" @ https://ntrs.nasa.gov/search.jsp?R=19890017101 2020-03-20T02:10:28+00:00Z

53_4/

Programming Methodology for a General Purpose
Automation Controller

M.C. Sturzenbecker, J.U. Korein, and R.H. Taylor
IBM T.J. Watson Research Center ’
Yorktown Heights, NY 10598

_Abstract—
The General Purpise Automation Controller is 2 multi-processor
hi for jon programming. A methodology has been
developed whose aim is to simplify the task of programming distrib-
uted real-time systems {or users in research or manufacturing. Pro-
grams are built by configuring function blocks (low-level
computations) into processes using data flow principies. These
processes are activated through the verd mechanism. Verbs are di-
vided into two classes: those which support devices, such as robot
joint servos, and those which perform actions on devices, such as
motion control. This programming methodology was developed in
order to achieve the following goals: 1) Specifications for real-time
programs which are 10 a high degree independent of hardware con-
iderations such as p bus, and interconnect technology. 2)
A “cnmponent” approach to software, so that software required to
support new devices and technologics can be integrated by recon- |

figuring existing building blocks. 3) Resistance to error and ease of |

debugging. 4) A powerful command language interface.

e

Introduction

Recent system designs aumed at solving problems in automation
control have made significant use of muiti-processing [1-7}. Typi-
cally these systems incorporale 3 variable number of processors
performing computations in paraliel and exchanging data by means
olm:mmnm:}rhmbgy These technologies are usually
compatible cither vmh a shared memory model [6] of data exchange
or with a mgr-puumg model [5.7). occasionally, systems may
exhibit features of buth models. If all processors execute the same
program. the system is said to be SIMD (Single Instruction, Mulsiple
Data), however the greatest flexibility is achicved with 2 MIMD
(Multiple Instructiop. Muliiple Data) system.

Multi-processor sy'smns not only offer the prospect of increased
computing power/io meet the ever-increasing requirements of real-
time control, they carry the potential for 3 high degree of
configurability. ‘One of the obstacles to rapid progress in robotics
research and the deployment of programmable automation in scien-
tific and manufacturing applications is the lack of configurability in-
herent in most currently available systems. The need for
configurability ariscs from the need to integrate new devices, employ
new strategies, or add processing power incrementally without
making major changes to the system; foe software this implies a need
for "fast prototyping”, the ability to construct software that can
rapid'y adjust lo changing requirements {8.9]. However, muiti-
msyﬂcmsmnmbemdtotxkk(mspmbkmm:n-

other problem is ly d: the lack of tools and
md.hoddopcsmumpldylhclaskolp, ing such sy
What is @ Programming Methodology?

A true programming methodology is not simply a collection of tqols
or techniques, rather 1t provides a set of coacepts, ususlly foanally
or semi-formally defined. which serve as a basis (or problem de-

mposition and program design. [10] This is a fairly definitive re-

|) 167

—— '

\/\ 09/

/

quirement which is not covered by vague terms indicative of a
general approach, such as "top-down design” or "object-oriented
A methodology has a number of advantages over a "toolbox”, of
which the following are representative:

e The evolution of tools and techniques does not always pr
ease of use, and of themselves tools do not help to guarantee
good program design. {11]

e A methodology provides 2 powerful language for describing the
function of a program or specifying its design.

o A methodology can provide a framework for reasoning about
the correctness of a program.

e Programs developed according to a methodology are often
easier 1o maintain.

This paper describes such 2 programming methodology developed in
conjunction with a General-Purpose Automation Cootroller
(GPAC) project at iBM {8.9]. The ultimate aim of this methodology
is to simplify the task of programming real-timne, distributed systems
for manufacturing engineers, control specialists, and other system
users whose primary area of expertise is oot computer science.

