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PART I: AN OVERVIEW
1. Introduction

At present, metal matrix composites are the primary materials for use in
the propulsion systems of space vehicles due to the light weight/high perfor-
mance requirements. During its service life, the composite will experience,
to a large extent, severe thermal and mechanical loading cycles under high
temperature environments. As a result, such composite components undergo
considerable inelastic deformations, leading to phenomena like ratcheting, and
eventually to their fatigue failure. Obviously, effective utilizations of
high temperature composites require proper design technology, including 1life
prediction methodologies, for "typical" composite structural components; such
as turbine blades and combustor liners in the form of composite laminates with
flat (plate-type) or curved (shell-type) geometries.

A valid assessment of the structural integrity, reliability, and life
expectancy of these components requires the development of an improved numeri-
cal capability for their complete, "global-local" (also called progressive-
failure) analysis. This in turn requires consideration of (a) generalized
material behavior, and (b) analytical solution procedure. It is noted here
that for such a development, a general framework of wide applicability is
still lacking. The research work reported here is concerned with several con-
tributions to this end.

The term "generalized material behavior" refers to the multiaxial consti-
tutive equations which describe the basic characteristics, and experimentally-
observed phenomena, of the composite material subjected to complex thermo-

mechanical load cycles. These are the most fundamental relations required in



any analysis; in fact, their "accuracy" determines the "quality" of the entire
numerical results. Ideally, these constitutive models should then provide
accurate mathematical representations of the pre-failure, failure, and post-
failure (or damaged) materials response modes.

However, in view of the extremely complex nature of the many phenomena
exhibited by composite materials at elevated temperatures (e.g., strong
initial anisotropy; inelasticity; time- and temperature-dependent effects like
creep, relaxation, and recovery mechanisms; failure in the form of fiber
breakage or matrix-dominated ductile rupture; constituent matrix-fiber inter-
actions such as debonding and delamination failure, etc.), a concensus favor-
ing a particular approach for developing a "comprehensive" constitutive model
for composite deformation- strength behavior is not yet in evidence. Neverthe-
less, progress is currently being made on several fronts by various groups at
NASA Lewis [e.g. 1-9]. Considering the "output" composite constitutive ideal-
izations resulting from this research activity, an immediate and important
issue in this connection concerns their use in nbnlinear structural analysis.

The term "analytical procedure" used above refers collectively to all
mathematical/numerical aspects of calculations needed to obtain a solution.
To this end, the finite element method is often utilized as a general frame-
work. The present work is mainly concerned with issues related to accuracy,
reliability, and efficiency of algorithmic strategies employed in the (ma-
terially/ geometrically) nonlinear finite element solutions for laminated
composite plates and shells under static/dynamic loadings.

More detailed discussions are given below on specific areas and problems

investigated in the subsequent parts of the report.



2. Composite Constitutive Modeling
Metal matrix composites are typically multi- phase materials, comprised of

"stiff" reinforcing fibers, metal matrix (resin), as well as their inter-
phases. The mathematical characterization of their "macroscopic" thermo-
mechanical deformation/strength properties should therefore ideally be based
on a consideration of the more basic "microscopic" properties of the indivi-
dual constituents and their interactions; i.e. in the spirit of the so-called
"mesomechanics" approach [6].

In one such micromechanics approach, the overall response of the aggre-
gate composite is "derived" using the rule of mixtures, and often utilizes
some simplifying assumptions regarding the fibers’ geometry and packing, for a
representative volume element of the composite [1,8,9]. For example, this has
led to the development of a set of "simplified" nonlinear constitutive rela-
tionships by Chamis and his colleagues at NASA Lewis [e.g. 1].

Other more comprehensive developments of micromechanics-based inelastic
constitutive models for composites at elevated temperatures are currently
undervay at NASA Lewis using the method of homogenization. For instance,
based on the periodicity of the composite microstructure, a combined experi-
mental/finite element effort is made by Onat and Leckie [7] to formulate con-
stitutive/damage models for the "equivalent" homogenized composite material.
In addition, homogenization techniques based on Green functions/Fourier series
are employed by Walker [3] in developing viscoplastic models for general
periodic/nonperiodic heterogeneous composites, which can also account for

surface effects in thin structures.



However, in an alternative approach for composite material modeling, the
microscopic effects can be "averaged" at the outset, and the phenomenological
(experimentally- observed) aspects of the composite can then be idealized as
for an initially-anisotropic continuum. Various classes of such continuum-
based constitutive representations have been recently developed at NASA Lewis;
i.e., unified viscoplastic models by Robinson and co-workers [e.g. 4, 10].

In view of their generality and ability to account for many important
cyclic load/time-dependent phenomena, these multiaxial viscoplastic equations;
e.g., as suggested in [4] for transversely- isotropic composites, are presently
among the most well-developed and promising models for practical applications.
They are therefore used here as a base- form for the finite element capabili-
ty developed. Note that further extensions/refinement of this basic formula-
tion are also currently under investigation; e.g. to include high- temperature
damage (creep damage, low- and high-cycle fatigue damage, etc. [7]). Ve also
note that the recent research efforts on homogenization in [3,7] will most
likely lead to constitutive macromodels of this same basic structure.

With regard to the above viscoplastic constitutive modeling, a major part
of the present work is concerned with the study of various computational/
implementation aspects associated with their wusage in large-scale finite
element analysis [e.g. 5, 11-17]. More specifically, the main objectives here
are:

(1) Development of efficient/accurate integration schemes [e.g. 11-14]

for the resulting system of stiff nonlinear differential equations

using explicit/implicit methods with error control;



(2) Design of special procedures for the structured- coding organization
of the material model implementation into the finite element soft-
ware NFAP [18], such that it becomes not only transparent but also
immediate to constitutive researchers at NASA Lewis for future
work.

(3) Development of a "refined" automatic local/global time incrementing
algorithm [e.g. 15-17] capable of handling general loading; e.g.
monotonic or low-rate time varying load histories, as well as trans-
ient or high-cycle thermomechanical loadings, etc.

Detailed descriptions of the above items and results of the numerical

tests for the schemes developed are given in Part III of this report.

Several other aspects that are not addressed in this report, but will be
considered in our future research, are associated with the introduction of the
"damage" response [19] in the viscoplastic model. It is now well-known that
this presents unique numerical difficulties and calls for a careful investiga-
tion of the computational procedure utilized. For example, a typical con-
tinuum- damage model is likely to eventually lead to some sort of "strain-
softening" [20,21]. This may cause the finite element solution to exhibit
pathological behavior in the form of oscillations and strong element-size/
mesh sensitivity, unless suitable "localization limiters" are introduced in
the numerical model [21]. Also, depending on the particular continuum-damage
theory used, the resulting "damaged" material-moduli matrix may become "un-
symmetric" [20,22]; i.e., an efficient symmetrization procedure may thus be

needed.



Finally, there are cases in which composite structures may fail due to
excessive or "moderately-large" viscoplastic deformations (e.g. strains of the
order of a few percent, as opposed to the infinitesimal-strain assumption
typically used). One crucial question in such cases is how should these
"moderate" inelastic strains be treated in the finite element analysis? For
example, the inelastic deformations appear as an additive term in the
constitutive equations of the unified viscoplastic theory, thus leading to the
so-called initial strain approach which is typically employed in finite
element analysis. This is equivalent to an explicit or constant-stiffness
formulation for "small-strains" viscoplasticity. It is known that the expli-
cit method may present numerical instability or slow convergence problem,
especially when the composites experience large strains. In this latter case,
a need therefore arises for the development of variable-stiffness or implicit
methods [e.g. 23], which has been traditionally used for time- and rate-
independent plasticity. This in turn requires careful studies of the possible
ways for deriving appropriate material "tangent-stiffness" matrices for

viscoplastic models.

3. Laminated Composite Plate/Shell Elements

A very important ingredient in the nonlinear analysis of composite struc-
tural components is the use of suitable plate/shell elements representing
structural action of thin/moderately- thick/thick laminated composites. It is
presently well-established that the most effective approaches for geometric
modeling of plates and arbitrary curved shells are: (a) degenerated shear-
flexible (middle-surface) elements for thin and relatively-thick situations;

and (b) two-surface elements (3-D solids) for the thick regime. Despite



their popularity, displacement-based models of these types are also known to
exhibit several difficulties [e.g. 24, 25, 27] in applications to isotropic as
well as anisotropic problems (e.g., shear/membrane locking for thin struc-
tures, kinematic deformation modes for reduced integration, etc.).

Alternative formulation approaches have therefore been advocated, e.g.
using various hybrid/mixed methods. In particular, a class of effective and
simple hybrid/mixed plate and shell elements have recently emerged from our
previous research work with NASA Lewis [25-30]. More specifically, a large
variety of critical test problems, for both linear [25, 27] as well as geo-
metrically-nonlinear [30] situations, have clearly demonstrated the robustness
and accuracy of our simple quadrilateral element (HMSH5) for isotropic-
elasticity. A major portion of the present work was thus devoted to mixed
element- technology development applied to composites, for both static and
vibration analyses, as detailed in Part II of the report.

In such a development of mixed composite elements for plates and shells,
at least three numerical problems can be anticipated. First, because of their
anisotropy there will be strong interactions among various stress and strain
components in a composite element, which may induce the so-called locking
effect. This needs careful examination. For example, an attempt has been
made by Spilker [32] to formulate a locking-free 8-noded hybrid stress element
for laminated plates. However, in that approach, independent stress functions
were assumed for each individual lamina. This leads to a very large number of
independent stress (strain) parameters per element, thus rendering the analy-
sis prohibitively expensive. Instead, we propose to use a fixed set of stress

(or strain) functions for a "designated" number of laminae (plies or layers).



This "designated" number has to be determined on the basis of numerical study.
In fact, the extreme assumption of utilizing leyer- number- independent strain
interpolation for the laminate element, is utilized here, and was shown to be
successful in all the test cases investigated in Part II. This is certainly
of great advantage from the standpoint of computational efficiency.

Second, there is a need in using an efficient "through-thickness" inte-
gration scheme to obtain the overall constitutive properties of the laminated
composite from the corresponding (viscoplastic rate) equations for the indi-
vidual plies (laminae). The familiar Gauss quadrature rule for isotropic
materials is not suitable for laminated composites since it fails to capture
the material behavior of each lamina. For numerical expediency, wé developed
an "interpretive'" scheme for thickness integration that is combined with
conventional Gauss quadrature for in-plane lamina integration. That is, a few
sampling points in the thickness direction are preselected to calculate the
material matrices for an equivalent unidirectional material. Then, the cor-
responding quantities for each lamina are interpolated according to its
thickness- location and fiber-orientation. It is believed that this scheme
combines the attributes of computational efficiency as well as numerical
accuracy.

Finally, from the viewpoint of general applicability to arbitrary curved
shells (i.e., nonflat/nonrectangular elements), the need will arise for the
appropriate definition of "fiber-orientations" or "material- symmetry" axes for
the "equivalent" material at each in-plane (lamina) integration point. To
this end, we have implemented a simple "shape-function" interpolation (iso-

parametric- type) scheme based on their values associated with the nodal points



defining the element geometry; i.e., the so-called nodal fiber or material
triads. Note that for rectangular-element meshes for flat plates, this can be
reduced to simply specifying (as input) the angle of inclination of material-
symmetry axes with respect to the global axes of the composite plate.

The various aspects above have been incorporated in the mixed formulation
of the composite element HMSH5, and its applications to a number of test cases
are described in Part II of the report. Emphasis is placed on demonstrating
its response characteristics with regard to: 1) mesh-convergence properties;
2) accuracy of stress and displacement prediction in static analysis; and 3)

frequency and mode predictive capability for vibration analysis.

4, Fully-Nonlinear Analysis Capability for Shell Applications

In addition to material nonlinearities, geometric nonlinearities in the
form of 1) large rotations, and 2) large or non- infinitesimal strains, must
be also considered in the development of a fully-nonlinear solution procedure
of plates and shells [e.g. 30, 31]. For example, item (1) is crucial in
studies related to any buckling phenomenon (e.g. creep buckling). Signifi-
cance of (2) appears in the analysis of failure or damage due to excessive
deformations. In these latter cases, moderate strains (on the order of 3-57)
will be typically involved. Based on our previous experience [30], these
should be properly accounted for in the iterative solution scheme to improve
its convergence properties.

In this final part of the investigation, the general framework of fully-
nonlinear curved shells is developed for the mixed elements. Adopting an

updated-Lagrangian approach, a consistently-linearized form of the incremental



modified Hellinget/Reissner mixed variational principle is utilized to derive
the element nonlinear governing equations. Emphasis is placed on devising
effective solution procedures to deal with

(1) element configuration-update in the presence of large rotations in

space;

(2) accurate integration of spatial stress and strain fields.

A rather comprehensive account of the various aspects of this development
has been recently compiled in a report [30], which was provided to NASA-Lewis
earlier this year (1989). Therefore, only a summary of the essential points
and results in some validation tests will be included in Part IV of this

report.

5. Objectives, First-Year Accomplishments, and Outline

In summary, the overall objectives of the present work are given as
follows:

1) To develop robust and effective laminated plate/shell elements based on
the mixed method for the analysis for static and vibration problems.

2) To develop efficient implementation and time-stepping/numerical-integra-
tion schemes for unified viscoplastic constitutive models for high-
temperature composites.

3) To develop a general framework for the fully-nonlinear structural analy-
sis of shells.

Considering the above three items, our first-year accomplishments are
summarized as follows:
Vith regard to item (1), we have completed the formulation and testing of

an "extended" hybrid-mixed composite element HMSH5 for static and vibration
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analyses. Emphasis is placed in this development on: i) robustness, ii) com-
putational efficiency, as well as iii) general applicability to arbitrary
curved shells, and several noteworthy aspects are included here. Vith regard
to (i) a careful selection is made for the polynomial functions in the assumed
strain field, thus leading to stiffness formulation that is kinematically
stable, free from locking for large "thickness" aspect ratios, relatively in-
sensitive to geometric distortions, etc. In addition, with a view toward
(ii), and in contrast with other previously-developed hybrid composite plate
elements, we utilized a fized set of parameters; i.e., a layer-number- indepen-
dent assumption, for the strain field discretization, together with an effi-
cient "through-thickness" integration scheme for the stiffness calculations in
terms of the anisotropic elastic/viscoplastic properties of the laminated ele-
ment. A simplified mass matrix was also used, thus obviating the need for
expensive "dynamic condensation" of its fifth node’s degrees-of-freedom.
Finally, from the viewpoint of general applicability to arbiirary curved
shells (i.e., nonflat/nonrectangular elements) in (iii), appropriate defini-
tions of "fiber-orientations" or "material- symmetry" axes for the "equivalent"
material at each in-plane (lamina) integration point were made through the
implementation of a simple "shape- function" interpolation (isoparametric-type)
scheme based on their values associated with the nodal points defining the
element geometry; i.e., the so-called nodal fiber or material triads.

In connection with research areas in item (2) above, the major contribu-
tions of the first-year study consist of: i) four different viscoplastic
constitutive models (for isotropic and anisotropic responses), and the asso-

ciated integration methods, are coded as a separate module in NFAP so that any

11



"re-

future extension or coding modification can be done easily by a user, ii)
duced" forms of viscoplastic models were made readily available for applica-
tions to various structural components represented by a 2/D continuum, or
plate/shell elements, iii) further understanding of the numerical schemes
employed for practical analysis, and iv) development of a "refined" automatic
local time incrementing algorithm capable of handling general time-varying
load histories.

Finally, in the first-year investigation associated with item (3), the
general framework of fully-nonlinear analysis of curved shells has been devel-
oped for our mixed finite elements. Adopting an updated-Lagrangian approach,
a consistently-linearized form of the incremental modified Hellinger/Reissner
mixed variational principle is utilized to derive the element nonlinear
governing equations in the form of tfangent (variable) stiffness solution.
Emphasis is placed on devising effective solution procedures to deal with: i)
element configuration-update in the presence of large rotations in space; and
ii) accurate integration of spatial stress and strain fields when large non-
infinitesimal strains occur. Vithin this framework, the newly-developed non-
linear element HMSH5 was tested and shown to exhibit improved convergence
characteristics compared to other available elements.

