View metadata, citation and similar papers at core.ac.uk

|
P
brought to you by .{ CORE

provided by NASA Technical Reports Server

Task Allocation Among Multiple Intelligent Robots
L. Gasser and G. Bekey

University of Southern California
Los Angeles, CA 90089-0782

,Z.,_r-—7 2

-

Abstract

u«e@u the design of a decentralized mechanism for al-
locating assembly tasks in a multiple robot assembly work-
station. Currently, Ju® approach focuses on distributed al-
location to explore its feambility and its potential for adapt-
ability to changing circumstances, rather than for optimizning
throughpst. Individual %reedy” robots make their own local
allocation decisions using doth dynamic allocation policies
which propagate through a network of allocation goals, and
local static and dynamic constraints describing which robots
are chigible for which assembly tasks. Glodal coherence is
achieved by proper weighting of “allocation pressures® prop-
agating through the assembly plan. Deadlock avoidance and
synchronization is achieved using periodic reassessments of
local allocation decisions, ageing of allocation goals, and
short-term allocation locks on goals.

/

1 Introduction

The coordination of several robots in a flexible assembly
workstation is a problem of growing importance. Three lev-
els of coordination are necessary:

1. Planning. Assembly tasks must be decomposed and
represented as cooperative arrangements among sev-

eral assembly robots [4].

2. Resource Allocation: Particular robots must be as-
signed individual tasks in a detailed assembly plan, in
ways that assure all tasks are carried out with optimal
throughput [5|.

3. Coordinated Motion Planning: Robot effectors must
be controlled dynamically as they move close together
in concert, while avoiding collisions.

In this paper we are concerned only with the second coor-
dination level - allocating tasks to robots. In a workstation
of limited size, for tasks of limited complexity, we may be
able to allocate robots to tasks using a centralized global

1oujt27

//fﬂ e R

‘ // ;’ 4 p. b LN
I lp206302"

allocation mechanism, for example, one based on heuristic
search of the space of possible allocations. As static task or
workstation complexity increases, however, a global solution
becomes more costly. Moreover, if we assume that orders to
the flexible assembly station arrive randomly, necessitating
reconfiguration, it will be very difficult to recalculate the
global allocation plan each time to “fold in® new orders with
common subassemblies.

For these reasons, we have decided to explore a decentralized
approach to task allocation. In this scheme, a collection of
robots is greedy for work; they are eager to take on whatever
work they can do, and as much of it as possible. Each robot
makes its own decision about what task to take og, based on
its own local decision criteria. The robots’ greed is mediated
by a set of dynamically changing allocation policies, which
assures that global throughput requirements are met, and
which encourages individual robots to assign themselves the
most appropriate tasks given the global circumstances, such
as order due dates, parts availatility, etc.

Our focus here (and our motivation for investigating concur-
rency) is to explore the feasibility of a distributed solution
and adaptability to changing circumstances, ra.her than op-
timal throughput, or maximum production or reallocation
speed. We have not yet addressed the temporal scheduling
of task assignments to achieve desired throughput results,
though we shall discuss some ideas for handling temporal

constraints on processing.

2 The Nature of Assembly

Assembly is the process of composing higher-level structures
from parts (primitive structures) and lower-level subassem-
blies using assembly operations such as welding, fastening,
screwing, riveting, inserting, etc. The assembly task allo-
cation process must account for producing some number of
copies of the high-level assemblies it generates - there is some
lot of assemblies to make. Each lot is assembled on the basis
of an assembly plan for an individual object in the lot, and
on the basis of some due date for the entire lot. The due
date places a time constraint on the assembly process.

MJ,&_/@AMMV i


https://core.ac.uk/display/42827256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Based on a preliminary analysis of several common manu-
factured objects, we have derived a canonical form for the
high level deacription of coordinated assembly tasks in an
assembly plan. Figure 1 shows our scheme. An assembly
plan is shown as a tree-structured composition of subassem-
bly plans. Nodes in this tree are primitive assembly opera-
tions. Assembly operations may require either single robots
or groups of coordinated robots. We have only illustrated
coordinated assembly tasks which require pairs of robots,
but the scheme remains analogous for either single-robot
tasks or those requiring more than two robots.

Any high-level assembly A is composed of several subassem-
blies, in this case S, and S;. The assembly operation O,
‘which assembles S; and S; to produce A comprises two
subtasks, Ly, and Ly, (which might be a HOLD and an
INSERT operation, respectively). Each subtask has an
associated resource constraint Ry, and Ry, respectively.
Resource constraints have static and dynamic components.
The static resource constraints describe the machines which
must be used to perform the subtask, and may indicate the
type of tooling required, the lifting capacity or application
force required, etc. Dynamic resource constraints describe
constraints which vary with the allocation process (such as
the real physical proximity of the required partner robot),
once some robot has has taken on one task of the pair. The
same description notation is used at each level of the assem-
bly plan. Lowest-level subassemblies are made from parts
(P).

