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ABSTRACT

A finite-element Galerkin formulation has been
employed to study the attenuation of acoustic waves
propagating in two-dimensional S-curved ducts with
absorbing walls without a mean flow. The reflection
and transmission at the entrance and the exit of a
curved duct were determined by coupling the finite-
element solutions in the curved duct to the eigen-
functions of an infinite, uniform, hard wall duct. In
the frequency range where the duct height and acoustic
wave length are nearly equal, the effects of duct
length, curvature (duct offset) and absorber thickness
were examined. For a given offset in the curved duct,
the length of the S-duct was found to significantly
affect both the absorptive and reflective characteris-
tics of the duct. A means of reducing the number of
elements in the absorber region was also presented. In
addition, for a curved duct, power attenuation contours
were examined to determine conditions for maximum
acoustic power absorption. Again, wall curvature was
found to significantly effect the optimization process.

INTRODUCTION

Acoustic propagation in duct bends or elbows in
the absence of flow or with low Mach number flows plays
an important role in industrial ventilation systems and
other special applications such as propagation into an
ear cavity. Rostafinski (1972 and 1976), Lippert (1954

and 1955), Miles (1947), Cummings (1974), Cabelli (1980),

Filler and Blies (1978), Osborne (1976) and von Said
(1975) have examined various theoretical and experimen-
tal aspects of acoustic propagation in curved ducts
without flow. In sound absorbing ducts, the absorptive
characteristics of lined curved ducts and lined
straight ducts have been modeled by applying the clas-
sical admittance boundary conditions at the duct walls.
The present investigation will broaden these previous
studies of curved ducts to include absorption in
e«tended reaction wall linings where the sound can move
axially through the 1ining parallel with propagation in
the main duct.

In a locally reacting liner, such as a Helmholtz
resonator array behind a perforated plate, the sound

energy interacts normally to the liner and depends only
on the local value of acoustic pressure in the adjacent
acoustic field. In contrast, the extended reaction
liner permits wave propagation in the axial direction,
as shown in Fig. 1, and its attenuation characteristics
depends on the entire acoustic field. Baumeister and
Dahl (1987 and 1989) developed a finite-element model
to study wave propagation in bulk materials as well as
in any heterogeneous medium. The absorptive character-
jstics of the bulk materials used in those studies
relied on the semitheoretical development presented by
Hersh (1980). The propagation theory and property
formulas were validated by a number of experiments one
of which is displayed in Fig. 2. As seen in the upper
schematic drawing, a section of bulk absorbing treat-
ment has been placed on the upper surface of the air
duct so that acoustic energy can be absorbed. The
plane acoustic wave represented by the vertical line in
the entrance of the straight duct will pass under the
bulk absorber and be partially absorbed. Figure 2
illustrates the typical agreement between the predic-
tions and the experimental results for the decrease in
root-mean-square pressure.

In the present paper, this finite-element model
will be used to study wave propagation in curved
S-shaped ducts with absorbing walls. This paper will
focus on the interaction of a plane wave traveling
down the uniform entrance duct with the curved walls
as shown in Fig. 3. 1In the frequency range where the
duct height and acoustic wavelength are nearly equal,
the effects of duct length, curvature (duct offset)
and absorber thickness on wall absorption will now be
examined. A means of reducing the number of elements
in the absorber region will also be presented. 1In
addition, power attenuation contours will be examined
to determine conditions for maximum acoustic power
absorption.