Following the overview given in this first part, the remainder of the
report is conveniently divided into three separate parts, II, III and IV, des-
cribing the research work completed in each of the above three areas (1), (2),
and (3), respectively. Each part contains a review of pertinent literature,
detailed theoretical and algorithmic developments, results of numerical test

problems for validation, as well as conclusions summarizing the research items

planned for future work.
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PART II: MIXED ELEMENTS FOR LAMINATED PLATES AND SHELLS
1. Introduction

In order to analyze and design some of the complex composite structural
applications, finite element techniques are now almost invariably used in
many, if not all, phases of the design process. In addition to the design
phases, recent interest has also begun to focus on the failure and various
damage mechanisms associated with composite materials, i.e. matrix cracking,
delamination/debonding, ply failure, etc. These types of applications demand
accurate stress predictions.

Because of the above mentioned points, considerable interest and effort
has focused in developing accurate and efficient composite finite elements.
In this connection, we summarize here the results of our recent research
activity on the development of an effective quadrilateral plate/shell element,
of the hybrid/mixed type, for the static and dynamic analysis of anisotropic

elasticity.

2. Background and Literature Review

2.1 Composite Finite Elements

A laminate is typically constructed of a series of plies stacked and
bonded together to form the laminate. Each of the individual plies are com-
posed of two distinct constituents, fibers and surrounding matrix material,
which possess markedly different properties. In particular, due to the
difference in shearing stiffness of the matrix and fibers, high ratios of
elastic moduli to shear moduli are developed. Thus, the cross-sectional
warping, i.e. shear deformation, of the laminate is dependent on the ply

orientations in addition to the plate/shell thickness. Because of this, it is
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known that shear deformation has a more pronounced effect in laminated
structures than in the case of isotropic structures.

In classical lamination theory (CLT) the usual Love-Kirchoff assumptions
of plane sections remaining plane are in effect, thereby neglecting shear
deformations totally. Obviously, this type of theory is of no value except in
very thin plate or shell applications. A theory used in thick plates is that
attributed to Reissner-Mindlin type of assumptions. In this case, a constant
shear angle through-the-thickness of the plate is assumed and has been refer-
red to as the constant shear angle theory (CST). Typically, some form of
shear correction factor, x, is chosen to account for the through-the-thickness
shear deformation. These types of Reissner-Mindlin elements are those typi-
cally used for composite analysis.

It has been suggested that while this type of assumption is satisfactory
for isotropic plates, it may not be sufficient for laminated plates and shells
because of the varying shear moduli through-the-thickness of the laminate.
Thus, a layerwise constant shear angle theory (LCST) has been used in which,
as the name implies, a constant shear deformation angle is used for each ply.

Using the terminology of Bert [33], the majority of composite finite ele-
ments can be categorized into two distinct groups, namely, (1) a "smeared
laminate model" (SLM), and (2) a "discrete layer model" (DLX). In the SLM
elements, the laminate is not considered as a series of individual layers but
a heterogeneous, anisotropic medium. In terms of shear deformation, the con-
stant shear angle theory (CST) type of elements are in effect smeared models
since they do not distinguish the shear strain angles on an individual layer
basis. In the bLM elements, each layer retains its own identity and in some

cases is treated as a "sub-element" of the total element. In terms of shear
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deformation, the layervise constant shear angle theory, (LCST) are discrete
models since each layer is permitted to have its own shear angle.

In addition, the above classifications may be further subdivided into
groups which wutilize Ilower-order and higher-order approaches. The criteria
for distinguishing between a lower-order versus a higher-order approach de-
pends on the order of thickness-coordinate (z) terms included in the expansion
of various displacement components. That is, expansions including only up to
linear terms in z are described as lower-order approaches, whereas, those in-
cluding higher-than-linear powers of z are collectively referred to as higher-
order approaches. It should be noted that application of either approach can
be made on the entire laminate, as in the SLM elements, or to individual
layers, as in the DLM element.

At this point, it may be useful to briefly discuss the higher-order theo-
ries in general. There have been numerous higher order theories developed,
Reddy [34], Lo [35] and Murakami [36], to account for shear deformation. In
these approaches, higher-order expressions containing quadratic and cubic
terms are used for the displacement or stress field equations. By using such
expressions, accurate predictions of in-plane displacements, shear strain and
stress distributions through-the-thickness are obtained. The goal and motiva-
tion for using these higher-order theories is to be able to obtain an accurate
prediction of the laminate behavior while still using a 2-dimensional ap-
proach, as compared to 3-dimensional or elasticity approaches. Thus, the
higher-order theories attempt to strike a balance between complexity and
accuracy.

In the above, two approaches have been used to develop the higher-order

theories, namely, a displacement-field assumption or a stress-field assump-
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tion. The most commonly used is the displacement-field assumption, where in
this case, the new laminate theory is based upon a kinematically admissible
displacement field.

The main thrust of the "higher-order theory" models is to primarily deal
with the complex cross-sectional warping of the laminate. All of the litera-
ture reviewed, i.e. Reddy. Lo, Murakami, emphasizes how well their particular
approach can predict the "zig-zag" shape of the in-plane displacement distri-
butions. In reality, the crucial test appears to be how well the theory pre-
dicts the through-the-thickness distribution of shear stresses. In fact,
accurate methods to predict such transverse shear stress variations is cur-
rently one of the very active research areas in composite modeling; see
additional related discussions in Sec. 4.2.

For example, Reddy [34] gives results showing through- the-thickness shear
stress distributions obtained directly from constitutive equations and equili-
brium equations. The distributions obtained from the constitutive equations
are quite poor with stress discontinuities occurring at the layer interfaces.
The only improvement over the lower-order theory, i.e. CLT, is the parabolic
shear stress distribution within each layer and the ability to satisfy the
stress free conditions at the top and bottom surfaces of the laminate. On the
other hand, if ply equilibrium equations are used to calculate the shear
stresses, more accurate and correct shear stress distributions are obtained.
As will be shown later in Sec. 4, the present element can also obtain such a
prediction through the use of a modified shear strain distribution method,
which is simpler than using higher-order theory. In the results of Hurakami

[36], the shear stresses are obtained from equilibrium equations, and as ex-
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pected show good agreement with the exact solution, while Lo [35] makes no

mention of the shear stress distribution results, only flexural stresses.

2.1.1 Discrete Layer Model (DLM) Elements

A group of 8-node isoparametric hybrid-stress elements for thin to thick
laminated plates have been developed by Spilker [37,38,39]. Together with a
higher-order approach the hybrid- stress formulation is utilized. The 1latter
is claimed to be preferred since it is easier to satisfy interlayer stress
continuity and laminate surface conditions exactly. The main feature of this
element is that displacements and non-normal cross-section rotations are inde-
pendent from layer to layer [37]. Thus, each layer possesses its own degrees
of freedom (d.o.f.) and remains a discrete layer. In addition, individual
stress expressions are written for each layer. Stress continuity through- the-
thickness is then established by relating certain terms of the adjacent ith
and z'+1th layers. Also, certain displacements of the adjacent layers are
related to establish displacement continuity through- the-thickness. The DLM
approach is used in order to account for the severe cross-sectional warping on
the laminate. This point is emphasized by the fact that within eachk layer, a
higher-order displacement assumption is used. Specifically, the in-plane
displacement, v, is on the order of 23 and the transverse displacement, w, is
of 22 order, where z is the thickness coordinate. This is in contrast to the
usual applications of the higher-order theory, which is usually applied on the
laminate level.

Because each layer is considered to be discrete, forming the element

stiffness becomes an involved process. Basically, an assembly process is
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required to form the element, or laminate, stiffness from the individual layer
stiffnesses. Reference [38] likens the process to the conventional element
"assembly" operations in finite element codes. That is, stress parameter
"pointers" and nodal displacement "pointers" are required to add individual
layer stiffness contributions to the overall element stiffness. Thus, the
element requires a large amount of computation just to form the element stiff-
ness. As a matter of fact, Spilker does point out that the number of d.o.f.
and laminate stress parameters grow rapidly as the number of layers increase,
and computer core storage may limit the number of layers allowed [37].

In reference [38], in an attempt to eliminate some of the layer depen-
dency of the element, "kinematic constraints" are introduced. These con-
straints are such that a number of the individual layer displacements are
related to a laminate set of d.o.f. located at the mid- plane of the laminate.
The element d.o.f. are only those associated with the mid-plane reference
surface making the element’s d.o.f. layer independent. Thus, the element now
has a total of 40 d.o.f. independent of the number of layers. Also, the
higher- order displacement assumptions of [37] are simplified to again decrease
the complexity of the element. Thus, in effect, the detailed in-plane dis- -
placement response is neglected, yet the element still retains the higher-
order stress expressions. By using such a compromise, the element still gives
accurate transverse displacement as compared to CLT and good through-the-
thickness stress distributions as compared to elasticity.

Finally, in reference [39] Spilker introduces an element which is totally
layer independent. For moderately thick laminates, 0.01 < h/L < 0.1, shear

deformation affects structural behavior but the individual layer warping ef-
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fects are not significant; Thus, individual layer non-normal cross-section
rotations and individual stress parameters may not be necessary. In this
element, the total number of d.o.f. and stress parameters are independent of
the number of layers. First, the nodal d.o.f. are related to the in-plane and
transverse displacements at the mid-plane reference surface of the laminate,
and to the non-normal cross-section rotations of the laminate. Second, the
stress fields in each layer are expressed in terms of laminate stress para-
meters. All the through-the-thickness integrations can therefore be isolated
and they are then analytically evaluated. Specifically, this refers to the
calculation of the laminate material properties, i.e. axial, bending, and
coupling stiffnesses. In effect, laminate theory is used to calculate these
quantities, thus effectively eliminating any numerical integration through-
the- thickness. Since these are the only layer dependent quantities for the
element, the computation time will increase slowly as the number of layers
increase.

The element predicts transverse displacements quite well, as compared to
exact solutions, for laminate thickness ratios of 0.01 < h/L < 0.25, where h
is the total thickness of the lamiﬁated plate, and L is a characteristic
"spanwise" length. The stress distributions show good agreement with exact
solutions for thickness ratios of 0.01 < h/L < 0.10, i.e. up to moderately
thick laminates. The stress distributions for thick laminates, h/1=0.25, are
not in good agreement. This is attributed to some of the above mentioned
simplifications introduced into this element to improve its efficiency.
Details of improved CPU times can be found in [39], and in general this ele-

ment proves to be more efficient than the previous elements.
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Thus, the trend is to move away from the true discrete layer model, which
is inefficient from a computational standpoint, to a semi-discrete layer
model. VWhile the DLM elements give very detailed displacement and stress in-
formation, one needs to question whether or not such detail is necessary.
Spilker states that such detail may only be required for special cases such as
non-linear post-first-ply failure, laminate strength measurements, etc. [37].
But for typical structural applications such detail is not necessary.

Chaudhuri and Seide [40] present a triangular 6-node displacement based
element. It is somewhat similar to Spilker’s original element [37], in that
the total d.o.f. of the element is layer dependent. The total laminate ele-
ment consists of N "layer elements" for a N-layer laminate. Each layer ele-
ment is triangular in shape and consists of 6-nodes with 5 d.o.f. per node.
This element is different from Seide’s previous work in that the element can
assume a general triangular shape. The reason given for choosing a triangular
over a quadrilateral shape is that it allows easier modeling of holes and
cut-outs.

In terms of the d.o.f., each "layer element" has two independent in-plane
displacements and two independent rotations. Because each layer has indepen-
dent rotations, i.e. shear angles, Seide uses the term layervise constant
shear angle, LCST, to describe this type of element. The remaining d.o.f.,
transverse displacement, is not independent from layer to layer. That is,
each element shares the same transverse displacement with the adjacent nodes
that have the same in-plane coordinates through-the-thickness. This satisfies
the assumed condition of transverse inextensibility, i.e. laminate thickness

does not change, and interlayer continuity.
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However, Seide’s element differs from that of Spilker’s layer-dependent
element in one important aspect. That is, because of its underlying displace-
ment- based formulation, the former element must satisfy the displacement
continuity requirement, thus allowing the typical numerical integration scheme
to be used through- the-thickness to form the element stiffness from the indi-
vidual layer stiffnesses. In contrast, since Spilker used assumed-stress
fields, which are not continuous through-the-thickness, the complex "pointer"
method was required. Seide uses Heaviside functions to write a continuous
function through-the-thickness of the laminate for the in-plane displacements,
with the resulting expressions being similar to those used in the higher-order
theory approaches. The expression for transverse displacement is constant, as
discussed.

The results produced by this element shows good agreement with the
elasticity solutions. In particular, the transverse displacement predictions
for a thick laminate, i.e. L/h = 4, the CLT error is around -78% while the
LCST and CST give -3% and -5.2%, respectively. Thus, for thick laminates,
Seide believes that LCST is required for acceptable results. But it should be
noted that for moderately thick laminates, L/h = 10 to 20, both the error be-
tween the LCST and CST theories becomes almost negligible. Thus, since CST
theory gives adequate results for thin to moderately thick laminates, is LCST

necessary?
2.1.2 Smeared Laminate Model (SLM) Elements

Another classification of composite finite elements are what may be

termed as smeared laminate model (SML) elements. Most of the original compos-
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ite element developments fall under this particular category. The elements of
Panda and Natarajan [41], Chang and Sawamiphakdi [42], Reddy [43], Rogers and
Knight [44], and Haas and Lee [45], reviewed in this paper, use a '"smeared"
laminate in the sense that the element does not retain the discrete ply struc-
ture, as do the DLM elements discussed previously. Instead, by either numer-
ical integration through- the-thickness or the application of laminate theory
an equivalent laminate or element stiffness is formed. In most cases, the use
of this smearing technique is sufficient for predicting the global structural
response.

The elements of Panda [41] and Chang [42], can be considered as represen-
tative examples of early composite finite elements based upon a "degenerated"
solid shell ‘theory. In particular, the element of Panda is a simplification
of an element originally developed by Mawemya and Davies [46]. This original
element considered independent rotations for each layer, thus the total
degrees of freedom of the element was . dependent on the number of layers.
Panda states that the use of independent layer rotations does not necessarily
give improved results, but does increase the size of the problem considerably
[41]. Thus, the element of Panda uses a constant normal rotation through- the-
thickness of the laminate. Also, details are provided on the method of inte-
grating through- the-thickness using a "thickness concept" to effectively
account for the different layer material properties. This change of variable
scheme is common to most elements which integrate through-the-thickness to
form the element stiffness. The results provided by Panda show good agreement
with elasticity solutions. For L[h > 20 errors in deflections and stress are

on the order of -7% and for L/h > 10, the deflections are within -15} and
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stresses are within -10%. Panda shows that this particular method of inte-
grating through- the- thickness provides good accuracy for thin plates and rea-
sonable accuracy for thick plates [41].

A limitation of the previous displacement based "degenerated" elements is
in dealing with the problem of locking. That is, most shell elements have a
tendency to overpredict the element stiffness as the thickness becomes small,
wvhich leads to locking. In reference [45], Haas and Lee present a nine-node
assumed strain degenerate solid shell element, which was chosen because it has
been shown that the problem of locking is eliminated. This is achieved by
segregating the energy expression into components of in-plane, bending, and
transverse shear strain energy terms. Also, coupling strain energy terms are
included since coupling effects are present in non- symmetric composite lami-
nates (for symmetric laminates or isotropic materials, this term will vanish).
By segregating the in-plane and transverse shear strain terms, the source of
locking is eliminated. The strain polynomial assumptions were chosen to pro-
duce a stable element with no spurious kinematic modes [45]. An important
point is that these strain polynomials are used to describe the behavior of
the entire laminate through-the-thickness, unlike the stress polynomials of
Spilker [37]. Because of this, the element degree’s of freedom are not layer
dependent.