2.1 Allocation Pressure

The existence of any unfulfilled task in the assembly plan
creates two subgoals: a global goal of allocating some robot
to the task and a local performance goal goal of perform-
ing the task once it has been allocated. However, we use
a decentralized approach to allocation, meaning that the
individual decisions about which robots respond to which
goals are taken by the robots individually, not by a global
allocator. Still, to maintain global coherence, the global
task-allocation goals must be ordered to reflect global pri-
orities. We do this by establishing dynamic local policies

to guide individual allocation decisions. These policies are
not explicit decision rules; instead they are weighting fac-
tors attached to each allocation goal indicating the global
importance of the goal. The weights are called allocation
pressures for the goals. A higher allocation pressure makes
a given goal more attractive to any robot. The combination
of allocation pressures, resource constraints, and the oppor-
tunistic decisions of individual ro_ots controls the allocation
process over time.

Allocation pressures attached to goals are dynamic and lo-
cal. They change over time as sorce tasks are completed and
others become more pressing. They are created by propa-
gating allocation pressures through the assembly plan. Al
location pressures come from three sources, and aze termed
production pressure, coordination pressure, and consumption
pressure. First, lower-level subassemblies must be created
before higher-level ones can be assembled; this places a

128

precedence on the order of assembly, and thus establishes
some precedence for task allocation (eg., when there ame
fewer robots than assembly tasks, or some robots are faster,
or better-suited for certain tasks than others). As each as-
sembly order arrives, it carries a due date. The due date for
the completed lot provides the top-level production presswe
which propagates downward (i.e. toward finer-grained sub-
assemblies) with increasing force. This serves to encourage
robots to choose lower in the assembly plan at first, since
it would make no sense to take on higher-level assembly
tasks if there were nothing to assemble. As the due date
approaches, the production pressure increases, ageing the
allocation goals over time.

Second, if one robot (X) decides to amume some subtask
L., which is part of a coordinated task O;, it must be sure
that it can induce some other robot (say, Y) to take on the
corresponding subtask L;;, in order to proceed. We call ths
the prinaple of complementarity in allocation. As one robat
makes a decision to assume a task, it creates 1) a new set of
dynamic resource constraints on the corresponding subtask
(because the allocation of one robot determines the physical
location where the task will occur), and 2) creates coordine-
tion pressure to encourage some available and appropriate
robot to assume the complementary subtask (since withost
a partner, the operation is not possible).

Third, the production of lower-level assemblies creates aa
upward-propagating consumption presswre. This encourages
some robots to take on the higher-level assembly tasks in ce-
der that work-in-process inventories (e.g. parts storage bins}
and work flows remain balanced. Consumption pressure i»-
creases as more lower-level subassemblies are produced. k
is initiated at the parts level, by arrival or availability of
parts at the workstation.

Allocation pressures are propagated using weighted prop-
agation functions on the arcs of the assembly plan. The
precise nature of the propagation functions is to be detes
mined by experimentation and theoretical analysis, whica
await further research.

2.2 Local Allocator Decisionmaking Cri-
teria

Individual robots make local allocation decisions by exam-
ining the available unsatisfied allocation goals and selecting
those with compatible resource constraints. From this set,
the most highly-rated allocation goal s selected, and the
robot allocates itself {see implementation section below)
This allocation decisionmaking takes place with some fixed
periodicity, as well as happening any time a robot becoms
available for work. It is important to have repeated, periodx
checks, for adaptive allocation and deadlock avoidance.

If a robot has no current task (i.e. it is free to take on axy
compatible task) then it may decide purely on the basis of
compatibility, However, if the robot is engaged, yet is do-
ing a periodic re-allocation check, it must also consider the
changeover cost in deciding whether to take on a new task



Changeover costs include the costs of retooling, opportunity
Fots for not getting the new work done, and the prevailing
performance goals for the task it is already performing.

These decisionmaking criteria are purely local, both with re-
spect to the individual tasks, and to the t~mporal unfolding
of the global assembly work. It is possible that, for maxi-
mum throughput, an individual robot should avoid taking
on a task which is immediately available, and should wait

for an upcoming but currently lower-rated task to which
it is better suited. If the upcoming task is one in the cur-
rent set of globally-known allocation goals, this requires each
‘robot to incorporate in its decisionmaking criteria either 1)
meta-level control policies which can be constructed by some
planner with a more global view or by integrating informa-
tion about what other robots are doing by commaunicating
with them [1], or 2) some predictive knowledge about the
expected trajectory of the allocation pressures through the
system. If the upcoming allocation goal will be generated
by an assembly order which itself has not been generated,
the individual robot will need even higher-level information
about the likely arrival of new assembly orders.