Currently, most distributed programs are written cither in a concur-
rent language for which a distributed environment has been bailt (c.
2. Ada [12,13]), a conventional sequential language with enhance-
ments for distributed programming [4.7], or a special-purpose lan-
guage [14). None of these approaches is particularly adept at
dealing with highly recoafigurable systems. To change the bebavior
ofasyuemonemnanchmgeslolhewommsmhn—
guage, re-link, re load, etc. The usual approach is
topm:depnmnuves[ls 16} (cither as part of the language syntax
or as system calls) for communication, synchronization, mutual ex-
clusion, and even control over the granmlarity of concurrency. Ap-
plnnooprogrmmngmmhasystemmohcsno«oulymme
sequential algorithms right but also managing the interaction be-
tween concurrent modules and using the primitives correctly. Many
of the programs developed using these approaches are dependent for
their. performance. if not for their cotrectness, on a particular model
of data exchange. Finally, there is no true methodology associsted
with these approaches, although useful tools such as debuggers,
simulators, and syntax-directed editors are often provided.

Basic Concepts
The GPAC programming methodolugy depends upon a set of basic
concepts relating to both hardware and software.

Hardware

The fundamental hardware concept in GPAC is that of a real-timee
processor. Each real-time processor is a distinct entity which can
perform one or more computational tasks. Each real-time processor
has its own instruction stream, hence the GPAC model is MIMD.
A sct of real-time processors sharing a common communicatioss bus

y¢7

RAGE__|bL . INFENRIONALLY FLANE

or ok is 2 real-time sy (RTS). Programs are developed on
a programming syssem (PS) and are then downjoaded into the real-
time processors. Associated with each real-time processor are one
oOr more interrups sources. AN interrupt source, in the abstract, is
simply 8 request to a real-time processor (0 perform some work.
Interrupt sources have priorities; work performed in connection with
one interrupt can be p pted by an i P with
a higher priority. * Interrupt can be ge d by other real-
time processors or by devices connected to the real-time system It
is important to remember that the notions of interrupt source and
priority are fundamentally abstract. and may be realized in the actual
system in 2 number of ways. One last hardware concept is the
physical device. A physical device is a gateway by which data can
be passed to and from external hard and is accessible by a par-

ticular real-time p S actuators, pendant interfaces -
to name but a few - are examples of physical devices.
In GPAC, as in other sy {16]. imp} ation of the PS is de-

coupied [:om that of the RTS. so that the architecture of the PS can
be quite :ifferent from that of the RTS, as it should be since the re-
cuiremer.ts are differens,

Function Blocks

The fundamental software concept in GPAC is that of a funcrion
block [9). A function block is a basic computational unit assigned
to one or more real-time processors; it communicates through inpus
ports and output purts. In addition, a function block may communi-
cate with physical devices. and may report condisions, or events which
require exceptional action by the system. Finally, a function biock
may have some formal parameters, which are for its internal use only
and normally not visible from outside. These five componeats
comprise the imnterface to the function blnck.

A function block can be viewed externally as a “black box” which
takes inputs, performs some computation. and produces outputs
{and in some cases. reports conditions). We denote the inputs, out-
puts. devices, conditions, and parameters of a function block F by
I, . 0,. D,. C; . and P, respectively.

The most basic form of function block is called an application sub-
routine. In the current system. this is coded in the C language {17]
and corresponds to a C function. A set of macros is used to specify
the interface; this hides any implementation details from the pro-
grammer.

An application subroutine is written in sequential code. and of itself
contains no notion of concurrency. If certain coding conventions
are followed. the application subroutine is also re-enrrans. and mul-
tiple mstances of it may be active cither on the same real-time
processor or on different real-time processors. A function block in-
stunce is obtained by binding the ports to specific data objects. sup-
plying actual references for the physical devices, and values for the
conditions and formal parameters. Other preconditions for the cre-
ation of a function block instance are its assignment 1o a particular
real-time processor and interrupt source, and determination of the
means by which it is scheduied.

Dasa Flow Graphs

More complex function blocks can be built up from simpler ones
such as applicatioa subroutines. These complex function blocks are
called data flow graphs.

A data {low graph G consists of:

® Asct? of function blocks.

® Aset] of input ports, a set O, of output ports. and a set L of
local cells.