Results are presented for symmetric laminated plates subjected to a
sinusoidal load. For square laminated plates with length-to-thickness ratios
of 10 < L/h < 400, the element shows good agreement with elasticity and thick
plate theory [45]. One interesting point is that no mention is made of any
shear correction factors for shear deformation, yet reasonable results are

obtained.

23



Recall that previously the higher-order theory was shown as applied on an
individual basis, in particular, the DLM elements of Spilker. On the other
hand, Reddy [43] uses the higher-order approach on a laminate or element
level. The element, as described in reference [43], is classified as a SLM
element where the higher-order displacement fields are used to describe the
entire laminate through-the-thickness. Specifically, Redd&’s element is based
upon the previously discussed theory set forth in reference [34]. Again, as
most proponents of the higher-order theory emphasize, the classical plate
theory based upon the Kirchhoff-Love assumption is not adequate to describe
the behavior of moderately thick laminates. By using a higher-order theory,
the parabolic distribution of the transverse shear stresses is accounted for
and thereby eliminates the need for the shear correction factors, [43].

Results are presented covering deflections, stresses, buckling loads, and
vibration frequencies. If attention is focused primarily on deflection and
stress results, the higher-order element does show excellent agreement with
exact elasticity solutions for the cases presented here. Reddy again empha-
sizes the discrepancy between the CLT and HSDT, with the difference becoming
more significant as the ratio of longitudinal to transverse moduli increases.

But as is common with the higher-order approach, Reddy does point out the
associated drawbacks. First, higher-order stress and moment resultants arise
from the formulation which are difficult to understand physically. This same
problem is evident in the elements of Spilker. And secondly, the theory con-
tains derivatives of the transverse deflections. Thus, the element requires

functions with C! continuity [43].
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In reference [47], Lakshminarayana and Murthy present a shear flexible
finite element which is based upon a éeneralized theory of Yang, Norris, and
Stavsky, YNS. It is "shear flexible" in the sense that shear deformation is
accounted for. Using this theory, the coupled bending and stretching response
of the laminated plate is expressed in terms of five unknowns. That is, three
displacements; u,v,w, and two rotations; ©x,8y, of the normal [47]. The
element itself is triangular in form and has three nodes located at the ver-
tices. Complete cubic polynomials are used to approximate the displacements
and rotations within the element and were chosen because the authors believe
that higher-order elements have advantages over lower-order elements when
dealing with laminated composite plates and shells [47]. There are 15
degrees-of- freedom per node; three displacements, two rotations, and their
derivatives. The authors believe that by using the derivatives of displace-
ments and rotations at the nodes is an advantage because it allows evaluation
of the stresses directly at the nodes instead of at Gauss points which is
common in most other elements. But this also makes the element very computa-
tionally expensive since for three nodes with 15 degrees-of-freedom per node
gives a total of 45 degrees-of-freedom for the element. Thus, one must ques-
tion whether the luxury of having the stresses directly at the nodes is really
advantageous. Again, as with previous SML elements, the element stiffness is
partially based upon laminate theory to reduce the multi-layer composite into
a smeared single layer plate.

Lakshminarayana and Murthy present a large number of cases with a variety
of geometry, loading, support conditions, and plate thicknesses to access the
performance of the element and the importance of shear deformation effects.

In each case, the performance is measured by comparing to either analytical or
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other finite element solutions obtained from a reference by Noor and HMathers.
The element appears to agree very well with the other solutions, both finite
element and exact, in all cases presented. Because of the large amount of
detailed results and the varied cases, this reference will serve well as a
source of benchmark problems for the present composite finite element
development.

Rogers and Knight [44] present a higher-order element with a specific
application to filament-wound composite pressure vessels. It is pointed out
in the paper, that the main motivation for the development of the element is
to provide an efficient and simple means of modeling the complex composite
structure found in the pressure vessels. Also, because of the low shear
stiffness of the material, significant shear effects between the layers
develop, thus requiring a higher-order displacement field. The proposed ele-
ment is similar to the higher-order elements previously discussed, but a dis-
tinguishing feature presented is that the order of the through-the-thickness
polynomial is user selectable. The element subroutine internally generates
the appropriate shape functions using Lagrange interpolation polynomials.
This is unlike most elements in which the shape functions are permanently
coded into the element subroutines. This eliminates the need to manually
derive the shape functions and their derivatives. Vhether or not this feature
is really an advantage is not clear. By using such a higher-order element,
the typical multi-layer composite can now be effectively modeled using one
element through- the-thickness. As proof of the need of a higher-order ele-
ment, data is presented which shows the amount of computation time saved by
using one higher-order element through- the-thickness, as compared to the use

of individual elements for each ply.
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The element stiffness is generated by performing numerical integration
through- the- thickness on a layer-by-layer basis. Unlike most composite ele-
ments reviewed that use this technique, this element uses a zeroth-order rule
(rectangular integration rule) with the weighting factors being proportional
to the 1layer thickness in which the integration point resides. This allows
the effects of each individual layer’s material properties to be effectively
modeled. The authors do point out though, that no relationship exists between
the polynomial order, n, and the number of integration points required to
integrate the polynomial exactly using this zeroth-order integration (unlike
standard Gauss quadrature). This creates a variable in the accuracy of the
finite element solution which can be only eliminated by experience with this
particular element [44].

A1l of the papers reviewed thus far, have been limited to linear problems
with regard to deflections, vibrations, and buckling loads. One of the ob-
vious reasons for such limited work in nonlinear composite analysis is the
added complexity of the problem. Indeed, considering composite literature in
general, closed-form or "exact" solutions that do exist are further limited to
a very narrow class of problems; i.e., for the most part, to symmetrically
layered cross-ply and angle-ply laminates. This is due to the presence of
coupling terms, which are peculiar to composite materials, that often make any
analytical solution for unsymmetric laminates intractable. This accounts for
the repeated use of the 0/90 class and other symmetric laminates, which do not
contain these coupling terms, as reference solutions in most finite element

literature; e.g. Pagano [48] and Vhitney [49].
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A comprehensive review of research on both linear and nonlinear analysis
of composites was given in [50]. In addition, a penalty-type formulation to
overcome shear locking for thin plates together with the composite theory by
Yang, Norris, and Stavsky (YNS), and various classical first-approximation
shell theories were utilized in [50] to develop a displacement-based element
for nonlinear analysis. Similar applications of these types of elements can

also be found in [52,53].

3. Present Element Formulation

The element to be presented here is the extension of earlier work by
Saleeb et.al. [27] to the modeling of multi-layered composite materials. It
is the objective of this investigation to see how well the element will per-
form with the minimum amount of modifications to its basic formulation. If
the element yields satisfactory results, as such, a good foundation will have
been established in which to build upon for future work. It is also desirable
to keep the element as "simple" as possible thereby minimizing the computa-
tional expense, i.e. an element which has the total d.o.f. independent of the
number of layers.

This element may be classed as a hybrid/mixed or assumed- strain shell
element. That is, in the underlying variational principle, both the displace-
ment and strain fields are approximated independently. Since the ultimate
goal of the research is the application of the elements for high- temperature
metal-matrix composite structural analysis, i.e. non-linear material analysis,
it appears that utilizing a strain assumption, as opposed to a stress assump-

tion, is most desirable. That is, in the case of material non-linearity it is
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still entirely valid to assume a linear variation of bending strains through-
the- thickness of the "thin" laminate, while such an assumption for associated
stresses is certainly not valid. Also, choosing a strain field a priori is
much easier to justify than it would be for a particular stress field assump-
tion.

Vhat is different in the present approach from some of the previously
mentioned elements is that the assumed strain field used represents the entire
laminate. Thus this element can be classified as a smeared laminate model,
SHL, type, utilizing a first-order or constant shear angle (CST) theory. Its
general formulation is derived from a '"modified" form of the Hellinger-

Reissner variational principle, as described in the sequel.

3.1 Mixed Variational Principal
The "modified" Hellinger-Reissner principle, including the kinetic energy

term for the dynamics problem, is expressed as

= f[fv[- % le.)f + eTD? + % ﬂl:}Tﬁ - le_l]dV - fSaET‘-ldSa'

S SuTT(u-ﬁ)dSu]dr (1)
where
¢ = independently assumed strains
€ = @eg = strains derived from assumed displacements
D = material stiffness matrix
p = material density

= assumed element displacements
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u = element velocities
T = boundary tractions
f = boundary force

V = volume

7 = time

A1l quantities with an overbar, ("), are prescribed quantities, and S; and S,
are portions of the element boundary over which tractions and displacements
are prescribed. By taking the first variation of the functional with respect
to the strains e, and displacements u, and invoking the stationarity

conditions 61R =0,

Jr[j;[ 9555 + 9656 + puTéu - fTég]dV - j. ?Tégdso}dr (2)
4
the equilibrium equations, strain-displacement relationms, i.e.,
e=¢=Bu inV
Blo+ £=pi inV
together with the associated surface-tractions and displacement boundary
conditions on So and Su, respectively, are recovered. In the above, B is a

T

differential strain-displacement operator, and B® is the associated "matrix-

divergence" operator.

3.2 Element Stiffness and Mass Matrices
The derivation of the stiffness and mass matrices will be obtained from
the previously described functional Tp, MOV referring to lamina- coordinate

systems. Justification for choosing such a reference frame is given in detail
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in our previous work [27]. Thus, the functional can be expressed as,

1 T Tpn . 1 .T. T
Tp = j;[./;[- 7€ De+ eDe+gpu g]dv - ‘/;0’!.‘ gdSJ]dt (3)
where dV = dxdydz = |J|drdsdt, in which r,s,t are the natural (isoparametric)
coordinates and J is the Jacobian- of- coordinate- transform matrix. For the
finite element discretization, the displacements, u, are interpolated from the

nodal degrees-of-freedom,

5 5
_ t o9y _o(K)of(8) | o(k)I(k)
u= DRy B e v ey (4)

where the N, are the two-dimensional shape functions in terms of local (iso-

parametric) coordinates, r and s, for node k. For simplicity in terms of the

derivations, the above equation can be written symbolically as,

u=Fg ()

where N are "modified" shape functions obtained by combining terms in Eq. (4).
In the above, gﬁ(g), with i = 1,2,3, are the components of the fiber +triad
associated with node (k), which are defined as in [27].

The independently-assumed strains, ¢, are approximated in terms of the

strain parameters, f#, as follows

¢ = Pf (6)
vhere P is the strain interpolation matrix. Again for brevity, we refer to
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[27] for details of the form for the interpolation matrix P. The strains, ¢,

derived from the assumed displacements are expressed as

¢ (7)

tend
I
[N~
b

14

vhere B” is now a local strain-displacement matrix.

Now, substituting Eqs. (5), (6) and (7) into Eq. (3), the functional

becomes

=[] 5 eoten - eoaty « oo o)

i ./; TT(fjg)dSJ]dr (8)

g

Equation (8) can be simplified and written as

= JT[- 1 6'g + gleq + & Mg - gT-]dr (9)

where the matrices H, G, ¥ and ( are defined as,

B - fi fi fi pDP|J|drdsdt (10)
o= Sy Ly S g jacdsan (11
o - S0 LS onigjerasat (12)
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1 r1
q =.[1 ./_'1 T_VT@I.IIdrdsdt (13)

In order to eliminate the strains on the element level, statiomarity is
invoked on Eq, (8) in terms of § variables, thus yielding

g-=x'!

Gq (14)
Now, substituting Eq. (14) back into the functional rp and taking the
variation with respect to nodal displacement parameters, we finally get the

element stiffness equations as follows,

(6"F Y6q + Mg - Q)éq” = 0
or

¥3 + Kq = § (15)

where the stiffness matrix g is defined as

K=¢lg (16)

and the mass matrix M is defined previously in Eq. (12).
3.3 Through-the-Thickness Integration for Composites
According to Eqs. (10) and (11), the component matrices for the present

"smeared" element stiffness (see Eq. 16) are obtained by simply integrating

through- the-thickness and taking into account the differences in material
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properties of each layer. That is, since the element now represents a multi-
layered composite, the material matrix D is no longer constant through-the-
thickness. Thus, individual layer material matrices, Qt, must be formed,
transformed, and then "combined" during integration to form the smeared
laminate stiffness.

Specifically, each layer is assumed to be in a state of plane siress
(733=0), i.e. the stresses in local material fiber or symmeiry-azes coordi-

nates are ordered as

{e}y = {771,0995719:793:T13}y (17)

and the corresponding layer constitutive relation is,

o1 Diyy Dyo 0 0 O €11
722 821 D3, g g 8 €22
T12 = 33 T12
T23 0 0 0 Dygq0 723 (183')
T13 J, 0 0 0 0 D55, (M3,
or symbolically,
{0}, = 0] e}, (18b)

in which the Pl matrix elements are defined as,

E

11 99
D = H D =

117 T - vy 22 7 "1 -wigrgg

-V, oE
12899

D, =D, = 19

12 = D1 = Tvw; (19)

_ 5 5

Dgg = 619 Dyy =g CGg3  Dgs5 =17 63y



where E,, and Eqo are the longitudinal and transverse elastic moduli, re-
spectively, the G’s are the transverse and in-plane shear moduli and ¥’s are
Poisson’s ratios, with all quantities being defined in material fiber coor-
dinates. Now, the layer matrix Pg needs to be transformed from material fiber
direction to the direction of the global axes. This is accomplished by using

the standard coordinate-transformation relation:

0], = (M} 01, (1],

where [DJZ is the transformed layer material matrix and [T] is an appropriate
transformation matrix. This 1latter matrix will generally vary along the
lamina surface (i.e., t=0 surface) from one integration point to another (with
different r,s-coordinates), depending on the composite’s material-fiber
layout, in a generally-distorted (non-rectangular) and curved shell element.
However, for the special case of flat plate problems with "regular" meshes, as
in the numerical simulations reported later in Sec. 4, a simplified unique

transformation matrix can be utilized; i.e.,

cos?e sinZe 2sinecose 0 0
sin?e cos?e -2sinecose 0 0
[T], = | -sinocose sinecose cos?e-sin?e 0 0 (20)
0 0 0 cose sine
0 0 0 -sin® cos®e

where the quantity © is the angle the material fiber makes with respect to the
x-axis, as shown in Fig. 2.
Thus, the stress-strain relation in "global" coordinates for layer ¢ is

finally written as
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Tx Dyy Dyo Dy 0 0 €x

Ty gzn P22 728 8 8 €y
Txyf = 31 Uzz2 Va3 Txy
Tyz 0 0 0 D44 D45 Tyz (21)

Txz ! 0 0 0 D54 DSS ! Txz !

Finally, in order to facilitate the integrations indicated in the above H

and G matrices, we utilize the following simple "change- of- variable" procedure

[41]:
£ =-1+ & [-h,(1-t,) 2§h] 2
= -1+ - - + . 2
e PO L (22)

which yields, upon differentiating with respect to ty

h,

(See Fig. 3 for definitions of the various quantities used in the above

expressions). Thus, the matrices H and G now have the forms,

1 1 1
I YT
H = £§1 1 Y1 Y4 DD P|J|dt drds (24a)
= C
1,1 1
G = gf f f PD BLIJIh—edt drds (24b)
€= T DRI At -

which are evaluated using standard numerical integration; i.e., two Gauss

quadrature points per layer, and the indicated summation is over the total

number of layers, n.
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4. Numerical Studies

In this section, we present a series of numerical simulations for select-
ed problems taken from various literature sources, to demonstrate the capa-
bilities of the element in representing the static and dynamic behaviors of
composite laminates. These problems involve varied boundary conditions,
aspect ratios, loading conditions and laminate configurations. For several of
these problems, comparisons are made with available "exact" analytical solu-
tions as well as other independent finite element solutions. The quantities
of interest are predictions of laminate global response, i.e. deflections, and
natural frequencies with corresponding vibration modes, and laminate local
responses, namely, bending, in-plane, and transverse shear stresses. For
transverse shear stresses in particular, a series of alternative methods are
investigated in an attempt to "improve" its accuracy.