NOMENCLATURE

A property term, Eq. (9)

B property term, Eq. (10)

b' characteristic duct height



b dimensionless entrance helght, bé/b'
adiabatic speed of sound

13 acoustic power

f dimensionless frequency, f ba/cc')a = b;/)\oa
h dimensionless duct offset height, h'/b;

T
L dimensionless length, L'bé

N grid points in the axial direction
n outward unit normal

. (] ) l2
P dimensionless acoustic pressure, P (X'y't)/poacoa

p  dimensionless pressure, P(x,y.t)/e @t
T dimensionless thickness of absorber wall, T'/bé

t dimensionless time, t'céa/b;
X dimensionless axial distance, x'/bé
y dimensionless transverse distance, y'/bé
a dimensionless attenuation constant, Eq. (7)
B dimensionless phase constant, Eq. (8)
€ dimensionless complex property constant
A dimensionless wavelength
u dimensionless complex property constant
dimensionless density, pé/péa
w dimensionless angular velocity, w'bé/cé
w' angular velocity, 2wf'
Subscripts:
a inlet duct condition
o] ambient condition
X x~-component
y y-component
Superscripts:
! dimensional quantity
R real part
I imaginary part
GEOMETRIC MODEL
Again consider the idealized acoustic duct shown
in Fig. 3 which can be used to simulate acoustic wave
propagation in a rectangular two~dimensional curved
duct in the absence of flow. The interior passage is
assumed to contain air while an acoustic absorber is

mounted in the cavity above and below the duct in the
central portion.

In the finite-element modeling of the central
region, an S-shaped has been chosen to approximate the
two-dimensional cross-sectional profile that might be
found in a typical bend, as shown in Fig. 3. The
S-shaped profile can be prescribed by a simple third-
degree polynomial of the form

2
RCRG)
where the dimensionless duct coordinates are defined as

1 xl hl LI
y = !T X = = h = (2)
ba ba b

and by tis the dimensional height of the straight duct
leading into the curved duct and h is the dimension-
less offset height of the duct. The S-curve defined

by Eq. (1) has zero slope at x/L of 0 and 1; provid-
ing a smooth transition from a straight entrance to the
curved test section. In the foregoing equations, the
prime is used to denote a dimensional quantity and the
unprimed symbols define a dimensionless quantity. This
convention will be used throughout this paper. These
and all other symbols used in the paper are defined in
the nomenclature.

Some sort of acoustic pressure disturbance is
assumed to generate a harmonic pressure field at minus
infinity in the entrance duct. This field will propa-
gate down the duct and act as the input driving bound-
ary condition for the problem. A positive going
acoustic wave of known magnitude is assumed at the
entrance (x = 0.0) of the finite-element portion of the
duct. The pressure wave may be plane or have signifi-
cant transverse y pressure variations. The present
paper will focus on the interaction of plane propaga-
ting acoustic waves with the extended reaction absorb-
ing materials.

In the uniform, infinitely long, entrance and exit
duct regions with perfectly hard walls, the exact solu-
tion of the governing differential equations can be
easily written in terms of the duct modes (Astley and
Eversman 1981); thus, simple analytical expressions can
be employed to describe the pressure field in these
regions. In the central region which includes both the
duct and the absorber region, the finite-element analy-
sis is employed to determine the pressure field.

The assumed known pressure waves propagating down
the hard wall entrance duct are partially reflected,
transmitted and absorbed by the nonuniform segment of
the duct containing the acoustic absorber. Pressure
mode reflection at the inlet to the absorbing region
and transmission at the outlet of the absorbing region
are determined by matching the finite-element solution
in the interior of the central region to the known
analytical eigenfunction expansions in the uniform
jnlet and exit ducts. This permits a multimodal rep-
resentation accounting for reflection and mode conver-
sion by the nonuniform absorbing section (Astley and
Eversman 1981). This approach has been found to accu-
rately model reflection and transmission coefficients
(Baumelster et al. 1983).

GOVERNING EQUATION AND BOUNDARY CONDITIONS

The acoustic propagation through the two-
dimensional Cartesian duct and absorber regtons in
Fig. 3. can be modeled by solutions of the continuity,
momentum, and state linearized gas dynamic equations in
the absence of flow. As developed by Baumeister and
Dahl (1987), for harmonic pressure propagation (e+lwt)
in the heterogeneous absorber material, the equations



6f state, continuity, and momentum were combined to

yield the following wave equation in dimensionless form:

§ (1 8P\ & (1 &P 2
6y<ey 6y> * 8X<Fx 8x> +wpp =0 (3

The usual symbols for acoustic propagation are employed
and all are explicitly defined in the nomenclature.