T dewrtes the oot of all subrets of §

® A mappingp: JoUO,UL; = 2%=G ! where data are the dara
nodes of G:

du;= |J /o0
Fe fg
All the data nodes must be mapped to by p, i. ¢., for any 4 « data,
there exists p such that 4 ¢ p(p).

A data flow graph is composed of communicating function blocks,
but externally it is indistinguishable from an application subroutine.
Data flow graphs are useful for expressing distributed execmtion of
an algorithm. For example, a servo algorithm usually isvolves read-
ing some value from a sensor, performing some computation, and
writing another value to an actuator. In a distributed system, how-
ever, there is no guarantee that the sensor and actuator will both be
accessible from the same real-time processor. Thus, in general, this
algorithm cannot be exccuted by a single application subroutine, an
instance of which is constrained to run on a single processor.

Data flow graphs are also useful for pasting together application
subroutines of general utility. Perhaps we wish to add some digital
liltering to the input in our servo example. This can be done most
conveniently by building a data flow graph, provided some digital
filtering module has already been installed as part of the software
component data base.

Ports of Function blocks

Each input and output port of a function block has a ppe and a
mode. The type is simply a C type declaration. Ports can be bound
to data objects only il those objects have a compatibile type. The
mode of a function block port describes the relationship between the
modification, or updating of the object to which the port is bound,
and the frequency with which the function block s exevatec.

There are three port modes:

® synchronous - The object bound to the port is updated on every
invocation.

® ratio - The object bound to the port is updated at a specified
sub-freq y of the freq y of invocation.

® asynchronous - There is no fixed relationship between the up-
dating of the object to which the port is bound and the fre-
quency of invocation.

Thus, if a function block has a synchronous input port, an instance
of it can be scheduled for execution only when a new value of the
object bound to the port is made ilable by her { on block
instance which writes the object through an output port.

1f a function block has no synchronous inputs, then it cas be sched-
uled by assignment of an execution interval or a trigger. The exe-
cution interval specifies a frequency at which the function block
must be executed: a trigger assoviates execution of a fuaction block
directly to occurrence of an interrupt source.

Another rule enforced by the GPAC system is that values produced
by a function block are not made available to other function blocks
until the former has completed its current invocation. This gives an
atomue flevor to function blocks and helps to insure that the worid
will always be seen in a consistent state.2

Advantages of the Function Block Concept
Specification of real-lime computations using the fumction bilock
concept has the following advantages:

® Reaktime requi are sep d from the executabie
code. This means that instances of the same code can be in-

Errors accumng o the tamamnoon of salucs oaer 3 Actwird may. bowever, yickd such iomntencies, the methodology awames that handling of these evons s

tramparem to the applcatuon.

168

voked wich differing real-time requirements, that requircments
can be changed dynamically.

e Function blocks have no knowledge, and consequestly no de-
pendence, on the particular data exchange model Although
the current GPAC architecture is based on shared memory. the
system could be implemented using message passing without
affecting the design of applications written for it.

® By standardizing the interface to function blocks and hiding the
implementation details, we hope 1o encourage programmers to
design routines that will be casily rewsabie. One problem which
has emerged historically in the “component™ approach to soft-
ware design is that, in the absence of 2 methodology. the suc-
cess of the approach is dependent upon the good judgment and
foresignt of programmers.

® Consistency in data typing is avtomatically checked. Primitives
for synchronization and metual fusion are sam Y.
hence their misuse is impossible. The result is a system that is
more robust and easier to debug and maintain.

Processes in GPAC

Work done by a real-time system is normally divided into processes.
in GPAC. these processes are merely sets of commmicating func-
tion block instances. F jon block i are inssalied before
they can be executed: this consists of setting up the port bindings
and attaching the function block instance to the proper processor
and interrupt source. Camemnseoldanobpnsbomdtoms
and of function block scheduling is checked during installation.

A typical GPAC process will consist of three phases:
® Installation of function block instances to be used.

o Executioa (either once, or repetitively) of one or more function
block instances.

® Waiting for termination of all the function block instances, or
for a function block instance to report a condition that resuits
in process termination.