In the following results, the elements of Lakshminarayana and Murthy will
be conveniently referred to as TRIPLT [47] and those of Spilker as MQH3R [39]
and V2R [28]. These particular elements are chosen because they appear to

provide accurate results for comparison.

4.1 Static Test Problems: Deflections and Stresses
4.1.1 A Cantilever Beam with In-Plane Point Load

The following problem, taken from Lakshminarayana and Murthy [47], is
used to access the element’s prediction of the in-plane response of a lamina-
ted composite beam; i.e., a slender cantilever beam subjected to an in-plane
point load of magnitude P = 1.0 1b (Fig. 4). The material used has E;, = 30 x
10% psi, By = 0.75 x 10° psi, G, = 0.45 x 109 psi, v,
laminate configurations are used, i.e. 1-, 4-, and 8-layer laminates. Such a

= 0.25. A variety of

37



variety of multi-layer laminates will provide for a validation test of the new
element subroutines for layer-transformation and integration through-the-
thickness schemes. The "exact" solution is based upon that of Lekhnitskii,
and the TRIPLT element is used for comparison.

As shown in the results summarized in Table 1, the present element com-
pares quite well with the exact solution in all cases analyzed. In addition,

although its "overall" accuracy is comparable to that of TRIPLT, the present

‘element’s results is evidently superior in the e = 30 single- layer case.

4.1.2 A Single Layer Clamped Rectangular Plate Under Uniform Pressure

The problem analyzed here is a single layer rectangular plate subjected
to a uniformly distributed pressure load of magnitude q,- This problem was
also taken from Lakshminarayana and Murthy, and even though no "exact" solu-
tion is available, it is felt that the TRIPLT element has proven to provide
accurate results. This problem is a difficult test for the element due to the
combination of plate aspect ratio, boundary conditions, and high material
anisotropy. The geometry of the plate has an aspect ratio of 2, and has to-
tally clamped boundary conditions, Fig. 5. The material used has the follow-

ing properties, B, = 30 x 10°, Byy = 0.75 x 10%, G, = 0.45 x 10°, 6, -

0.375 x 109 v, = 0.25.

Because of the demanding nature of the problem, a mesh convergence study
was performed to assess the elements behavior as a function of mesh size. Due
to a lack of material symmetry, the entire plate was modeled. The results for
the TRIPLT element were obtained using an 8 x 8 mesh. Recall the TRIPLT ele-

ment uses 3 nodes with 15 d.o.f. (degrees of freedom) per node, thus giving a

total of 1215 d.o.f. for the 8 x 8 mesh. The present element’s 10 x 10 mesh
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contains 605 d.o.f. As shown in the convergence results in Table 2, for most
material fiber angles, convergence is attained at the 8 x 8 mesh with the 10 x
10 mesh giving the best results. Thus, the present element is able to model
the problem, accurately using less d.o.f.

Table 3 summarizes the above results for normalized center deflections in
a 10 x 10 mesh for the present element and an 8 x 8 mesh for the TRIPLT

element.

4.1.3 Two-Layer Clamped and Simply Supported Square Plates Under Uniform
Pressure

A square, 2-layer plate subjected to a uniformly distributed pressure Py
is considered here. The plate was analyzed using both simply supported and
clamped boundary conditions. Note that the simply supported boundary condi-
tions have, in addition to the transverse displacement, the in-plane displace-
ment normal to the plate edge restrained. The clamped boundary conditions
have all d.o.f. restrained along the plate edge. The material properties for
the problem are; By, = 40 x 100 psi, Eyy = 1 x 105 psi, 6, = 0.5 x 10° psi,
Vig = 0.25.

The results are compared to exact solutions as well as other finite ele-
ment results wusing the TRIPLT element, and the MQH3T and V2R thin plate
elements of Spilker [38,39]. Both of these latter elements contain 8 nodes
with 5 d.o.f. per node. A 6 x 6 mesh of MQH3T elements is used for the clamp-
ed plate (665 d.o.f.) and a 4 x 4 mesh of V2R elements is used in the simply
supported plate (325 d.o.f.). The TRIPLT element utilized a 6 x 6 mesh (735
d.o.f.). The present element used a 10 x 10 mesh for both cases (605 d.o.f.).

Again, due to a lack of material symmetry, the entire plate was modeled, and
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the results are summarized in Tables 4 and 5. Clearly, the present element
agrees well in both cases with the exact solutions.
In addition to displacements, bending moments Mxx and Hyy wvere calculated

for the simply supported plate, and are given in Tables 6 and 7.

4.1.4 Cylindrical Bending of Symmetric Laminates Under Sinusoidal Pressure

In the present example, the cylindrical bending of a symmetric laminate
is considered. The problem is a simply supported plate subjected to a sinu-
soidal pressure load of maximum intensity q,- The material properties are;
Byy = 25 x 10° psi, Byp = 1 x 10% psi, 6, = 0.5 x 10° psi, 6,5 = 0.2 x 108
psi, Vig = 0.25.

Exact solutions for this specific problem have been obtained by Pagano
[56,57], providing detailed stress distributions, in addition to deflections.
Thus, this example will provide a means of determining the present elements
prediction of laminate local behavior; in particular, transverse shear stress-
es, which will be discussed in the next section in some detail.

Figures 6 and 7 show deflections, w, as predicted by the present element

and compared to the exact solutions, where

3
_ 100E22h

W = —
q,1

Figures 8 and 9 show the predicted through-the-thickness, (T-T-T) distri-
bution for in-plane stress, T which matches that of Classical Plate Theory

(CPT) quite well, as expected.
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4.2 Treatment of Transverse Shear Stress

As mentioned previously, one of the desirable features of any composite
element is its ability to accurately predict the "detailed" stress distribu-
tion within the composite. However, in this regard, one of the obvious limi-
tations of the element presented here is the assumption of constant transverse
shear strain through-the-thickness (see Fig. 10 with the same problem as des-
cribed in Section 4.1.4 being considered here). The resulting transverse
shear stress, if directly obtained from the constitutive relations, are dis-
continuous through- the-thickness, and as Fig. 11 shows, will be grossly in
error. Thus, some consistent means needs to be established to allow more

accurate transverse shear stress distributions through-the-thickness. Again,

it was still desired to avoid any modifications to the element’s basic formu-
lation itself. Thus some form of "post-processing" of the transverse shear
stresses was attempted while still keeping the "computationally-efficient"
global scheme of utilizing constant through-the-thickness and layer-number
independent distributions for transverse shear strains. To this end, several

approaches are described next.

4.2.1 Approach 1: Modified Shear Stress Distribution

The first approach involves the simple redistribution of the transverse
shear strain into a parabolic form through-the-thickness. This type of
assumption is believed to be more reasonable in that the conditions of zero
shear strain at the top and bottom surfaces are automatically satisfied. The
value of the constant shear strain obtained directly from the finite element

results 7ave, is redistributed parabolically, i.e.
3 z 2
Tnax = 3 Tave 5 1(2) = Tmax |1+ 4 [H] (25)
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The corresponding transverse shear stress is then computed using "layer"

constitutive equations,

{r} = D01, {1}y (26)

where the subscript k corresponds to layer k.

As shown in Fig. 12, using this method does produce more accurate trans-
verse shear stress distributions, yet the stresses remain discontinuous at the
layer interfaces. Note, however, that the magnitudes of the shear stress are
closer to the exact values. It may also be noted that this type of distribu-

tion is similar to that of a higher-order theory presented by Reddy [34].

4.2.2 Approach 2: Equilibrium-Based Method

In the alternative method investigated here, an attempt is made to elimi-
nate the transverse shear stress discontinuities noted previously at the layer
interfaces. In particular, the methodology outlined by Chanduri and Seide
[58,59] was chosen. In this approach, "layervise" equilibrium and stress con-
tinuity conditions are imposed. (ne problem arises, however, in choosing the
values of average layer shear stress, }k' Note that the exact methodology as
given in [58,59] cannot be applied here to achieve the same good results due
to the rather significant differences between the elements utilized. As dis-
cussed previously, the element of Seide’s, for which this method was devel-
oped, is a layer-dependent element of the displacement type, i.e. the total
degrees of freedom are layer-dependent quantities. In contrast, the mixed
element presented here, has in effect, only one "layer" to model the entire

laminate thickness.
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Initially, the average shear stress values used were those obtained di-
rectly from the finite element analysis (refer to Fig. 11). The transverse
shear stress distribution as compared to the exact 3-D solution is shown in
Fig. 13. The shear stresses in the middle 90-layer are grossly underestimated
and the stresses in the outer two layers (both 0) are overestimated. Obvious-
ly, no improvement has been attained. Thus, two additional cases using dif-
ferent values for the average layer shear stress }k were investigated. In one
case, the average layer transverse shear stresses were calculated by taking
the average distribution as predicted by the previous Approach 1; see Fig. 12.
Using these values for }k’ produced the distribution shown in Fig. 14, where
we note that the shear stress values in the middle layer are still underesti-
mated. In the second case, the value of }k was taken to be the value of the
average shear stresses at the interface of any two adjacent layers, and the
resulting distribution is shown in Fig. 15. The persistent problem of the
poor stress prediction in the middle layer remains. But it should be noted
that at the layer interfaces the value of the shear stresses match those of

the exact solution rather well.

4.2.3 Approach 3: Simplified Strength-of-Materials Concept

Firally, the third approach investigated is based upon a basic strength
of materials concept, specifically, the transformation of the various layers
to "equivalent" cross sectional areas depending on their elastic moduli. This
is a method used frequently in the design of heterogeneous materials (e.g.,
reinforced concrete). The layer cross-sectional areas are modified by using

the following "modular" ratio, n,
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n = E; (27)

where EO is the selected "reference" elastic modulus and Ek is the elastic

modulus for layer k. Thus the equivalent cross-sectional area is simply,
A, = ni (28)

Once the cross section of the laminate is transformed into an equivalent

section, the transverse shear stress distribution is then calculated by the

following formula,
v
r(z) = | (29)

where V is the total shear force acting on the cross section; § the statical
moment of cross-section about the neutral axis; I the moment of inertia of the
transformed cross-section; and t the width of the layer at a point z.

The calculation of the total shear force V, per unit length, is obtained
from the transverse shear stress distribution obtained directly from the

finite element solution (Fig. 11), i.e.,

n
V=X¥r7h 30
oy T (30)

The results of this method are shown in Fig. 16, and clearly illustrate

the excellent stress distribution obtained. The quality is far better than
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either of Approaches 1 or 2. 0f course, the major limitation to this approach
is the fact that the expression for transverse shear is based upon a linear
distribution of stress, thus linear material behavior is necessary. Since the
immediate goal is to extend the current element formulation to non-linear

composite material behavior, this type of approach will need to be modified.

4.2.4 Additional Remarks on Alternative Approaches for Transverse Shear
Stress Computations

Approaches 1 and 2 above produced rather "mixed" results. Approach 1 is
still attractive from the standpoint that the assumptions made for the current
linear analysis are still applicable to non-linear analysis. But, as mention-
ed, the drawback is the stress discontinuities at the layer interfaces. Con-
cerning Approach 2, a point of difficulty is in the determination of the
values for }k' A somewhat "ad hoc" procedure was used and such a methodology
is not desirable.

With regards to Approach 3, it is certainly appealing in view of its
extreme simplicity. Some initial thoughts have already been given for the
extension to non-linear analysis, and it appears that some workable extension
is possible. 1In this, the restrictive condition of linear through-the-thick-
ness distributions of in-plane normal stresses will be replaced by a modified
"piecewise- linear" assumption for each layer, and the "local" form of equili-
brium conditions are imposed to derive the applicable formula for transverse
shear stress distribution. Whether or not this approach will work as well and
provide as accurate results in the non-linear regime as it did for the linear

case, remains to be seen. Some additional numerical studies in the linear, as
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vell as the non-linear cases will need to be conducted. And this is a part of
our planned future research work.

The difficulties associated with accurate distributions of transverse
shear stresses serve to show the inherent limitations of the '"smeared" com-
posite element approach. The accurate distributions obtained by other compo-
site elements are at the expense of using rather computationally-expensive
formulations. Very detailed distributions are simply not possible using the
type of elements as the one presented here. But again, one must question how
crucial is it that the element be capable of detailed "local" quantities in
addition to accurate "global" quantities, such as displacements, vibration
frequencies, etc. It is our view that such detailed "local" responses will
always necessitate very refined, and also complicated, formulations that can
best be used only for critical parts of the laminated structure determined on

the basis of a less-expensive "overall" analysis of the "global" response.

4.3 Test Problems for Dynamic Analysis

As described in [27], a feature of the element presented here is that the
element is defined by five nodes, four of which are defined externally and the
fifth node being generated internally. The fifth node’s degrees-of-freedom
are then condensed out of the element stiffness matrix before assembly into
the global stiffness matrix. It is this feature which presents some difficul-
ty when dealing with the mass matrix for dynamic analysis. This point can be
made more clear by looking at the eigenvalue problem being solved. That is,

the associated eigenvalue problem can be expressed as,

(K- 1) {d} =0 (31)
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vhere K and M have dimensions 25 x 25. In matrix form,
Ki1 Ky ) ¥y My dc 0
[ K21 Koz ] ) [ Mi2 M2 ] da | ~ (32)

For the case of lumped mass, which is being considered here, M;2 and M,

are zero. Thus, the eigenvalue problem is reduced to,

[l ] {] - -

Using simple algebra and solving for middle node degree-of-freedom, dpn,

we have,

“dn = - (K22 - A!zz)'lglzTgc (33b)

and the corner node degrees-of-freedom, dc, are
(K1 - Myq)de + Kyadp = 0 (33c)
Substituting the expression for dn into the above, we have,
(K11 - AMyg)de + Kya(- (K22 - 3!22)'1512T§c) =0 (33d)

As is evident in the above expression, the equation is coupled containing both
known, stiffness and mass, terms, and unknown, A, quantities. Particularly
the term (K2 - AMy3)-! presents computational difficulties as discussed by

Kidder [60]. Ordinarily, some iterative process would be required to solve
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the above. Most of the literature dealing with condensation in general,
[61-63], has been applied to the global mass and stiffness matrices. That is,
the focus has been in reducing extra structural degrees-of-freedom through the
use of condensation techniques. Thus, iterative methods are acceptable on the
global mass and stiffness matrices. But in the present case, the condensation
is required on the element level. Thus, the above methods would have to be
applied to each element which would be computationally expensive.

With the above discussion in mind, a suitable alternative to condensation
is desired. One such alternative is by neglecting the middle node entirely,
thereby eliminating the need for any form of condensation. Specifically, the
lumped mass matrix M, as defined in Eq. 12 of Sec. 3.2, is constructed using
shape functions, E which are based upon four boundary nodes only. By using
the four-node shape functions, the mass will be "lumped" at the corner nodes
only. It is believed that this approach is justifiable for the following
reason. The middle node’s additional displacement is very small relative to
an "average" displacement interpolated from the four corner nodes. Thus by
using a sufficiently fine mesh, the contribution of the middle node becomes of
less importance. Therefore, the current assumption is that neglecting the
middle node may not lead to significant errors in frequencies. In the remain-
der of this section, a series of numerical problems are investigated to deter-
mine the validity of the approach outlined above. Since this is the first
implementation of the dynamic analysis capability for the element, both iso-
tropic and anisotropic applications are required to test the new subroutines

for dynamic analysis.
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4.3.1 Isotropic Material Applicationms
4.3.1.1 Isotropic Cantilevered Plate

This first example of an isotropic cantilevered plate is chosen to pro-
vide a method of determining how significant neglecting the middle node is
over range of frequencies. This particular problem, found in reference [65],
provides both numerical and test results for the first twelve frequencies of
vibration. In the analysis performed here, mesh sizes that range from 4x4 to
10x10, for the entire plate, are used to study the effect of mesh refinement
on the convergence of the first six frequencies.