The relationship between ¢ and u and the phys-
tcal properties of the medium is complicated. For
propagation in air, ¢ equals the fluid density and u
is the inverse of the product of density and the speed
of sound squared. For bulk absorbers, Baumeister and
Oahl (1987, Egs. (25) to (27)) employed Hersh's model
(1980) in explicitly relating ¢ and u to the poro-
stty, a viscous loss coefficient, a heat transfer
parameter and an effective speed of sound of the med-
ium. Morse and Ingard (1968, p. 253) also developed
more general parameters for describing propagation in
porous media for which ¢ and wu can be related.

In the present paper, the parameters ¢ and u
will be treated as mathematical quantities independent
of property correlations. In particular, the values
of ¢ and u associated with the optimum absorption
properties will be examined.

At the hard walls shown by the dark thick lines
in Fig. 3, the acoustic velocity normal to the wall is
zero. Again, using the momentum equations to relate
the acoustic velocity to the pressure fields requires

9p sn=20 (%)

In addition, recall that a model solution (Morse
and Ingard 1968, p. 504) is used to represent the pres-
sure in the semi-infinite, hard wall entrance and exit
regions while a finite-element solution is used to gen-
erate the solution in the curved portion of the duct.
Consequently, both pressure and velocity continuity are
required of the modal and finite-element solutions at
the entrance and exit interfaces separating the finite-
element and modal regions. This is easily enforced as
discussed by Astley and Eversman (1981).

Finally, tt is not necessary to employ any inter-
facial boundary condition inside the finite-element
region. For example the thin black line in Fig. 3 sep-
arating the air duct from the absorber region requires
no special consideration. The heterogeneous form of
the wave egquation (Eq. (3)) automatically handles the
change in properties (Baumeister and Dahl 1989,
~Fig. 7).

FINITE-ELEMENT THEQORY

In the central portion of the duct containing the
curved region, the continuous domain is first divided
fnto a number of discrete areas as shown in Fig. 3. In
the classical weighted residual manner, the pressure
field is curve-fitted in terms of all the unknown nodal
values pj(xj,y{). The finite-element aspects of
converting Eq. (3) and the boundary conditions into an
appropriate set of global difference equations can be
found in textbooks (Burnett 1987) or more explicitly in
the paper by Baumeister (1986) and for conciseness will
not be presented herein.

RESULTS AND COMPARISONS

A number of example calculations are now presented
to illustrate the use of the finite-element theory as
applied to curved ducts with extended reaction absorb-
fng walls. First, typical duct geometries and element
arrangements used in the numerical examples are dis-
cussed. Next, the effects of offset and duct length

on the transmitted acoustic energy are examined for a
fixed wall absorption layer. Then, the effect of
absorber thickness is considered. To reduce storage
requirements, the element spacing requirements in the
absorber material are examined. Finally, the power
attenuation contours for a curved duct which maximizes
the input signal absorption are examined.

Duct Geometry
The grid generation package generates the geome-

tries and the linear triangular finite-element grid
shown in Fig. 4, for a typical straight duct (Fig. 4(a))
and curved duct with maximum offset (h = 1, Fig. 4(b)).
The absorber has been placed above and below the ducts.
All of the curved duct geometries are of the form shown
but with different lengths, offsets and absorber
thickness.

Example 1: Transmitted Power

The effect of duct curvature and length on trans-
mitted power in a duct are examined in Fig. 5 for
various values of duct offset. The geometrical config-
uration is shown by the sketch inserted in Fig. 5. 1In
this case, the entrance and exit ducts stretch from
minus infinity to plus infintty which signifies the
absence of reflected energy at the exit termination.