'As an example. consider a process to implement coordinated motion

of several robot joints. This process requires two function blocks:
one which computes the coefficients of a trajectory (L e., desired
joint position as a function of time) based on the current positions.
target positions. speed limits, etc., and another which generates
intermediate points along the trajectory and outputs these com-
manded positioas o the joint servo modules. (The servo modules
themseives are idered part of a different process, as we shall see
shortly.) The first function block. called the mmajectory planner, is
executed once. the second, called the setpoint generasor. is executed
repetitively at some time interval (e. g.. 20 msec). The whole proc-
ess terminates when the current (sensed) position of the joints be-
comes close cnough to the target position.

Comwnand Lists

We now describe the above process behavior using GPAC termi-
nology*

Install the traj y pl and the setpoint g .

Exccute the trajectory plannser once.
Activate the setpoint generator [or repetitive execution.

o

Wait untl the sctpoint generator reports that the motion has
completed (i e.. the sensed position is close enosgh). or that
some other condition (unexpected force sensed, time limit ex-
ceeded. etc.) has occurred.

This description of a process is called a command list in GPAC. The
elements of a command list are called function block commands and
take function block instances as arguments. A perocess consists of a
command list and a set of ierminarion conditions.

169

Commund List Tramitions

In the case of robot motion, however, termination conditions arc
often simply signals that the system should proceed with the motion
using a somewhat different plan. This is particularly trwe in
compliant motion and specialized combimations of motions such as
censering grasp [8]. In these cases the wermination of a process re-
sults in a transition L0 another process.

Verls

We now have developed the necessary concepts (0 define a vrd in
GPAC. A verb V comsists of:

® A set £, of function blocks.
® A set p, of parameters.
® A sct o, of output values.

® A subset lmst, of p, and 2 mapping x : inst, < 2*%v where
data,. is the set of all data nodes in V . i. e.. the union of all in-
puts, outputs, and physical devices in the function blocks of V:

daa, = |J 7,u0FuD,
Fe fy

e A mapping ¥ : p, — iast, = 2" where vals, is the set of all
values accessible within ¥, which includes all the ports as weil
as the conditions and parameters:

ns,. = {J 1,u0rucrUP,
Fefy

® A mapping w: oy = vals, .

® A set ¢, of command lists, of which one is distinguished as ini-
tial.

® A set(, of termination conditions.

® A mapping 7 : trsms, = ¢, where wrams, is the ransitions of V,
asubsetofl ¢, x .

® A mapping v : term, < 2°V . where term, is the set of sermi-
nagons of ¥ -

termy-= | 1:3c € ¢ 3 (ca)f tramsy}

_. mu::ma-wmmmdlheverb and x is the

napping. These ek describe the commumication
of data to and from the instantiated function blocks of the verh. The
verb parameters not in imst, are called inpw paramesers aad the
mapping ¥ is the inpwt mapping. These clements describe bow initial
values are set up to be accessed by the instantiated functios blocks
of the verdb. The mapping w is the owtpwt walue mapping which de-
fines a set of values that may be returned from the verb.

Instantiation parameters are either data objects which can be bound
to functicn block ports or references o physcal devices. lq~ pa-
rameters are simply values which can be d in the obje

to ports or in conditons or parameters of a function block. As in the
case with the mapping p for data flow graphs, cvery member of
data, must be 2 member of some set in the range of x: that is. every
data node s mapped to by some instantiation parameter.

If 7tc,4) = ¢ then if condition ¢ occurs while the process described
byc,nsexecuung.lhaptoccsnsabonedandlhemsdm‘bed
by ¢; commences. If no transition is specified for a given termimation
condition and process, then receipt of that condition withis the
process causes termination of the entire verb.

The mapping v describes the rermination actions of a verb. Each
termunation of a verb can return a ssbset of the output valees de-
fined for the verb.