As Table 8 shows, reasonable results are obtained for the first two
frequencies for all mesh sizes considered, (i.e. the error is within 8] for
wy). When considering the higher modes, as shown, additional mesh refinement
is necessary in order to produce reasonable results, (i.e. error within 7% for
wg). Thus it appears that for the first six frequencies, the element gives

accurate results.

4.3.2 Composite Material Applications

In this section, a series of composite structures are examined with the
specific examples chosen to study the effects of fiber orientation, number of
layers, aspect ratio, and boundary conditions on the frequency response. In
most cases, due to the lack of "exact”" solutions, comparisons are made to
other finite element results. Specifically, comparisons are made to the
displacement-based elements of Oden [24], Owen [64], and Reddy [43,51]. In
all of the following examples, one quarter of the plate is modeled using a 6x6

mesh.
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4.3.2.1 Anisotropic Cantilever Beam

A simple cantilevered beam which has a single layer with varying fiber
orientations is considered here. The reference "solution" is that provided by
Oden et.al. [24]. The material properties used are those which are said to
represent cubic synonymy that simulates the single crystal structure of nickel
alloy found in turbine blades [24]. Thus in this case, the fiber angle is
actually the preferred direction of the single crystal material and is allowed
to vary from 0 to 90, Fig. 17. Specifically, the material properties are
E, =E;2=1.9716 x 106psi, G;2=5.4758 x 108psi, v;2=0.2875, and p=0.25. In the
analysis of Oden, both linear and quadratic two-dimensional elements are used.
Namely, the analysis uses a mesh of 2x40 linear elements (I) or a mesh of 1x10
quadratic elements (II).

Tables 9 and 10 show the results of our analysis as compared to that of
Oden et.al. for the first two frequencies. It should be noted that the ele-
ment mesh used for this analysis was constructed so that the vibration dis-
placement is out-of-plane of the element as compared to Oden where the dis-
placement is in-plane. Thus, a "simpler" mesh of 1x20 elements is used. As a
matter of fact, a mesh of only 1x10 elements gave satisfactory results, but a
slightly finer mesh is used so that plots of the corresponding mode shapes
will be more accurate. Fig. 18 shows the mode shapes corresponding to the
first two frequencies of vibration for a crystal direction e = 0°. The mode

shapes compare well to those given in [24].
4.3.2.2 Four Layer Symmetric and Anti-Symmetric Square Plates
This example is that taken from Reddy [51]. Two different laminate

configurations are considered: 1) a [45/-45/-45/45] symmetric laminate, 2) a
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[45/-45/45/-45] anti-symmetric laminate. Both simply supported and clamped
boundary conditions are used as described in [51]. Two different materials
are considered: Material I: E;;=25 x 108psi, [E;5=1 x 108psi, G;2=0.5 x
106psi, Gy3=0.2 x 106psi, v;2=0.25. Material II: E;;=25 x 106psi, Eqp=1 x
108psi, G;2=0.5 x 108psi, G23=0.2 x 106psi, w»;4=0.25, with p=1 for both
material types.

Fig. 19 shows the comparison of the present element with that of Reddy’s
and with closed-form solutions where noted. As is shown, the present element
shows good agreement in all cases. It even shows better accuracy than Reddy,
when compared to the closed-form solution for the simply supported material II

case.

4.3.2.3 Simply Supported Square Laminated Plates with Varying Number of
Layers

The present example is chosen to demonstrate the effect of thickness and
the number of layers on the fundamental frequency. A number of cases were
investigated, namely; two, three, and eight-layer anti- symmetric laminates.
In all cases, layers of the same fiber orientation have the same thickness
while the +total laminate thickness remains constant. The plates have simply
supported boundary conditions, that is, in-plane displacements are fixed in
the tangential direction and symmetry boundary conditions enforced since only
one quarter of the plate is modeled. Again, a 6x6 mesh is used in the present
analysis. The material properties are the same as those described as Material
IT in section 4.3.2.1. Fig. 20 shows the results for the three-layer [0/90/0]
laminate, where comparison is made to both the finite element solutions of

Owen [64] and classical plate theory, CPT.
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As shown, for large laminate thickness, the difference between CPT and
the finite element solutions is significant, and therefore, CPT is inaccurate
for thick to moderately thick laminates. Again, the pronounced difference
between the CPT and finite element solutions is noted. In both figures, the
present element agrees well with the results of Owen. Unfortunately for
comparison purposes, Owen makes no mention of the mesh size used in the
analysis. But relatively speaking, these simple problems serve to demonstrate

the present element’s ability to produce accurate results.

4.3.3 Additional Remarks

Considering the results presented above, it appears that the current
assumption for forming the element mass may be acceptable. 0f course, no firm
conclusions can be made at this time because of the limited, and somewhat
simplistic numerical studies performed thus far, that is, only simple beam and
flat plate structures are considered. The problems of the above type have
predominantly translatory mass effects. The rotary inertia terms have yet to
be examined. Thus, additional studies, in which curved shell geometries are

modeled, need to be investigated.

5. Final Conclusions

In this part of the report, the formulation and numerical performance of
the mixed element as extended to laminated composite applications is presented
with both linear static and dynamic analysis capabilities demonstrated. Even
though some aspects of the element require further investigation, as outlined

in Sec. 4.2.4 and 4.3.3, a certain degree of confidence is developed consider-
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ing the encouraging numerical results obtained in this report. The immediate
goals of the current research are as follows.

The extension to shell problems is the next immediate objective. At the
present, the only extensions that are foreseen in order to make the element
applicable to shell problems is the generalization of the transformation
matrix. That is, a full three-dimensional transformation matrix will need to
be used. Such a transformation matrix already exists in in the computer code
utilized (NFAP), thus making the extension straight-forward. Additional test
problems of shell type applications will be made.

Some thought has been given to possible refinements for the shear correc-
tion factor x. As is consistent with the Reissner-Mindlin type of elements, a
shear correction factor, k, is chosen to account for shear deformation. It
should be noted that the value of the shear correction factor currently used
is 5/6 and is typically used for isotropic cases. It may be more appropriate
to select a value for « which depends on the laminate configuration being
analyzed. A methodology for this as presented by Vhitney [54] and Noor [55]
has also recently proposed a method of an a posterior:i correction of the «
values. Vhether or not such modifications are necessary remains to be seen.

And finally, the extension to non-linear material behavior will be the
primary focus of the research. Modifications to the element formulation to
account for this type of analysis will be made. Part IV of this report will
outline this aspect in more detail. In general, it is believed a firm basis

is established in which future research may build upon.
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PART III: COKPUTER IMPLEMENTATION AND NUMERICAL METHODS FOR VISCOPLASTIC
ANALYSIS

1. Introduction

As a part of the NASA Lewis’ research and development efforts for viable
design of composite structures at elevated temperatures, a study was initiated
to investigate efficient computational methods for the inelastic analysis of
structural components subjected to thermal/mechanical cyclings. Our study is
focused on large-scale computation via finite element method and heurestic nu-
merical integration schemes for handling stiff and strongly nonlinear differ-
ential equations associated with the constitutive modeling of high- temperature
composites.

It is generally known that the rate-dependent inelastic behavior (i.e.
both plastic and creep responses) of composites can be better represented by a
unified approach in the form of viscoplasticity theory. In this theory, the
constitutive relations of composites are described by evolutionary equations
which contain certain types of internal variables to model the deformation
features such as inelastic straims, cyclic strain hardening or softening, and
thermal ratcheting phenomenon, etc. However, the associated constitutive
equations are known to have "stiff" regimes which present considerable numeri-
cal difficulty in structural analysis [66]. For example, the differential
equations, when integrated numerically, are very sensitive to the time steps
employed. If large time steps are used in the analysis, it may result in nu-
merical instability or inaccurate solutions [11,13,14]. If on the other hand,
small time steps are imposed, the computational cost required for an analysis

may become prohibitively high. In view of these considerations, a reliable
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and efficient numerical algorithm is essential for conducting practical visco-
plastic analysis.

In viscoplastic analysis of structural problems via finite element meth-
od, two levels of numerical calculations are involved: namely the structural
and material (or local) levels. On the structural level, global equilibrium
is enforced by using either a constant stiffness [11,13,14,67] or tangent
stiffness approach [68-70]. On the material level, both the explicit [11,13,
14,66,67,70] and implicit [11,69-75] integration schemes have been used to
evaluate the viscoplastic rate equations. In addition, automatic time stepping
in conjunction with some sort of error control may also be employed [13,14,66,
77,78]. More recently, a uniformly-valid implicit scheme proposed by Walker
[12,72] appears to offer great promise for obtaining stable and reliable re-
sults in finite element analysis.

In our first year research effort, we have conducted a numerical study on
various integration schemes for viscoplastic materials subjected to monotonic
as well as cyclic mechanical loadings. For this purpose, four different ma-
terial models were implemented into a nonlinear finite element program NFAP
[18]. These include: Valker’s model [2,19], Robinson’s model for isotropic
materials [80], Robinson’s model for transversely isotropic materials [4], and
Bodner’s model [81]. In addition, several numerical integration schemes have
also been implemented into NFAP for the intended study. These include: expli-
cit Euler forward method, explicit and implicit trapezoidal rule with or with
out iterations, an automatic time-stepping based on the Runga-Kutta operators.
Three numerical examples are included to demonstrate the effectiveness of the

integration schemes considered.
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2. Constitutive Models

Vithin the framework of unified viscoplastic constitutive theories, vari-
ous mathematical forms have been proposed for specific applications. In this
section, we shall focus our attention to five particular models which appear
to be the likely candidates for the constitutive modeling of high temperature
composites. These are: Walker’s model, Robinson’s model for isotropic and
transversely isotropic materials, Bodner’s model and Freed’s model. Before
the outline of the aforementioned models, a brief description on the general

form of the state-variable based viscoplastic equations is given below.

General Form
By limiting the scope of the present study to small deformation theory,
the stress rate é in a viscoplastic material is related to its elastic strain

rate through

¢ =D(i- & (1)
where ¢ = stress rate
¢ = total strain rate
éI = inelastic strain rate
D = elastic material stiffness matrix

The inelastic strain rates are assumed to be functions of effective stresses

in the form

-1 [ (2

with the evolutional laws
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=0t ey,
S
vhere ¢ = vector of stresses
a = vector of back stresses
k = drag stress
(') = time derivative of the quantity in question

(3)

and @a, hy and 7, Tk are the work-hardening and recovery functions, respec-

tively.

Vithin the framework of the above structure, a wide variety of viscoplas-

tic models have been proposed. In the following, we shall 1list

for our intended studies.
a. Walker’s Model [79]

The first deviatoric invariant is defined by

1/2
I = [32; [ S5 - asg] 3 845 - aij]]
with
P - [2 I -1.]‘/2
= |73 €1 €ij

Sij = i - % 01 Okk

The inelastic strain rate is given by

I [1]“(§Sii - 8ij)

= IX ) |
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The evolution equation for the back stress rate is

and the drag stress rate is given by

K = nsKse "R R (9)
A1l the material constants, i.e. n,m,nq,ny,n3,n4,ns,ng,n7,a,,K, and K,
may be temperature-dependent. K is the initial value of the drag stress and

7o indicates the amount by which the stress-strain curve is rigidly shifted

along the stress axis.

b. Robinson’s Model for Isotropic Materials [80]

First, we define

X = Sij(s‘i]jl - aij) (10)
P (11)

) - pel(FTans) (] (12)
R = Relt0000(s- )] (13)

I = g [Sij - asj][Se5 - 5] (14)
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The inelastic strain rate is given by

S -a
I _ 1 (J2 . 4™ Tii g
€ij = P(X)g[k—r 1] 61?7'&— (15)

2

With the evolution equations being

. orf .I pe™ Aeij
aij = €:: = - (16)
T €] Bas a1 172
where:
6= (6" - Go)P(x) + Go
G for G > 2Go
" _
6" = {géo for 6 < 260 (17)
0 ifx<¢<-1
1-x)2 .
f-1<x<0
P(x) = 1 ==
1- Ll%zlz iF0o<x<1
1 if x> 1

c. Robinson’s Model for Transversely Isotropic Materials [4]

Assuming the existence of a potential function:

8 = 0(F,G) (18)

and that for small deformation the orientation direction of transverse

plane stays the same, the two yield surfaces are defined by:
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(19)
1 ’ 1 ’ 9 ’
G=KT [11 +';’-2'12 +m13]
Let
f(F) = g% and L&) - g% (20)
The flow law is defined by
I
€ij = f(F)lyj (21)
and the evolution law by
aij = h(6)esj - 7(6)IL;; (22)

where Tij are functions of the effective stress tensor ¥j; and the fiber

director dj

Tij = Tij(Zij,dids)
and I;; are given by

ITi; = IIij(aij,did;j) (23)

with
Bij = 815 - @i
d. Bodner’s Model [81]

The inelastic strain rate has the form

dely = pSi; (24)
. N .
with ue = Dad, (25)
-22(n+1)
where D} = Dze MSJ2)0
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Jg = %Sijsij

o'V
7 =0y - (Z1-To)e ~ T
-aVy
m =My + Mye (26)
0 0
7 = £(Vped¥yp) - £(¥7)

where

d¥p = Sijdel;

e. Freed’s Model [82,83]

A viscoplastic model based on thermodynamic considerations was recently
proposed by Freed and the model has been characterized for polycrystal-
line metals such as aluminum, copper, nickel and tungsten. In this model

the constitutive relations are

S = 2u(e - €
tr(s) = 3K[tr(e) - 3a(T-Tw)]
(27)
AB = 20 J At
AD = h § At
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where S = deviatoric stress vector
e = deviatoric strain vector
eI = inelastic strain vector

4 = shear modulus
& = bulk modulus
= back stress vector

drag stress

==] [ =N -]
n

= hardening coefficient

The evolution equations are

tme
1l

)
*hr

1 B o1 B
B=& - LN - o gy (28)
5= Nt - JuEh - er

with a constraint equation for £ or r

Drt- (29)

NiH

. Lz |IZl| + Z ||z + LR |IB(|
) DLZ

The functional form of thermal diffusivity is adopted after Miller

exp(- Ip) ;T2

°* exp [— K%;(Zn %L + 1)] 3 T

\V4
=3
[

I
=3
r

(30)
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3]

where ( = activdation energy for self diffusion
T,

k

a transition temperature

Boltzmann constant

and 7 is a Zener-Hollomon parameter and has the expression

o (E
Z = A sinh 7

(31)
vhere I = vector of effective stress
=5 -8
At steady state, Z assumes the value
. IS
Zss = A Slnhn '_C"— (32)
and A, C and n are the Garofalo creep constants.
The limiting functions of dynamic recovery are
L =gD
(33)

f = Da + (Du - Da) exp ['3(L - ”I}”)]

Where D, Dy, and 5 are material constants such that 0 <D < D, < C.

Further, the thermal recovery functions are given by
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(34)

It is noted that all the above models, except the last one, have already
been implemented into NFAP. Freed’s model is currently being implemented

for future studies.

3. Finite Element Equations

For finite element analysis, we follow the conventional incremental ap-
proach in conjunction with an initial strain method for the treatment of vis-
coplastic effects. In this approach, numerical calculations are seéregated
into two levels, namely, structural and 1local levels. On the structural
level, the targeted solution time is divided into a sequence of (global)
increments and the incremental structural equilibrium equations are solved for
each time step in succession. O0On the local level at a material point, the
constitutive rate equations are integrated by a subincrementing technique so
that an incremental form is obtained. Vith this connection, the stress rate
is related to the elastic strain rate by Eq. (1). For finite element analysis,
it is more expedient to transform Eq. (1) into an incremental form for a typi-

cal time step t’e[t, t + At] by writing
_ I
Ag = D(Ae - A¢™) (35)

where the vector of incremental stresses
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t+At
b= f ot (36)

Similar expressions can be written for Ae and ASI.