The wall properties were taken to be ey, = 1.0 -
1 2.83 and yuy = 4.1. These properties are associated
with nearly maximum absorption of a plane pressure wave
in a straight duct at the frequency of unity, as will
later be examined in Ex. 4. For a fixed length of duct,
as seen In Figs. 5¢(a), (b), and (¢), an increase in the
duct offset parameter h increases the attenuation of
the transmitted acoustic power (integral of the product
of pressure, acoustic velocity and cross-sectional area)
at the exit of the curved lined portion. This effect is
most pronounced for the smaller duct lengths as shown
in Figs. S(a) and (b). The root-mean-square pressure
fields inside the duct are tllustrated in Fig. 6 for the
duct with 0.75 length. As seen in Fig. 6(a) the pres-
sure remains high in the central portion of the duct
with grazing contact along the absorbing wall until it
reaches the exit with very little attenuation. In con-
trast, in Fig. 6(e) the pressure field comes in nearly
normal contact with the wall and quickly dies out giving
rise to the much larger power attenuation shown in
Fig. 5(a).

Example 2: Absorber Thickness

In this section the effect of absorber thickness
is briefly examined. The configuration considered is
again shown by the sketch -in the upper portion of
Fig. 7. In this case the duct length and offset will
be held fixed at unity, the wall properties held at the
value of the previous example, and the wall absorber
thickness will be varied. As seen in Fig. 7 for thick-
ness of 0.1 or greater, the power variation along the
axial length of the duct remains similar in shape and
about the same magnitude. Clearly, only the absorber
layer immediately adjacent to the surface contributes
to the absorption of the acoustic energy. For thick-
ness of 0.05 and 0.01 significant decreases in the
energy absorbed are seen.

Example 3: Axial Discretization in Wall Absorber

For linear elements employed in finite-element
solutions of the wave equation, roughly 12 grid points
per wavelength of the dependent variable are required
to accurately resolve the complex pressure field and
the transmitted or reflected acoustic power. In per-
forming finite-element calculations, the number of
axial nodal points should be held to a minimum to
reduce computer storage as well as solution time. This




is especially true in calculations with large values of
the wall properties ¢ and p which iead to very
small wavelengths in the material. The wave length for
plane wave propagation in lossy material will now be
determined from a solution of the wave equation and a
strategy for reducing computer storage will be
presented.

For plane waves propagating in a homogeneous lossy
material, Eg. (3) reduces to

& (& 2
g;(gg) +wepp = 0 (5

The solution of which can be written as

D= o™X e-in 6)
where
172
o= 2 < A, g% - B\ %0
N /
172
5= (ya%+8% B) (8
Nz
A= eIpR + cRpI 9
B = MR = eIyl (10

The superscripts R and 1 stand for real and
imaginary parts and the wavelength can be expressed in
terms of the propagation phase constant B as follows:

cﬂg’

an

>
u

The number of grid points Ny in the axial
direction to accurately resolve the acoustic field is

12L  6BL
~ (12>

I ¢

N =
X

For the special case where the duct length is just
equal to the axial wavelength of the acoustic wave,
12 nodal points are required in the axial direction.
If the duct length is twice the wavelength then
24 nodes would be required. Thus the number of nodes
is just 12 times the duct length to wavelength ratio.
For large values of ¢ and u associated with
wall absorbers, the phase constant B increases accord-
ing to Eq. (8) which leads to smaller values of the
wavelength according to Eq. (11) and a considerably
larger number of axial nodes according to Eq. (12).
However, a plane wave incident obliquely at an inter-
face with an absorbing medium will generally be bent
toward the normal (Reynolds 1981, p. 298 and
Attenborough 1982, p. 210) making the energy transfer
in the wall absorber normal to the direction of the
energy transfer in the duct itself and thereby par-
tially reducing the axial energy transfer in the wall
absorber. Since the axial attenuation in the duct wall
will be much larger than in the air duct, consideration
is now given to basing the axial grid spacing on the
wavelength of the air duct rather than the wall absorber
wavelength. In this case the axial grid point spacing
would be

12L
Nx =T = 12Lf (13)
at

-

If such an approximation is valid, large savings in
computer storage are possible.