Verd Instances

The instantiation parameters of 2 verb provide bindings for the ports
of the coastituent function blocks of the verb. Thus, application of
parameters 1o 3 verb yields functioa block instances for each of the
mtwfmmwtbw&mdmd:fmamb
A verb i in GPAC closely resembies the concept
of a sask in more traditional systems. Verb instances can be started,
halted, suspended., and resumed.
The distinction between verb and verb imstance can casily be ap-
preciated by analogy with an operating system utility residing as 2
binary image oa secondary storage. Whes the utility is invoked by
a user, its inputs and outputs are bound 10 actual files and devices
and a task, or main memory image. is created. Furthermore, multiplke
instances of the same utility can sometimes be active in the sysicm
simultaneously. mgmesmnlotmuhphmmolambm
GPAC.

Verb i [: ds are passed from the Programming System
to the Real-Time System, where they are executed by the supervisory
software. In every RTS. there is one real-time processor which is
distinguished as the supervisor. The supervisory soltware is down-
loaded (possibly along with applications code) into this processor,
and it maintains communication with the PS while the RTS is run-
ning its applications. thle(hel’Ss:ntbvetbmsumemmamh
to the RTS, the RTS sends notification of verd i

to the PS.

All real-time processors, whether or not they are supervisors, con-

1ain a real-time kernel which is primarily responsible for handling

interrupts, context switching, and dispatching of application sub-

routines. The supervisor handics all activity related to:

e Installation, activation, and deactivation of function block in-
stances.

e Transitions between command lists.

® Terminatioa of verd instances.

State Vector Variables and Logical Devices

We have previously referred (o the representation of data within
GPAC without providing any details. Data which must be commu-
nicated between function blocks is rep d by the ¢ ptof a
sate vector vanable (SVV). 1t is perhaps casiest 10 think of an SVV
as shared memory, but it need not be implemented that way. A stale
vector variable contains a buffer for the current value. and op-
tionally a buffer for a set of prevaous walues. muxahsmqmeds
10 be maintained. State vector bics are bound to { block
ports in order to effect ication bx funciion block in-
stances. Associated with each SVV is a npe, and it can oanly be
bound to ports of the same type.

<alt fad oy

Although 2 state vector variable is ¢ y an con-
cep(lhemmarymelhodolcrrangamlusmglthVVmG?AC
is through the more powerful concepts of a logical device and a bog-
xcal device type. A togical device type consists of:

® An optional verb.

® A specification for a set of SVVs.

e A specification for a set of parameters.

A logical device can be considered an insance of a logical device
type and consists of:

® An optional verb instance.

e Asctol SVVs

® A set of parameters.

A robot joint is an excellent cxampie of a logical device type. With
cach joint in the system we normally want (o maintain the following
data:

170

® The current sensed position of the joint.

® The current commanded positioa of the joint.

® The goal, or target position.

This data will be stored in SVVs, since it will be updated by function

block instances in real time. We may also associate certain parame-

ters with a robot joint:

¢ The maximum speed at which the joint can be moved.

® The maximum force or acceleration 10 which it may be sub-
jected, etc.

These values do not normally vary in real time and hemce do not

need to be stored in state vector variables.

Logical Devices as Verb Parameters

A verb may be applied 10 0ne or more logical devices: akkermatively,
we migin say that logical devices can appear as the objects of verbs.
In this case, the state vector variables and parameters which com-
prise the logical device will be entered into the parameter st from
which the verb instance will be constructed. Thus they can be bound
to the ports and p of fi jion blocks which will perform
the computations associated with the verb.

A robot joint is controlied by some real-time process (servo). This
is implemented as a verb in GPAC. The definition of a logical device
type for the robot joint contains specifications for the servoing verb,
the SVVsy, and the parameters. Then, whea an instance of 2 joint is
created, the actual verb instance, SVVs, and parameters are created
for that device.

Before a device may be wsed as the object of some actiom (e. g.. be-
fore a joint may be mowd) it must be emabled. Enabling a device is
equivalent 10 starting the verb instance which controls the device.