0f course, efficient inte-
gration of Egqs. (1)-(3) to obtain Eq. (35) is the main objective which will be
discussed in the next section.

Once the constitutive equations are defined according to Eq. (35), the
incremental equilibrium equations for a typical displacement-based finite ele-

ment are
gAg = AR + AJ (37)

in which K = the element stiffness matrix, Aq = the vector of incremental
nodal displacements, AR = the vector of incremental applied forces, and AJ =
the vector of incremental forces due to viscoplastic deformations, which has

the expression
83 = [8T0 (aeh) av (38)
v

vhere B = the strain-displacement transformation matrix.

In the above equation, the viscoplastic effect is treated as an equiva-
lent (pseudo) nodal force vector appearing on the right hand side of the equi-
librium equations. Since determination of AJ requires the knowledge of current
state, equilibrium is approximated and is then achieved through an iterative

process. For discussion purposes, we consider a solution step between (tp,

and t, + At). The equilibrium equations can be written as
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At the beginning of the step:

Kig® = AR° (39)
For the i-th iteration cycle:
KAgi = AR' + AJY; 1= 1,2,... (40)
. T I\i-
AJi = Y BD (Ae”)? ldv (41)

As shown in Eq. (9) an elastic solution, and hence the strain increment, is
estimated at the beginning of the global time step. Based on this strain in-
crement, the stresses, and the state variables, one can calculate the inelas-
tic strain increment using a subincrementing procedure to be discussed later.
Once the inelastic strain increment is obtained, the incremental pseudo force
AJ in Eq. (41) can be evaluated. |

At this point, it is important to note that the success of equilibrium
iterations depends upon how accurate the pseudo force AJ or the inelastic
strain increment is calculated. Due to the "stiff" phenomenon of viscoplastic
rate equations, the solution accuracy of ASI is highly sensitive to the values
of state variables evaluated at material sampling (or integration) points.
Therefore, from the numerical standpoint, a subincrementing scheme is usually
necessary at each integration point. If, on the other hand, the localized in-
elastic strains are calculated incorrectly, structural equilibrium can not be

maintained in Eq. (40).
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4. Numerical Integration of Constitutive Rate Equations

In this section, we present the numerical techniques for integration of
the constitutive rate equations which are essential for the finite element
analysis. For discussion purpose, the constitutive rate equations are

replaced by the following expression

y=1(y -1t (42)

The above equation represents a system of nonlinear, first-order ordinary
differential equations. For a multi-axial stress state, the vector y consists

of 19 components; six Cauchy stresses ¢, six back stresses a, six inelastic
strains EI and one drag stress k.

Although several numerical schemes can be used to integrate Eq. (42),
three considerations must be taken: a) suitability for finite element imple-
mentation, b) solution accuracy, and c) computation cost. For example,
Gear’s multi- step methods were shown to be very effective for integration of
viscoplastic equations under a homogeneous stress state. The methods are,
however, not suitable for large scale finite element computing in view of two
reasons: a) excessive computer core memory is required, and b) a special
start-up procedure is needed. Therefore, one-step methods appear to be more
suitable for finite element applications.

Two classes of integration schemes are normally categorized under the
one-step methods, that is, explicit and implicit methods. Each class has its
advantages and drawbacks. The explicit methods are only conditionally stable,

although less computing effort is required. On the other hand, the implicit

methods are known to be numerically stable, but the corresponding computing

67



cost is rather high. In the following, both the explicit and implicit schemes

and automatic stepping methods are briefly reviewed.

4.1 Explicit Schemes

There are several one-step explicit integration schemes available. 1In
the following, we consider four different methods.

Forward Fuler Scheme:

Ve consider a typical time interval [tn, tn,i] with the time increment

At = tn,1 - tn. The values of y at time tn‘l may be evaluated by

Ynset = Yo + At fn (43)

where

¥n+l = Z(tn+l)

y (tn) (44)

et
=]

!
]

fa

"
t b

(!n, tn)

It is apparent that yn,; can be calculated directly from Eq. (43) without
involving any iterations. Eq. (43) represents the first order approximation
to y at tp,:.

Euler-Cauchy’s Scheme:

The functions of y at ta,: are approximated by

_ 1
y =y v hE +f) M (45)

“nas+l
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where Y1 = ¥n + At - fn
(46)

f,

f(zl ) tn+l)

Obviously, Eq. (45) represents a second-order approximation to Ynet-

Trapezoidal Rule:

By considering a second- order approximation to yn,;, one may write

E B,

(47)
with Ynst = Yn + Ay
ot
where Jn = 3§ t=ty (48)
and I = an identity matrix

Runge-Kutta Method:

It is a higher order integration rule. At time t, < t; < tn,1, the "m-

stage", k-th order Runge-Kutta method has the form

m
Yaor = ¥ + 885 4 £j (31, 1) (49)

where A;’s are the weighting coefficients which have different values depend-
ing on the order of approximation chosen; m defines the number of evaluations
of the function f and k refers to the order of truncation error in the Taylor
series expansion of y at tn,;. Let E; be the truncation error. It is given

by
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k
b = T 1 (50)

4.2 Implicit Schemes

Several different implicit schemes are available [71] for the solution of
Eq. (42). Here, we will consider two different schemes: trapezoidal method
with Newton-Raphson iterations and Valker’s integration method.

Trapezoidal Method with Newton- Raphson Iterations:

At time tn,;, the function y is evaluated from

(1 - %1 Thot) byi*t = ya - yaur 4 %l (fa + fh,1) i=0,1,2...  (51)

where  Ayi+t = yi+t -y (52)
= Znit Tnal
a-nd X?u.l = Xn
(83)

ot
!n+l ) ai tzt!“»l

It is noted that the coefficient matrix of Ayi*! on the right-hand side of Eq.
(51) is asymmetric. If one is to use tangent stiffness method to solve the
global equilibrium equations, cautions have to be given in the handling of the
unsymmetric structural stiffness matrix. In general, the implicit method is
unconditionally stable and it yields better numerical accuracy over the expli-

cit schemes.

Walker’s Integration Method [12,72]:

Valker proposed a recursive integration procedure to integrate the stiff

differential equations mentioned in the above. The relationship was obtained
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by converting the differential equations, i.e. Eq. (42), to a system of equi-

valent integral equations. For example, we consider Eq. (7), which can be

written as
y+Qy=v (54)
_ 2
where y=5-3 Q
§ = deviatoric stress vector
q = back stress vector
q = % R(l'%)
v=2ue- g0

The differential Eq. (54) can be integrated from 0 to t+At in the form

t+At
y(t+At) = Y(t) e'[Q(t+At)’Q(t)]+ {” e'[Q(t+At)'Q(f)] g% d¢ (55)

With an asymptotic expansion, the above equation may be approximated by
y(t+bt) = y(t) e 204 il;z-_uﬂl Av(t+At)
. (e 80 i [1-e 809} [av(t+at)-Av(t)]  (56)
where Ag = AQ(t+At)

In Eq. (56), the evaluation of AQ and Av at t+At on the right-hand side of the

equation requires the knowledge of y(t+4t). Hence Walker’s integration method
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is an implicit scheme. The method, according to the results presented in [12,

72], is very stable and highly accurate.

4.3 Automatic Time Stepping

In an automatic time stepping, the time increment for achieving a "spe-
cific" solution accuracy is determined judiciously by the computer program.
Several versions of automatic step control are available [13,66,77,78]. For
example, a procedure based on the Bunge-Kutta method was proposed in [13].
The key elements of an automatic step control are: a) an error estimate for
the calculation of y at the end of each time step, and b) a criterion for
determination of the time step At. The error involved for a particular inte-

gration rule is given by

P+1

I¥gess - Teenel
E= T (57)

where Zziit

function value of y at the time t+At evaluated by a (p+1)-th
order integration formula

a Euclidean norm

A time step At in the calculation is retained if the error e computed from
e = E/|lynll (t£-to), tf = final analysis time and t, = initial analysis time,

is kept within a tolerance limit, i.e.

e < €y (58)
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If the above criterion is not satisfied, the time step must be revised accord-

ing to
At =7 - At (59)

where 7 is a non-negative coefficient, determined from

(te-to)

5. Computer Implementation

Thus far, four viscoplastic models have been implemented into NFAP for
the intended numerical studies. These include Bodner, Valker, Robinson’s
isotropic and transversely isotropic models. Implementation of Freed’s model
into NFAP will be done during the second phase of this study. In addition, we
have implemented the following numerical integration procedures into the pro-
gram:

- Forward Euler scheme

Explicit trapezoidal rule

Implicit trapezoidal rule

An automatic subincrementing control

Valker’s integration method will be considered in the second year study.

In NFAP, all the viscoplastic models and the related integration proce-
dures were programmed in a separate material module (called Model §6). Any
future coding modifications or additions can be done locally without inter-

fering with other parts of the program.
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The viscoplastic material module is called by the main program during two
distinct stages of calculations: global stiffness assemblage stage and stress
and strain calculation stage. The material model is being driven by all the
continuum elements: 2/D continuum, 3/D continuum, plate and shell elements.
As shown in Fig. 21, when the material model #6 is activated, two paths of
calculations are involved and the paths are controlled by a parameter "IND".
That is, at the beginning of the analysis, the following subroutines are
called for assigning workspace and array initialization:

Subroutine Name Functionality

INITWA Initialize VA - array which contains ¢, ¢, SI, a,

and other material parameters at each integration
point for all the elements of a particular ele-

ment group

MO6INI Routine called by INITWA to perform the same
function

MO6CHMC Interpolate temperature dependent material con-
stants.

During each typical time stpe (i.e. either element stiffness calcula-
tions, equilibrium iterations, or stress calculations), the material Model #6
(M06STR) is called by the stress-strain driver (STSTN) and the following
functions are performed:

1) Formation of elastic material stiffness matrix, which may be temperature-
dependent.

2) Selection of a specific viscoplastic model and integration procedure.

3) Using subincrements to calculate: Ag, AEI, da, etc. and update these
quantities.

4) Performing error checks and revising the subincrement h if necessary.

A flow chart for the above calculations is shown in Fig. 22.
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6. Numerical Examples

To demonstrate the integration methods discussed in this report, three
examples are included: 1) a uniaxial plane stress problem, 2) a simple beam
subjected to specified displacements, and 3) a thick wall cylinder under in-

ternal pressure. Each of these problems are described in this section.

6.1 A Uniaxial Plane Stress Problem

Ve consider a plane stress problem, for which a uniaxial homogeneous
stress state is imposed using Valker (case A) and Robinson isotropic models
(case B), respectively. The main objective of running this problem is to test
the convergence characteristics of various integration rules with and without

subincrement stepping.

Case A - Walker’s Model

A monotonic ramp load in the form of constant strain is imposed. The
following numerical schemes were exercised:

a) Forward Euler Rule (Fig. 23)

At(sec.) Number of Subincrements
16.2 2
16.2 4
32.4 4
32.4 8

b) Automatic Subincrementing (Fig. 24)
At = 16.2 and 32.4 sec.
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c) Explicit Trapezoidal Rule (Fig. 25)

At (sec. Number of Subincrements
16.2 2
16.2 4
32.2 2

d) Implicit Trapezoidal Rule (Fig. 26)
At = 16.2, 32.4, 54 sec.

The numerical results in the form of stress-strain plots are shown in
Figs. 23-26. At first in Fig. 23, obviously the forward Euler’s rule is the
least reliable unless the integration step is sufficiently small, i.e., At =
16.2 or 32.4 sec. with number of subincrements = 4 or 8. O0Otherwise, numerical
instability and/or gross error occurs in the responses. The automatic subin-
crementing procedure with an error control (see Fig. 24) is definitely much
more reliable regardless of the size of the global time step being used. Both
the explicit (Fig. 25) and implicit trapezoidal rules appear to give quite
accurate results regardless of the step size or subincrement size used. Al-
though the computer time is somewhat more expensive as compared to the expli-
cit schemes, the implicit method may be particularly useful for handling com-

plex thermal-mechanical cyclings.

Case B - Robinson’s Isotropic Model

In this case, the material is subjected to uniaxial cyclic strains (2 1/2

cycles as seen in Fig. 27) with three different strain rates: R = 4 x 10-2, 4
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x 10-3, 4 x 10-4/min. The maximum strain in all three cases was 0.32}. Both
the forward Fuler and explicit trapezoidal rules were employed. As seen in
Figs. 28 and 29, the predictions correlate closely with the experimental data
in [80]. It is noted however, that some numerical difficulty was experienced
for the case of low strain rate, i.e. R = 4 x 10-4/min. This was induced by
the discontinuous function (or shape change in the smoothing spline function)
in BRobinson’s model. Consequently, very small time steps have to be employed

in order to reach a convergent solution.

6.2 A Simple Beam

A simply supported beam subjected to specified displacement at its center
is considered. Using symmetry conditions, only one half of the beam is model-
ed by six 8-node plane stress elements in Fig. 30. Two loading histories are
considered in the analysis: case A - cyclic displacement with an amplitude of
0.095 in. and loading rate of 0.1 in/min (Fig. 31), and case B - constant dis-
placement of the same amplitude with a hold time ty = 168 hrs. The maximum
bending stress (at the center lower fiber) vs. maximum displacement of the
beam is plotted in Fig. 32. This result is very similar to that in [80]. In
addition, the change in maximum stress as a function of time is shown in Fig.
33. Some stress relaxation is apparent from this plot.

When the beam is subjected to a constant displacement with a long hold
time (tp=168 hrs., significant relaxation of the maximum bending stress is

expected as shown in Fig. 34.
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6.3 A Thick Vall Cylinder

A cylinder, with an internal radius 0.4 cm and external radius 0.635 cm,
is subjected to a ramp internal pressure shown in Fig. 35. The cylinder was
modeled by twelve 8-node axisymmetric elements under plane strain deformation.
A global integration procedure was chosen as the following in order to achieve

convergent solution:

0 <t<28x10-4 hr. At = 7 x 10-4 hr.
28 x 10-4 < t < 42.8 x 10-3 hr. At =5 x 10°3 hr.
42.8 x 103 < t < 44.3 x 10-2 hr. At =5 x 10-2 hr.
44.3 x 10-2 < t < 4.44 hr. At = 0.5 hr.
t > 4.44 hr. At = 5 hr.

For comparison of results, four subincrementing schemes were employed:

Case A - automatic subincrementing with error checks
Case B - four subincrements for all global steps
Case C - two subincrements for all global steps

Case D - no subincrements.

Calculations were made from the forward Euler formula (of first order
Runge-Kutta methods). The radial displacement at the outer wall of the cylin-
der versus time is shown in Fig. 36 for the four cases of integration schemes.
Apparently, the results obtained from the automatic subincrements with an er-
ror control (limited to 0.1% according to Eq. (58) agree closely with those
given in [80]. Solution accuracy deteriorates as the number of subincrements
decrease. More noticeably from the result of Case D, no numerical instability
is indicated and global equilibrium was satisfied for every incremental step.
However, the solution is far £rom accurate due to the uncontrolled errors

resulting from numerical integrations of the viscoplastic rate equations.
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7. Conclusion
We have completed the implementation of four viscoplastic models into

NFAP for the numerical study of integration methods. Among all the integra-

tion schemes investigated, it appears that either an automatic subincrementing

procedure with an error control or an implicit scheme in the form of trapezoi-
dal rule or Walker’s integral relations is more desirable.

The major contribution of the first-year study in viscoplastic analysis
consists of: 1) viscoplastic constitutive models and the associated integra-
tion methods are coded as a separate module in NFAP so that any future exten-
sion or coding modification can be done easily by a user, 2) the viscoplastic
models can be applied to various structural components which can be represent-
ed by 2/D continuum, 3/D continuum, or plate/shell elements, and 3) further
understanding of the numerical schemes émployed for the analysis.

