheme were second-order we

would expect the error to decrease by a factor of 2 for each increase in resolution of x/_.

The total cost of the simulations increased by a factor of about 3 with each increase in

resolution. Plots of the growth history for each of these cases are shown on figure 8.

It can be seen that a large number of points are required if we want to capture all the
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details of the mixing layer growth correctly. Part of the problem is that of the TVD

scheme reducing to first-order at points of extrema. The same problem will affect all

TVD, MUSCL (Van Leer, 1974) and FCT methods which attempt to combine a low

order dissipative scheme for use around a shock wave, with a high order scheme for

smooth regions. It is possible that extra accuracy in smooth regions is not worth the

additional cost since the schemes still reduce in order at extrema, though this issue has

not been addressed here. Contour plots for the highest resolution case (150 x 150, PC1

with symmetric TVD and limiter $3) are shown on figure 3.

5. Discussion

It is well established that TVD schemes do a good job of capturing shock waves. It

was the intention of this study to assess the performance of TVD schemes (10) and (14)

in a flow where other physical processes, besides shock waves, need to be captured. The

basic finding is that these second-order TVD schemes require very fine grids in order to

capture all the flow features in the type of physical problem considered here.

The major drawback with TVD schemes (10) and (14) appears to be the low rate

of convergence as the mesh is refined, due to a low global order of accuracy. Other

TVD-type methods which attempt to obtain a higher order of accuracy are high order

MUSCL (Van Leer, 1974) and FCT (Boris and Book, 1973) schemes. However both

these methods obtain higher order by increasing the accuracy of the solution only in

smooth regions of the flow. They still reduce to first-order at points of extrema. Hope

for future computation of these flows may lie with UNO (Uniformly Non-Oscillatory)

and ENO (Essentially Non-Oscillatory) schemes (Harten et al., 1987), which try to fit

high-order polynomials through all parts of the flow, including points of extrema. Very

impressive results have been obtained with these methods for idealized model problems.

However the performance of these schemes on more practical flow problems remains

to be seen. The schemes for reconstruction presented by Harten et al. (1987) do lose

accuracy at points of extrema, unless accompanied by finer grids. It is not clear what

the overall gains are, since the operations count and grid stencil for ENO-type schemes

are larger than for TVD-type schemes.

Highly accurate numerical methods, such as spectral and Pad6 schemes, do a very

good job of resolving turbulent flow features. However when shock waves are in the flow

a prohibitively low Reynolds number, below that needed for resolution of the turbulence,

is required in order to resolve the shock waves. Without full resolution these schemes

rapidly fail. An artificial viscosity term could be added to these methods, provided that

this term does not affect the computation of the turbulent scales. The dissipation due to

artificial viscosity, viewed in wave space, would have to be concentrated at wavenumbers

higher than the largest turbulence wavenumber.

10



6. Conclusions

A class of second-order explicit Total Variation Diminishing schemes have been

evaluated for numerical simulation of the two-dimensional compressible time-developing

mixing layer, with the following conclusions:

(1) The best TVD methods were a symmetric scheme with limiter $3 (equation (12c))

and upwind schemes with limiters U5 (equation (15e)) and U6 (equation (16),

a TVB scheme). The Upwind schemes gave better results but for the current

implementation were 65% more expensive due to less efficient vectorization on

the Cray X-MP. Other limiters were more diffusive and it was found that the

'compressive' nature of the limiter was sufficient to predict its performance on the

mixing layer problem. The less compressive and more dissipative the limiter, the

slower the growth of the mixing layer.

(2)All the methods gave slightly different results, and for this problem it is necessary

to use up to 150 × 150 grid points to properly resolve the growth of a single vortical
structure.

(3) At present no ideal numerical method has been found for this flow, which requires

high accuracy to resolve the growth of an instability in a viscous regime, and the

ability to handle shock waves without oscillations. There is a need for uniformly

higher than second-order accurate numerical methods which are efficient and in-

clude a shock-capturing capability.