The validity of Egq. (13) in predicting acoustic
power attenuations and pressure fields is now examined
for two extremes of wall properties. First the moder-
ate value listed in Fig. 8(a) and then the much larger
value listed in Fig. 8(b). As seen in the upper por-
tion of Fig. 8¢a), axial spacing based on the wall pro-
perties using Eg. (12) results in a much denser grid
than the lower figure based on the wavelength in afr
using Eq. (13). For the large wall property value, the
grid density is even greater as seen in the upper por-
tion of Fig. 8(b).

For the duct configuration shown in the upper por-
tion of Fig. 9, exact calculations for duct attenuation
disptayed in Fig. 9 indicate that the axial spacing
baseu on air properties (Eq. (13)) gives nearly the
same results for duct attenuation as the axial spacing
based on the wall material (Eq. (12)). The attenuation
in dB on the ordinate in Fig. 9 is defined by

d8 = 10 log]o<%—) (18)
[o]

where E 1is the total axial power at the exit and Eq4
the power at the entrance.

In addition, the contour plots of the pressure
field inside the air duct (Figs. 10¢a) and (b)) show
that the pressure field in the duct is for all practi-
cal purposes identical when either Eq. (12) or (13) is
employed to set the axial grid point density.

Finally, the sensitivity to the number of trans-
verse nodes in the wall absorber is determined in
Fig. 11. As seen in Fig. 11 only five transverse nodes
are required to accurately estimate the attenuation in
a 0.1-thick absorber coating with the same range of
property variations previously considered.

Example 4: Attenuation Contours

Optimizing the wall absorber for maximum attenua-
tion can be an important part of the design of an
acoustic duct suppressor. In duct acoustics employing
local impedance boundary conditions, the maximum pos-
sible attenuation occurs at the so-called optimum
impedance. For a particular acoustic mode or more
generally for modes with common cut-off ratios, the
optimum impedance can be determined analytical from
semi-infinite duct theory using a single soft-wall
mode (Rice 1979). Unruh (1976) has determined the
optimum impedance for finite-length liners.

Consider a plane wave propagating down a duct, as
shown in the upper schematic of Fig. 12. By an itera-
tion process (hold one wall property fixed and varying
the other), the attenuation contours were determined
throughout the ¢ plane with increments of 0.5 taken
in the real and imaginary parts of e. The optimum
wall value associated with maximum signal reduction is
seen in Fig. 12 to occur at a ¢ of 1.5 - i 3.5 with
p equal to 4.1. The magnitude of the imaginary part
of ¢ 1is shown positive in Fig. 12. The optimum wall
¢ 1s represented by the peak contours enclosed in the
smallest circle of Fig. 12. The dB contours in Fig. 12
have been normalized between 0 and 1 by the simple
expression:

|dB| - |dB

|
contour level "']dB min s

- IdBmin[

max[

The maximum attenuation of the incoming wave is 36.5 dB
associated with this local optimum point as displayed
in Fig. 12.



For the same geometry as considered in Fig. 12,
the sensitivity of the initial starting material value
on the contours was examined and found to be quite sig-
nificant. The optimum properties can vary depending on
the initial starting value of u used in the optimum
search. In Fig. 12, the ratio of (u/e) at the optimum
point is 0.424 + j 0.989. Performing additional calcu-
Tations with different starting points, it was found
that any combination of material properties with
approximately the same ratio of (u/e) will have
yielded similar values of the maximum attenuation. As
commonly used in electromagnetic theory, +/u/e can
ne defined as an intrinsic impedance of the wall.

The curvature of the duct will play a significant
role in determining the wall materials to obtain the
maximum attenuation. For a straight duct (h = 0) of
unit length, the optimum intrinsic impedance has
shifted to a new value of approximately 0.033 + i 0.373
and the local optimum attenuation has a maximum value
of 22.113.