Verb Composition

Verbs may be composed, or combined to form new verbs. A com-
position of verbs can be formally defined by taking unioes of all the
verb componcents; the verbs may then be sequenced by supplying an
asgmented transition mapping. Inlhsnymbswuhawyspe-
cialized semantics can be bled owt of simpler, more ge

oncs. (A verb with only onc command list is called somple.} Anex~
ample of this is "centcring grasp” found ia [8] and {9).

Levels of Contrel

The GPAC methodology supports programming for vanioss lewels

of comtrot. [9)

® Clavsed-loop comtrol is achicved tiwough low-level real-time
computations such as application subroutines and data flow
graphs.

® Concurrency control is concerned with specificatioa of compu-
tations executing in parallel and is achieved through coafigura-
tiom of d lists and simpie verbs.

» Sequentic’ comtrol deals with plans and strategies for esccuting
complex motions or tasks and is achieved primarily by verb
COMPOSILIOn.

Programming for different levels of control involves differemt issues

and areas of expertise; this is reflected in the methodology.

User Interface

AML/X

ThGPACmmdmsammonlhehmn;
C d by 2 user are converted from 2 high-

kvtl form into actual messages 10 be seat to the Real-Time System.
Also, coafiguratioa of system hardware and software is doae via the
wser interface.

Because of the many abstractions and generic catities in the GPAC
system, the high-level language AML/X was used to implement the
wer interface. AMIL/ X b 2 Eageegs devigned at IBM for auto-
mation programming and other applications [i8]. It has a number
ol interesting features, among which the three most relevant o
GPAC are:

® Data aburaction capability. An abstract data type is called 2
class; instances of classes consist of inssance wariables which can
be ipulated wsing merhods, 3 specialized type of subroutine
almm&rmﬂnmfnmthtdautmew
that some instance variables can be declared exposed, which
makes them visible externally and hence part of the interface.

® Operator overioading Operators can be defined on class in-
stances, using a syntax similar to the method syntax. In par-
ticular, the act of applying parameters (0 an object is regarded
as an operator in AML/X; this ailows GPAC verb invocatioa
1o have the same syntactic form as subroutine invocation.

® Exception handling. AML/X has a rich set of constructs for
raising and handling exceptional conditions {18).

AML., X can be casily interfaced to lower-level languages like C and
FORTRAN. In fact, the comununication between the PS and RTS

in GPAC is handled by a C sub ine package which is called from
AML/X.
Ceoafiguration and Execution Phases

The GPAC user interface consists of two parts: a configuration phase
and an execuhion phase.

In the coafiguration phase the hardware layout is described, in terms
of real-ume processors available, interrupt sources, and physical de-
vices attached to the processors. Next, previously compiled and
linked obpct code modules are downloaded into the real-time
processors. (For the most part, these modules are simply libranes
of application subroutines linked with a real-time kernel.) Then ge-
necnc obgrects such as function blocks, verbs, and logical device types
are defined. Finally. some instances of logical devices may be cre-
ated and enabled.

The exccution phase consists pnmanly of invocation of verbs. Verbs
are applicd to devices to create verd instances, and commands coe-
cermng these verb instances are then passed to the real-time system

Conligurabwn and exccution phases can be intericaved 1o a certam
calent. New function blocks, verbs, and logcal devices may be de-
fined at any ume, and cuisting verbs may be redefined. This can be
Jdoae while real-ume applications are runmng (as fong as no -
stamces of the affected verbs are sull exccuting). The goal is 0
pronade 2 hughly materactive pr eny n whach
real-time system behavior can be modified in 2 very flexible and
dyname way. This meets the necds of both robotics rescarchen,
who wish to capenment with altemative control strategies and new
swmor and actuater technologes. and manufactuning engincers, who
are respomsibie (or reconfigunng workcells to meet changing work
requirements.

Medes of Verd Invocation
The full life cycle of a verd instance can be descnbed as follows:

® Aerbn invoked by applving « (0 2 paramcter list. These pa-
rameters are processed by the PS and the information needed
10 create an instance of the serb s semt to the RTS.

® The RTS allocaies and fills 10 the nevessary data structures, amd
reports comph of thss procedure to the PS.