Acknowledgements

This work was performed while the first author was funded by AFOSR through the

URI Supersonic Combustion program at Stanford University. Computer facilities were

provided by NASA-Ames Research Center. This support is gratefully acknowledged.

References

BORIS, J. P. and BOOK, D. L. 1973, Flux-Corrected Transport. I SHASTA, A Fluid

Transport Algorithm That Works. j. Comp. PhyJ. Vol. 11, 38-69.

GUIRGUIS, R. H., GRINSTEIN, F. F., YOUNG, T. R, ORAN, E. S., KAILASANATH,

K. and BORIS, J. P. 1988, Mixing Enhancement in Supersonic Free Shear Layers.

AIAA paper no. 87-0373.

HARTEN, A., ENGQUIST, B., OSHER, S. and CHAKRAVARTHY, S. R. 1987, Uni-

11



formly High Order Accurate Essentially Non-Oscillatory Schemes, III. J. Comp.

Phys. Vol. 71,231-303.

LELE, S. K. 1989, Direct Numerical Simulation of Compressible Free Shear Flows.

AIAA Paper no. 89-0374.

LEVEQUE, R. J. and YEE, H. C. 1988, A Study of Numerical Methods for Hyperbolic

Conservation Laws with Stiff Source Terms. NASA TM-100075, also J. Comp. Phys.,

to appear.

MAcCORMACK, R. W. 1985, Current Status of Numerical Solution of the Navier-

Stokes Equations. AIAA Paper no. 85-0032.

SANDHAM, N. D. 1989, A Numerical Investigation of the Compressible Mixing Layer.

Ph.D. Thesis, Mechanical Engineering Department, Stanford University, in prepa-
ration.

SANDHAM, N. D. and REYNOLDS, W. C. 1989, The Compressible Mixing Layer:

Linear Theory and Direct Simulation. AIAA Paper no. 89-0371.

SHU, S.-W. 1987, TVB Uniformly High-Order Schemes for Conservation Laws. Math.

Comp. Vol. 49, No. 179, 105-121.

SOESTRISNO, M., EBERHARDT, S., RILEY, J. J. and McMURTRY, P. 1988, A

Study of Inviscid, Supersonic Mixing Layers Using a Second-Order TVD Scheme.

AIAA Paper no. 88-3676.

VAN LEER, B. 1974, Towards the Ultimate Conservative Difference Scheme. II. Mono-

tonicity and Conservation Combined in a Second Order Scheme. J. Comp. Phys.

Vol. 14, 361-370.

YEE, H. C. 1985, Implicit Total Variation Diminishing (TVD) Schemes for Steady-State

Calculations. J. Comp. Phys. Vol. 57 no. 3, 327-360.

YEE, H. C. 1987, Upwind and Symmetric TVD Schemes. NASA TM-89464.

YEE, H. C. 1989, A Class of High-Resolution Explicit and Implicit Shock-Capturing
Methods. NASA TM-101088.

12



U

oU

L

Y
L
v

Z

Figure 1. Schematic of the time-developing mixing layer.
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Figure 2. Flow structure at M = 0.8, MacCormack's method using a 75 x 75 grid: (s)

mixture fraction, (b) density, (c) vorticity divided by density and (d) Mach
number.
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Figure 3. Flow structureat M = 0.8,TVD $3 method using a 150 x 150 grid: (a)

mixture fraction,(b)density,(c)vorticitydividedby densityand (d) Mach
number.
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Figure 4. Growth versustime,comparing symmetric TVD schemes on a 75 x 75 grid

with MacCormack method on the same grid,and with a high-resolutionrun

on a 150 × 150 gridusingthe symmetric TVD scheme $3.
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Figure 6. Growth versus time, upwind TVD schemes on a 75 x 75 grid compared with

a high-resolution run (c.f.figure4): (a) UI, U2, U3 (b) U4, US, U6.
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