CONCLUDING REMARKS

A finite-element Galerkin formulation was used to
study acoustic wave propagation in two-dimensional
curved S-shaped ducts with extended reaction absorbing
walls. Example solutions illustrated the relationship
of absorption on the length, thickness and offset of
curved duct absorbing walls and the mesh spacing
requirement in highly absorbing materials. Optimum
properties to maximize wall absorption were also
examined.

For a given wall absorber and fixed liner length,
increased offset greatly increases the power attenua-
tion. Furthermore, it was shown that increasing the
absorber thickness beyond a specific value will have
little affect on the sound power attenuation. Also,
the grid spacing in the highly absorbent wall can be
the same as in the air duct without loss of accuracy
in the numerical solution.
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FIGURE 5. - EFFECT OF DUCT OFFSET ON THE MAGNITUDE
OF THE AXIAL POWER AS A FUNCTION OF POSITION
(WALLS EU =1. - i2.83; My = 4,17AND f=1).
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FIGURE 6. - EFFECT OF OFFSET OF ABSORBING WALL ON THE CONTOURS OF THE PRES-
SURE FIELD WITH NONREFLECTING EXIT FOR L = 0.75 AND f = 1,

n



DIMENSIONLESS ACOUSTIC POWER

N

-—

(A SIS 44

ba

- |

YIS

SR

Y
iR
; ‘:o/

Ll

= 7////T/ ZZ

|
-

0 5 1.0 1.5 2.0

AXTAL POSITION. x

FIGURE 7. - EFFECT OF ABSORBER THICKNESS ON THE MAGNITUDE
OF THE AXTAL POWER AS A FUNCTION OF POSITION €,=1.
- i2.83:; Hg = 4.1 AND f=1.

12



AX BASED ON WALL
PROPERTIES
€y = 1.5-3.5i
uw = 4,1
AX = 0.02564

AX BASED ON AIR
PROPERTIES
€E=1 M =1
AX = 0.0909

(A) MODERATE CASE €, = 1.5-3.5i.

FIGURE 8. - DISCRETIZATION OF AIR FILLED DUCT WITH ACOUSTIC
ABSSORBERS MOUNTED ALONG BOTH UPPER AND LOWER WALLS. (T =
0.1,h=1, f=1.
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€y = 10.0-10.01
U(.) = 4.1

AX = 0.0119

AX BASED ON AIR
/ PROPERTIES

2 E=1 14 =1
) AX = 0.0909

L.

(B) LARGE CASE €, = 10.0-10.0i.

FIGURE 8. - CONCLUDED.
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FIGURE 9. - ACOUSTIC POWER ATTENUATION AS A FUNCTION OF
AXTAL NODE SPACING IN ABSORBER AND DUCT FOR CURVED DUCTS
(f=1,L=1h=1WITH 5 VERTICAL NODES IN ABSORBER

REGION).
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AX = 0.02564
BASED ON WALL
PROPERTIES

€y = 1.5-3.5i

uu = 4.1

AX = 0.0909
BASED ON AIR
PROPERTIES

(A) MODERATE CASE EU = 1.5-3.5i uw =4.1.

FIGURE 10. - CONTOUR PLOTS OF PRESSURE FIELD AMPLITUDE.




(B) LARGE CASE € = 10.0-10.0i ¢

FIGURE 10. - CONCLUDED.
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AX = 0.0119
BASED ON WALL
PROPERTIES
€y = 10.0-10.01i
By = 4.1

AX = 0.0909
BASED ON AIR
PROPERTIES

= 4.1.
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AX = 0.02564

/_E(.) = 10.0-10.0i
/s By =44
/ AX = 0.0119
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I I |

2 4 6 8 10
NUMBER OF VERTICAL GRID POINTS IN 0.1 THICK ABSORBER

FIGURE 11. - ACOUSTIC ATTENUATION AS A FUNCTION OF VERTICAL

NODES IN ABSORBER FOR CURVED DUCT (f = 1. L =1, h=1).
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FIGURE 12. - NORMALIZED ACOUSTIC ATTENUATION CON-
TOURS FOR CURVED DUCT (f = 1. L =1, h= 1),
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