It is anticipated that our next phase of study will include:

1) Implementation of VWalker’s integration method and performing numerical
study on various constitutive models as compared to other implicit
schemes such as the trapezoidal rule.

2) Implementation of Freed’s viscoplastic model for application purpose.

3) Investigation of solution strategy for nonlinear analysis of various
structural geometries.

4) Development of an improved automatic stepping procedure with error con-
trol on the basis of an implicit integration scheme.

5) Initialization of nonlinear damage analysis.
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PART IV: FULLY-NONLINEAR ANALYSIS CAPABILITY FOR SHELL APPLICATIONS
1. Introduction

The development of finite element models for the fully-nonlinear analysis
of plates and arbitrary-curved shells, including the effects of both material
(e.g. plasticity) and geometric nonlinearities (e.g. large displacement/
rotations and finite stretches), has been a very active research area over the
years, and especially in recent years [30,31,84-89]. This extensive work was
prompted mainly by the many conceptual, theoretical, as well as computational
difficulties and challenging problems involved in nonlinear shell formulations
and solutions. In addition, there is an increased industrial need to perform
large-scale computations utilizing these general shell models, such progres-
sive failure analysis to predict damage, buckling, post-buckling and 1limit
collapse states of stiffened plates and shells, etc.

As evidenced by numerous recent works, the degenerated-shell approach has
apparently continued to be the most popular in such general developments. In
particular, the important contributions here, including many variants of the
displacement-based formulations, as well as a number of different hybrid/mixed
developments, have been critically reviewed in [30]. However, developing a
fully nonlinear solution procedure for arbitrarily-curved shells is a very
demanding task. Indeed, in such a general development, it is only a minimal
requirement to use a robust linear shell element (i.e., rank-sufficiency,
locking free, accurate stress predictions, insensitivity to geometric dis-
tortions, etc.) as a starting point. Additionally, several other fundamental
issues must be carefully investigated. Confining attention to the quasistatic

problem, the following are of utmost importance from a theoretical standpoint:

80



(i) consistent linearization of the underlying weak, or variational, form of
the governing equations [88-90]; (ii) treatment of large rotations, in both
stiffness derivation as well as the configuration update procedure [31,91,92];
(iii) wuse of objective measures of stress and strain, and their rates, suit-
able for the particular form of the nonlinear material model employed (e.g.
plasticity, viscoplasticity, etc.) [93-98]; and (iv) use of a valid method
for stress integration (update) that maintains incremental objectivity in the
presence of large rotations and "non-infinitesimal" stretches, when dealing
with rate-type constitutive equations [75-99].

The objective in the present paper is to briefly review some of our
recent work dealing with the formulation of a general theoretical framework
for the analysis of finitely stretched and rotated shells wusing our hybrid/
mixed method [30]. In particular, this is utilized here as a basis for
deriving one representative nonlinear model of this type; i.e., HMSH5 (four-
noded quadrilateral). Numerical results illustrating the performance of the
element in some test cases are also reported in order to demonstrate the
effectiveness of various proposed solution schemes. More examples can be
found in [30]. |

Ve finally note that the present mixed element HMSH5 is "extended"
nonlinear version of its linear counterparts; e.g. see [27] for applications
to isotropic shells, and Part II for extensions to laminated plates/shells.
The crucial point in its mixed formulation concerns the judicious selection
of the parameters in the polynomial strain approximation. In particular, this
was facilitated by the use of a set of bubble functions (i.e., kinematic

degrees of freedom associated with an interior fifth node) in HMSHS5.
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For conciseness, the scope of the present discussion is limited to quasi-
static problems. In addition, special instability phenomena and post-buckling
responses are not addressed. Further, in all the applications presented
later, we utilize a "semi- linear" elastic isotropic model, thus enabling the
comparison of our results with other independent solutions available in the

literature.

2. Geometric and Kinematic Descriptions

2.1 Basic Hypotheses

The main assumptions underlying the present mixed-element developments

are summarized as follows:

(i) straight and inextensible shell "normals" (or "thickness" fibers).

(ii) =zero "through- thickness" normal stress (i.e., plane-stress assumption).

(iii) "small" transverse shear strains, but large membrane and bending strain
components.

The first two simplifying hypotheses (i) and (ii) are typical in any de-
generated shell model [e.g., 84], based on classical Mindlin/Reissner plate
theories. However, note that, even though assumption (i) is utilized as a
basis for deriving the element governing "stiffness" equations , fiber "thin-
ning" effects due to large membrane strains can still be recovered in the
computations; e.g., using the incremental "average- thickness" update procedure
in [86].

On the other hand, certain important implications resulting from the ad-
ditional assumption (iii) can be exploited to develop simplified and effective

numerical algorithms [30]. From a practical standpoint, its justification is
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that "large" transverse shear strains are not typical in common thin or moder-

ately-thick composite shell structures.

2.2 Coordinate Reference Frames
Three different types of Cartesian reference frames are defined here for

convenience in subsequent derivations:

(1) The fized or global reference frame, with its orthonormal base vectors
gi(i:1,2,3), is used to define element geometry and its translational
displacement DOF (degrees of freedom).

(2) A unique local fiber coordinate system is constructed at eack node, with
f
i
fiber. During the incremental analysis, this orthogonal fiber triad is

associated base vectors e;(i=1,2,3), where §§ coincides with the nodal
continuously updated and used as a moving basis for defining the "finite"
rotational DOF at the node.

(3) A local lamina system at each integration point in an element,
gf(i=1,2,3), with gé taken to be normal to the lamina surface, and the

£ and 95 selected as in [30]

other two in-plane lamina-tangent vectors e

(see Fig. 37).

This latter lamina basis rotates rigidly as the element deforms, and it
is found to be most convenient for invoking the plane stress assumption in the
gg-direction in all configurations as well as for ensuring the invariant pro-

perty in the interpolation of the assumed strain field given later.
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2.3. Geometry and Kinematics
Vith its midsurface taken as the reference surface, the position vector
to an arbitrary point in the shell element at any time instant "t" is defined

in terms of the natural coordinates (r,s,f) as follows:

e t Te
bty =3 Ny txk +5 B thk Ny teg(k) (2.1)
k=1 - k=1 -
where tfk, tgg(k), and thk are the position vector, components of a unit

pseudonormal (fiber) vector, and fiber-dimension (shell-thickness) parameter,
respectively, at nodal point k on the reference surface. The Nk(r,s) are the
two-dimensional shape functions associated with node k [27], and n, the number
of nodes per element.

There are five DOF per node used to parameterize the element configura-
tion in the shell space: thrée global translations (u,v,w), and two "fiber"
rotations @, and e, about axes gf and gg. Note that, following [30], these
latter nodal rotation freedoms are appropriately viewed here as generalized
finite rotational coordinates of the Rodrigues-Euler type [91,92], thus pro-
viding a convenient, singularity-free (no drilling freedoms) parameterization
for the director fields of the elements. In total, an HMSH5 element thus con-
tains 25 DOF.

In the context of the present incremental analysis, three successive con-
figurations, at time "O" (initial), "t" (current) and "(t+At)" (incremented or
neighboring) are considered. Then, the total and incremental displacement

fields of the element can be expressed as
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e t e
£ 4t f(k £(k
u=3 N ‘y+z 5N (b et ()0, 0cf(K)) (2.2)
k=1 k=1
n n
e T e
£ t+dt_£(k) b f(k
bu= 5 N by vz 3 thy N (Y ef®) - (k) (2.3)
k=1 k=1
where
wos by Oy et by = P -ty

The relation in Eq. (2.2) is directly employed to evaluate the total ele-
ment displacements and their derivatives (i.e., total geometric "Almansi"
strains in Eq. 3.1). In this, components of the "updated" director vectors,
gg, in the configuration "t" are determined in terms of nodal rotations using
the (geometrically-exact) update procedure of Sec. 4.4.

On the other hand, the relation in Eq. (2.3) provides the basis for de-
riving the "linearized" governing equations of the element. To this end, the
second term must first be expanded in terms of nodal rotation increments, and
here we utilize the following "linearized" kinematic approximation:

n n
e

Au = 3

=2 (-Aell( tgg(k) + Ae tgf(k)) (2.4)

€t

2 k=1 k "k

for the stiffness evaluation of both elements considered. Ve particularly

note that this leads to the well-known expression (i.e., similar to the "true"

continuum case [84]) of a single geometric stiffness matrix (see Sec. 4.2).
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Remark 2.1 Alternative forms for nonlinear kinematic approximations of the
rotational term in Eq. (2.3) have been also employed in several recent studies
[e.g. 88,89]. This led to the introduction of various aedditional geometric
stiffness contributions, which were found to be necessary in order to attain
quadratic rate of (asymptotic) convergence in Newton-Raphson iterative schemes
for solutions of large-rotation shell problems. However, as was demonstrated
in [30], even with the single geometric stiffness based on (2.4) above, the
same "good" convergence rate is also exhibited by the present mixed model
HMSH5; the crucial point here is the "exact" updating of the orientations of

nodal fiber triads (Sec. 4.4).

Remark 2.2 In addition to its computational efficiency, it was also proved in
[30] that the geometrix stiffness of HMSH5 possesses a "second-order" accur-
acy, thus making the element capable of appropriate modeling of instability

modes; e.g. creep buckling.

3. Variational Principle

A modified Hellinger-Reissner variational principle [e.g. 30,100] pro-
vides the starting point for the present incremental, step-by-step analysis.
This takes the following form in updated Lagrangian (UL) description with "t"

as reference; i.e., 5A1HR =0,

LT RN SR S,
Argp = 6 - zAe"che + o7he + Ae"che - Ae"c(e-e)|dV - AW (3.1)

~ - - -~ - -
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vhere de and A@ = A§ (linear) + A@ (nonlinear) are, respectively, independent-

" 1y-assumed and geometric (from displacements) Green strain increments; e and e

the corresponding total Alamansi strains; ¢ the material stiffness; A¢ = che
the Truesdell stress increment; ¢ the true (Cauchy) stress; and AW is the work
of prescribed forces. The last term in the bracket of Eq. (3.1) is due to
compatibility-mismatch [5,45].

Note that, for the purpose of implementing element HMSH5, all strain/
stress vectors in the above will be defined with respect to the lamina basis
at  "t". In particular, this implies the use of a "reduced" (5x5) material

matrix, in accordance with assumption (ii) of Sec. 2.1.

4. Finite Element Formulation
4.1 Strain-Field Discretization

In addition to displacement interpolation, a polynomial for Ae in the
present mixed element is also needed. To this end, we utilize the same spe-
cific "least- order" polynomial strain approximations for these elements pro-
posed previously for linear analysis [30]. Thus, in tensor-component form,
the incremental lamina strains Ae’ for undistoried geometry are, for HMSHS

element:

Aei1 = ﬂl + ﬂzr + ﬁ3s + f(ﬂ4 + ﬁsr + ﬂGS)

Aeé2 = ﬁ7 + ﬂsr + ﬁgs + f(ﬂlo + ﬂllr + ﬂ12s)

dejg = A1z + Bygt (4.1)
Bejs = Bys + Bygr + Byps

befs = Big + Bigs + Byyr
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Note that the above strain distribution needs to be further modified to
account for geometric distortions; namely the "important" in-plane lamina
(skewness) distortion. To this end, we use a "constant" Jacobian transforma-

tion as described in [25,30]. WVith this, we can finally write

[
4
1

[ -]
>

T

(4.2)

vhere Af are generalized strain parameters, and P are "modified" strain-

interpolation functions.

4.2 Element Stiffness Equations

In view of Eqs. (2.4) and (4.2), the appropriate "linearized" form of the
variational principle in (3.1) is simply obtained as in the convectional
"true" continuum case. This yields, after invoking the stationarity condi-

tions with respect to Af, and then Aq,

b= [GAg+ (2 - 1)) (4-3)
where
H = (P cPdV; 6=/[P cB dv 4.4
L
Eo=fPchdV;@=fPcB
T ° T
=P cedisly= /P ced (4.5)
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as well as the desired final stiffness relationships:

(K + Kyp) 82 =0- (8 + 0) (4.62)
Tl . P
k=@ 16 5 Ey=fBy o0y d (4.6b)
9 = { BLodV 5 Q=G ET (3 - L) (4.6¢)

See details in [27]. The K; is the element "linear" (or material) stiffness,

Kyp

acy"), and the right-hand side of Eq. (4.6a) includes "correction" terms due

its geometric stiffness (shown in [30] to exhibit second-order "accur-

to both equilibrium imbalance (g-gl) as well as compatibility mismatch terms

in 92.

4.3 Solution Procedure
Once assembled, the linearized equations above are utilized in the fol-
lowing global incremental-iterative full Newton-Raphson scheme:

(t¥At¥ t+AtK

[+ -NL)(n) Ag(n+1) _ t+AtQ ) t+At(g1 . g2)(11) (4.7)

for the solution for the incremental nodal displacements in the (n+1)th iter-
ation within the time step "t"-"t+At". A displacement-type convergence cri-
terion is adopted here (0.001 tolerance for the ratio of norms of incremental

to total nodal displacement vectors).
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Remark 4.1 In applications to wviscoplastic analyses, the above variable
stiffness solution scheme calls for the formulation of a (material) constitu-
tive tangent stiffness matrix C (Eqs. 4.6,4.7). Although such matrices are
not readily available at present for "general" unified viscoplastic models
[e.g. 4,82,83], several attempts have been made [68-70] in the context of
other viscoplasticity theories. This aspect will be further investigated in

our future work.

Remark 4.2 Instead, the more conventional initial strain or constant stiff-
ness, viscoplastic solution approach is obtained here by simply wutilizing an
elastic C in all Eqs. (4.3)-(4.6) above, together with an additional "load"
term (i.e., Q3-vector) in the parenthetical term on the right-hand side of Eq.

(4.6a) to account for inmelastic strain-rate effects.

4.4 Large-Rotation Configuration Update

Configuration update involves the calculations of (i) new nodal coordi-
nates, as well as (ii) orientations of the associated fiber triads. Although
(i) is trivial, (ii) is complicated by the non-vectorial character of finite
space rotations. Here, we make use of the so-called ezponeniial mapping
algorithm for rotational transformation of vectors [30,90-92]; i.e. at the end

of the (n+1)th iteration,

e ) | Tt ®
ef(®) g8’ gaf  -gyf [ )
es(*) - lge B g’ g AR (4.8)
i (.E{f’,(k)J _g2 g ROl 1'31(02+ﬂ2)_ §§(k)_
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1 cos [|Ag|| sin [|As||

2 2,1/2
- ; . Aell = (a“ + 4.9
T B e Ml ) (4.9)

where the local components of the rotation pseudovector A§(n+1) along the

fiber axes gﬁ(k) (at configuration "n") are conveniently defined as (e,f5,0).

4.5 Strain Update

The calculation of the updated independent (Almansi) strain field e at
the quadrature points in the element is needed to evaluate the iterative com-
patibility mismatch "force" vector Qy- A simple "approximate" procedure [30]
is utilized here. In this, the updated e is obtained by a push- forwerd
transformation [90] for the (covariant) tensor components of the total (in-
cremented) strains using the relative deformation gradient for configurations
(n+1) and (n). For convenience, the latter is written as follows, using the

polar-decomposition theorem [90],

Fo, =Ml Peltng) B .U 4.10
-n+l ~  n- 3§(tnj T 2n+l Zn+t ( . )

vhere R and U are rigid-rotation and pure stretch temsors, respectively. Vith
appropriate reference to lamina coordinate systems in different configura-

tions, we may then show that

R A R A (4:11)
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where now all components of tensors on the right-hand side are referred to
lamina coordinates in (n), whereas g(n+1) are taken with reference to lamina

axes in the new configuration (n+1).