With concurrent access to all allocation goals in an assembly
plan, there is a potential for deadlock. If two robots with
conflicting reach constraints simultaneously choose comple-
mentary subtasks, (e.g. L;, and L,; of task O;) the opera-
tion cannot proceed, but there will be no way to deallocate
any robot. Moreover, there is no criteria for deciding which
robot should be deallocated. This is only a problem for
subtasks of the same operation, because they must have si-
multaneous allocation of appropriate resources. It is not a
prob’em for subtasks of different operations, which can be
allocated concurrently. Inappropriate allocation of robots
across different operations will lead to inefficiency, but the
adaptation mechanisms provided by the propagating allo-
cation pressures, ageing of goals with respect to due dates,
and the re-assessments of allocation decisions will force the
system to correct itself.

We use two mechanisms to prevent deadlock among subtask
allocations. First, allocation access to all subtasks of a single
assembly operation must be locked so that only one alloca-
tor at a time can make an allocation decision. After this
decision is made, the new dynamic constraints posted on
the complementary allocation goals assure that only appro-
priate partners choose the complementary subtasks. This
locking, while it reduces concurrency, does not create undue
overhead, because the allocation decisions are made infre-
quently, and ar= short by comparison to the amount of time
it takes for actual assembly operations.

Second, if no partner chooses the complementary subtask
within the time constraint provided by the allocation re-
assessment period, the allocation goal’s value may change,
and the robot is free to deallocate itself and take on 2 more
highly-rated goal (given the changeover cost - see below).

3 Implementation Approach

The allocation system described here has not yet been im-
plemented, but here we present our design for implementa-
tion. The implementation is planned for MACE [23], our
concurrent Distributed Al testbed. The basic structure of
the system is designed to be a global but distributed black-
board system [3]. The blackboard itself contains the overall
assembly plan and propagation links, and a collection of
concurrently-executing allocation decisionmakers, one asso-
ciated with each robot in the workstation.

3.1 Representation of the Assembly Plan

The assembly plan is represented as a collection of goalson a
globally accessible but distributed blackboard. The black-
board may be pre-segmented according to machine types
and allocation constraints, to provide some efficiency in al-
location and communication, and to allow for increased con-
currency as individual allocators access different parts of the
blackboard [3]. Each allocation goal in the assembly plan is
represented as a collection of constraints on the type of robot
which can assume the task. Each goal has two constraint
sections: a dynamic and a static part. Constraints are
descriptions of robot characteristics expressed in a flexible
pattern-language {2], to allow for partial matches, restricted
matches, and variable bindings for the allocators. Static
constraints are fixed parts of the assembly plan, whereas
dynamic constraints are updated as allocation decisions are
made. The updating is done by a MACE computational
agent which manages blackboard access. Allocation locks
are implemented using the mailbox synchronization pro-
vided by MACE, and are controlled by the blackboard level
manager. :

Allocation goals are linked to one another with any of four
types of uni-directional links. Each link comprises a type
and a propagation function for propagating allocation pres-
sures or constraints. The four types of links are production-

pressure links, consumption-pressure links, coordination-pressure

links, and constraint-propagation links. Constraint-propagation
links connect subtasks of a single assembly operation, and
describe how to update dynamic allocation coastraints.

3.2 Local Allocation Decision-Making Agents

Local decisionmaking agents are individual MCAE agents
which access the global blackboard using messages and demons.
MACE provides a facility for remote demons, so that when
a goal for which a particular 10bot is particularly well-suited
is posted or its evaluation changes, the robot can be noti-
fied opportunistically. Direct access to allocation goals is
achieved with messages. Local decisionmaking criteria are
built into rules within each allocator agent.

129




4 Conclusions

‘We have presented the design of a promising scheme for de-
centralised allocation of tasks in a multiple robot assembly
workstation. Further research remains om the theoretical
analysis of weights and feedback through the system. This
analysis should include a control-theoretic analysis of the
system, to show the weighting and constraint coaditions
under which it is possible to assure allocations will occur
with maximum throughput, and to indicate the problem-
atic condtitions under which the system caa avoid thrashing,
or at Jeast damp it. After implementation, we also expect
experimental analysis to derive appropriste weights, reallo-
cation periodicity, and adaptive performance behavior.
References

{1] Durfee, E., Lesser, V. and Corkill, D. “Coherent Co-
operation Among Communicating Problem-Solvers.”
IEEE Tvansactions on Computers (to appear) 1987.

{2] Gasser, L. Braganza, C., and Herman, N. “"MACE: A
Flexible Testbed for Distributed Al Research,” to ap-
pear in M. Huhns, Ed., Distriduted Artificial Intells-
gence, Pitman Publishers, 1987.

[3] Gasser, L. Braganza, C., and Herman, N. “Implement-
ing Distributed Al Systems Using MACE" in Proceed-
ings of the 3rd IEEE Conference on Artificial Intells-
gence Applications, Orlando, Fla., February, 1987 (to
appear).

l4] K. Konolige and N. J. Nilmon. “Multi-Agent Plan-
ning.” in Proe. National Conference on Al, 1980.

|S] Sadeh, N. and Gasser, L. “Hierarchical Scheduling and
Resource Allocation,” Paper submitted to the Interna-
tional Josnt Conference on Artificial Intelligence, Aug.
1987.

130

Loy

Figure 1.