Remark 4.3 In keeping with the present mixed formulation, it is crucial to
determine the relative stretches (as well as all other pure "strain-like"
quantities) from the "true" strains. To this end, we use the following ap-

prozimation [30]:

1 1 1
U, = (1+5II(1 - §I§)Ag(n+1) - 5(1-1‘1")139("*1),&9(“*1) (4.12)
where Ig = (i=1,2,3) are the invariants of Ag(n+1).

This formula obviates the need for "costly" procedures to formally obtain
the square-root of a positive-definite matrix, while it still maintains the

condition of same principle axes for gn+1 and Ag(n+1).

Remark 4.4 However, when needed later (Sec. 5.1), R .1 must be calculated
from element displacement field. For "relatively" small strain increments, it
can be approximated [30] by the coordinate- transformation matrix for lamina

bases in configurations (n) and (n+1).
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5. Stress Update

For a class of moderately large-strain constitutive models, a general spatial
rate- form, consistent with the variational statement in Eq. (3.1), is consi-

dered here (a superposed dot indicates a material time derivative)

. T
i = Ok 5 =i la- ol v (dy) (5.1)
where % is the (objective) Truesdell rate of Cauchy stress ¢, d the (spatial)

deformation-rate tensor, ¢ the velocity gradient, and ¢ may generally depend

on stress and/or deformation history (e.g. plasticity).

Remark 5.1 Considering the range of "non-infinitesimal" strains anticipated
in viscoplastic/damage studies for composite space-engine components (i.e.,
2-5%), the precise distinction between various "objective" stress rates be-
comes unimportant from the standpoint of elastic modeling of material behavi-
or. However, from the viewpoints of both numerical implementation as well as
solution accuracy/convergence, the use of Truesdell rate in Eq. (5.1) is of
great advantage in the present mixed formulation, i.e. leading to "efficient"
integration algorithm in Eq. (5.4) and "improved" numerical convergence (e.g.

Sec. 6.3).

5.1 The Basic Stress-Integration Algorithm
In addition to the requirements of numerical stability and consistency, a
time- stepping scheme for stress updating with finite strains/rotations must

also satisfy the important condition of the incremental objectivity; [31,95].

C-L
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In particular, because of its desirable numerical characteristics, the gener-
alized mid-point (trapezoidal) rule has been utilized extensively to formulate
"objective" stress-updating procedures. In this section, the method is adapt-
ed for the present mixed shell elements. To this end, the following defini-

tions are introduced:

En+a = gn+a gn+a ’ Jn+a = det Fn+a (5'2)

(n+1/2) _ 0 _ . _
Ag = it Tn+1/2 T Cns+1/2 Pn+1/2 ’ 9n+1/2 = i gn+1/2 (5.3)
in which gn+1/2 is the fourth-order material moduli tensor at the mid-point
configuration tn+1/2, At = (tn+1- tn), and 0 < a < 1 (with F=I 3 =1,
where I is the unit tensor).

Vith the Egqs. (5.2) and (5.3) the stress update algorithm takes the

following general form, giving now, the updated stress components g(n+1),

directly referred to the updated t _,-lamina basis [30]:

(n+1) _ +-1 (n) -1 (n+1/2)5-T
g - Jn+1gn+1(g + Jn+1/2 En+1/2 Ag En+1/2)gn+1 (5.4)
in which all tensor components, except g(n+1), are measured in the tn-lamina

basis.

Remark 5.2 For the important common case of infinitesimal sirain/large
rotation analysis, F =~ =~ TandJ =1 (0 < a<1), and Eq. (5.4) simply

n+1 . . . .
reduces to (¢ in lamina basis at t__,):
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NCCV O IWCE W CE IPWCEY (5.5)

5.2 Approximations

Now, with Eq. (4.12) available, our remaining task is to determine dis-
crete approzimations for En+1/2 and Qn+1/2 from known (n)- and (n+1)-configur-
ations, and Ag(n+1). To this end, certain additional assumptions are needed
concerning the deformation ("integration") path during the incremental step.
Here, two common assumptions are utilized: (i) straightline deformation path
and constant velocity for each material point, or (ii) constant material rota-

tton and fiber eztenston rates.

For Assumption (i), we can easily show that

1
Frotjz = 2Cnt * D 5 Dpagjp = 200y - Dy + D7° (5:0)

in which "s" indicates the symmetric part, and again we emphasize that En+1 is

calculated from its component tensors R . (Remark 4.4) and U ., (Eq. 4.12).

For Assumption (ii) here, after "somewhat" lengthy derivation, we find:

_pl/2 1/2 _ T
En+1/2 - lj'n+1 I.Jn+1 d I.)n+1/2 - g’n+1/2[en l.]n+1]l.1n+1/2 (5'7)
where
U . = H[en AN ; AN (5.8)
-n+1 -4 7 on+l -~ - :
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The ¥ is an orthogonal matrix containing eigenvectors of U and dtagonal

n+1’
matrices A and [én 4] contain its eigenvalues (principal stretches) A, (i=

1,2,3), and their natural logarithms, respectively.

Remarks 5.3 Instead of Eq. (5.8), the following first-order, Pade-type, ap-

prozimation may be utilized:

U =20 1)U, + 1)1 (5.9)

-n+1 ~ -n+1

6. Sample Applications

Ve consider here three numerical simulations for HMSH5. All results are
obtained assuming isotropic semi-linear elastic material behavior, and ezcept
for some large- strain applications in Sec. 6.3, all other problems were solved
using the small-strain/large-rotation assumption. We refer to [30] for addi-

tional examples.

6.1 Clamped Square Plate Under Uniform Load

This problem is taken from [31]. Figure 38 depicts the results of HMSH5
utilizing the same 4x4 mesh as for the 4-noded (reduced- integration) model
Q4-UI in [31]. It is interesting to note that the average number of itera-

tions per load step (about 3) for the two elements was the same.

6.2 A Pinched Cylinder
This problem has often been used in establishing the viability of shell
elements in linear analysis [27]. But to our knowledge, there is currently no

"benchmark" solution available for its nonlinear response. 0Only one-eighth of
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the shell was modeled (because of symmetry) using a 16x16 element mesh for
H¥SH5 (Fig. 39). Ten equal load increments were applied to arrive at the full
load of 750 (about four times the load utilized in linear solution). A total

of 39 iterations were needed for HMSH5.

6.3 A Pinched Hemisphere

This is another "obstacle test" in linear analysis. It is also an excel-
lent test of the ability of an element to handle "truly" three-dimensional
finite rotations. Using symmetry, one quadrant of the shell is modeled with
10x10 mesh for HMSH5. The total load F=100 is first considered here for the
small/large rotation analysis (recall that F=1 is typically used for the lin-
ear case). Only two loading steps are required for HMSH5 from F=0-10 and
F=10-100 with a total of 13 iterations. Results are shown in Fig. 40, to-
gether with the solution reported in [89] wusing the resultant-based shell
element, {§4S, with a 16x16 mesh.

In addition, a large strain analysis using the algorithm of Eqs. (5.4)
and (5.6) and the same 10x10 mesh for HMSH5 was also performed for the above
shell subjected to a very high load level F=900. Ve utilized two and 8 equal
load steps for F=0-100 and F=100-900, respectively. Significant deformations
occurred in this case; e.g. at the final load level (F=900), u,=4.922 and
vp=12.709, with a total rotation of nearly 123 degrees at B. A summary of the
results is given in Table 11, where we also report the results obtained from
an independent infinitesimal-strain solution version for comparison. Note

that the total (accumulated) strains at F=900 are now of the order of 3j.
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As evident from Table 11, although there are no discernible differences
between the two solutions above for displacements and rotations at most load
levels, the "large-strain" update procedure produced significant reductions in
the number of equilibrium iterations required for convergence at higher load
(strain) levels; e.g. from 23 to 16 iterations for F=500-900. This is, of
course, due to the more accurate stress calculated in this latter case, and
will become even more important in cases when "stress-dependent" viscoplastic

models are utilized.

7. Conclusions

Ve presented here the fully-nonlinear formulation of curved shells using the
simple mixed model HMSH5. Several noteworthy aspects are included. A careful
selection 1is made for the polynomial functions in the strain assumption, thus
leading to robust elements (i.e., kinematically stable, free from locking,
etc.). A geometrically-exact procedure is utilized for element configuration
update with finite nodal rotations. Even with a "single" geometric stiffness
matrix, this was shown to be capable of attaining quadratic convergence rate
in practical shell applications [30]. It is also the complete geometric ma-
trix needed for adequate modeling of "significant" instability modes; e.g. in
creep buckling studies of composites under thermomechanical loadings.

For updating of the spatial stress field in the presence of non-infini-
tesimal strains, "objective" generalized midpoint schemes were developed by
making use of the polar-decomposition of the deformation gradient. These are
in keeping with the underlying mixed method.

Several numerical simulations have been presented to demonstrate the ef-

fectiveness and practical usefulness of the proposed formulation.
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Our future work will focus on extensive testing of the validity of the
proposed solution algorithms in the context of life prediction studies of
high- temperature composite plates and shells. In particular, a variable
stiffness formulation for wunified viscoplastic models with damage will be
developed and used in several "benchmark" solutions of static and dynamic

problems.
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Table 1

A Cantilever Laminated Beam with In-Plane Load
Deflection
at
Laminate Tip
Exact Present F.E. | TRIPLT
[0 0.0853 0.0862 0.0864
(30 1.320 1.363 1.0956
+30]5 0.4292 0.4230 0.3543
[0 *45{90]s 0.2351 0.2406 0.2353
[0/90 0.1663 0.1671 0.1673
Table 2

Mesh Convergence Study for Clamped
1 Layer Rectangular Plate

Normalized Center Deflection

Present F.E. TRIPLT
Laminate (4 x 4) (6 x 6) (8 x 8) (10 x 10) (8 x 8)
[5] 10.4598 10.9851 10.9592 10.8879 10.5375
(-0.747%) (+4.257) (+4.0%) (+3.33%)
[15] 9.3339 9.9972 10.0391 10.0215 9.4455
(-1.18%) (+5.847) (+6.287%) (+6.107%)
[25] 5.9319 6.5407 6.5245 6.5132 6.0856
(-2.53%) (+7.48%) (+7.21%) (+7.03%)
[35] 2.9553 2.9991 2.9269 2.9226 2.8985
(+1.96%) (+3.47%) (+0.987%) (+0.837%)
[45] 1.6414 1.3695 1.3644 1.3820 1.4139
(+16.09%) (-3.147%) (-3.50%) (-2.267%)
[75] 1.1334 0.7911 0.9000 0.9133 0.9134
(+24.00%) |(-13.39%) | (-1.46%) | (0.%)
[90] 0.9962 0.6608 0.8116 0.8073 0.8017
(+24.26%) | (-17.57%) (+1.23%) (+0.70%)
D.0.F. 125 245 405 605 1215
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Table

Clamped Rectan
with Uniform

3

gular Plate
Pressure

Lamin

N

ate De

ormalized
Center

flection,w

TRIPLT

Present F.E.

10.537
.445
.085
.898
.413
.913
.801

OO NGO

10.888

10.022
6.5132
2.9226
1.3820
0.9133
0.8073

5
6
5
9
4
7

Table

Clamped Squ

4

are Plate

with Uniform Pressure

Laminate

Normalized
Center

Deflection,w

Exact

Present F.E.

MQHIT

[+5]
25
+35]

[£45

0.0946
0.2355
0.2763
0.2890

0.1040
0.2602
0.2914
0.3013

0.1083
0.2572
0.2844
0.2929

Table

5

Simply Supported Square Plate

with Uniform

Pressure

Laminate

D

Normalized
Center

eflection,w

Exact

Present F.E.

TRIPLT

V2R

[£5]
25 |
+35 |
| £45

0.592
0.984
0.945
0.9150

0.
1.

1.041
1.033

614
045

0.606
0.992
0.952
0.922

0.595
0.983
0.944
0.914

109




Table 6

Bending Moment M for a Simply Supported
2 Layer Square Plate

Laminate nxx

Exact Present F.E. | TRIPLT V2R
[*5] 1318. 1509. 1327. {1396.2
+15] 1142. 1137.6 1150. |1176.8
+25 | 843.6 842.5 851.3 | 855.6
+35 | 564.6 591.9 573.1 | 567.8
[£45 368.1 422.17 375.3 | 371.3

Table 7

Bending Moment Myy for a Simply Supported
2 Layer Square Plate

Laminate Yy
] Exact | Present F.E. | TRIPLT | V2R
(5] 34.2 37.56 34.47 | 34.99
x15] 123.4 123.64 124.4 [126.4
x25 | 226.0 221.37 228.4 [221.5
+35 ] 304.1 314.02 308.8 1305.1
[+45 368.1 422.17 375.3 |371.3
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Table 8

Mesh Convergence Study for Isotropic
Cantilevered Plate

Present F.E. .
Frequency (4 x 4) (6 x 6) (8 x 8) (10 x 10) | Ref.[65]
1 3.34 3.39 3.41 3.42 3.50
2 13.32 13.82 14.07 14.20 14.50
3 19.46 20.43 20.80 20.98 21.70
4 40.94 43.58 44.91 45.62 48.10
5 51.22 55.32 56.98 57.82 60.50
6 71.62 78.81 83.08 85.38 92.30
Table 9

Anisotropic Cantilever Beam Solution

Fundamental Frequency, w
Fiber Oden et.al [24] Present
Direction (I) (I1) F.E.
0 14.351 14.130 14.232
30 13.307 13.020 13.086
45 12.873 12.679 12.757
60 13.307 13.020 13.086
90 14.351 14.130 14.232 |
Table 10

Anisotropic Cantilever Beam Solution

Second Frequency, w2

Fiber Oden et.al [24] Present
Direction (I) (I1) F.E.

0 85.950 83.675 84.484

30 80.673 78.264 78.147

45 78.379 76.499 76.389

60 80.379 78.264 78.147

90 85.950 83.675 84.484
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Comparison of Results for the Solutions of the
Pinched Hemisphere (10 x 10 mesh); see Fig. 40

Table 11

Load Infinitesimal-Strain Solution Large-Strain Solution
P W vg | Io4l {19 |1terations| s | VB | lleyll | llegll|Iterations
(rad) | (rad)

50 12.562 | 3.797(0.543{0.745 6 2.562) 3.797(0.543 [0.745 6
100 13.295 | 5.71310.727|1.105 5 3.295| 5.711(0.727 {1.105 5
200 [3.867 | 7.637({0.907{1.470 5 3.867| 7.636(0.907 }1.469 )
300 |4.162 | 8.72111.023]|1.663 4 4.164| 8.725(1.023 |[1.663 4
400 (4.426 | 9.712(1.138}1.802 5 4.429] 9.721|1.139 |1.803 5
500 |4.650 |10.763({1.234[1.920 6 4.652(10.772]1.235 |1.921 6
600 {4.782 |[11.559(1.269]2.008 6 4.782(11.563{1.270 |2.009 4
700 |4.851 [12.070)1.260(2.069 5 4.851({12.067]1.260 |2.069 4
800 [4.894 |12.432]1.224|2.114 5 4.893112.422}1.226 12.114 4
900 |4.925 112.739{1.146]2.153 7 4.922{12.709{1.165 |2.150 4
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Figure 1: 4-Node element at mid-plane of multi-layered composite
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Figure 2: Local fiber orientation with respect to element coordinates
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Figure 17: Anisotropic cantilever beam of Oden [24]
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Figure 18: Mode shapes for first and second frequencies
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Fig. 35. A Thick Wall Cylinder
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Fig. 36. Radial Displacement at the Outer Wall of

the Cylinder with Different Incrementing

Schemes
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(a) Geometry, Displacement,and Fiber Basis
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(b) Typical Lamina Coordinates and In-piane Skewness

Fig. 37. Typical Element HMSHS
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Fig. 38. A Clamped Square Plate Under Uniform Load
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Fig. 39. A Pinched Cylinder With Rigid Diaphragms
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Fig. 40. A Pinched Hemispherical Shell
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