® The PS sends a command to stant the verd instance.

e The imstia) command st of the verb 5 executed on the RTS
The vetb instance coatnucs to cxccute unul some conditios

171

forces it 10 terminate or until 2 aupend or Aclt mesage s re-
ceived from the PS.

® When the verb instance terminates, the RTS scnds aotification
to the PS. Depending on the for the termimstion, an
€xception & iy be raised on the PS.

o Finally, the PS sends 3 command to deicte the verb instance.
The RTS complics, cleaning up and deallocating all data struc-
tures.

In the simplest mode of invocation, this entire scenario is carried out

synchronously. The user simply applies a list of arguments t0 2 ob-

jgct of the verbclass, . g.:

move(joint ,goal ,speed);

The above operation will not compicte until the correspondiag verb
instance terminates in the RTS and is deleted.

A more efficient, although more verbose, mode of i 3o is
provided by introducing an asy phue

vi: BIND move.asynch(joint .goal‘speed)

/* other work can be done here

vi. ua-t()

asynch is 2 verb method that results in creating and starting 3 verb
instance, and returning 2 verb instance object withowt waiting for
termination. At some later point in time, the verd instance can be
waited for, and & is deleted after its termination.

Finally. a verd can be ¢ d and then muinply smvoked
with new input parameters cach time:

vi: BIND move.new instance(joint);
vi.start(goal,speed);

/* do something else */

vi. ua-t()

vi. start(another _goal another_speed);
/* do so-ethmg else

vi.wait{)

vi.detete{);

Current Status and Future Work

The GPAC methodology has been implemented in coajunction with
several differemt hard « are architectures. The relative case with
which applications can be ported back and forth Detweea these ar-
chitectures is one encounaging result of our work. We have also
observed that real-me computalions are casy 10 Program, require »
minimal amount of debugging. and have predictable behavior oace
Jerugped. Finally. the system can be eaily recoafigured: new de-
vices and processors can be added without laborious changes and
recompalations.

We have used a cenain of lism to describe the con-
cepts underlying the methodology rather than relying o coafigura-
tuon exampics in AML, X. We chose 10 do this becawse it is the
formalism (oot the current coafiguration syntax) whech is really
cntcal o umierstamiing the methodology, because we did not wish
0 requare detaded knowledge of AML/ X of the reader, and because
the syntax isclf is subject 10 comsiderable ch and eshancement
as we gan eapernence with the system.

In the future. more sophustcated appl will be pted uuing
this methodology. Wewllh:uhca&!owlhcﬂ’mdlh:
methodology for practical pe m l toots
muMmmryvmwmmmMm
Knowiedge-based enhancements and aatural-language-kke inter-
faces are also contemplated.

References

1. F. Ozguncr and M. L. K20, "A Reconfigurable Mualtiprocesaor
Archatecture for Retiable Control of Robotic Syseems™. IEEE
Insermat: rual Conferewce on Robotics and Automation, St Louts,
March 1985,

S Ahmad, "Real-Time Multi-Processor Based Robot Coa-
tol”, JEEE Imt. Conf om Robotics and Amtemetion, Sam
Framcisco, April 1986.

V. Dwpowrque. H. Guiot, O. Ishacian, "Towards Muki-
Processor and Multi-Robot Controllers”. JEEE hw. Conf. on
Rebetics and A San Francisco, April 1986,

1. Lee and S. Goldwasser. A Distributed Testbed for Active
Semory Processing”. /EEE Int. Conf. on Rabotxs ond Auso-
manen, SU Louis, March §98S.

D Sicgel. et. 2. "Comp 1 Arché for the
Utah/MIT Hand™. JEEE Im. Conf. om Roboncs and Awso-
munon, St Louis, March 19%5.

L. S Haynes and A. J. Wavering, “Real Time Comtrol System
Software: Some Problems and an Approach”. IEEE Int. Conf.
on Robosxs and 4 San Francisco, April 1986.

R. D. Gaghanello, " A Drsinbuted Conputing Esvironment for
Robotics™, JEEE Int. Conf. on Robotics anl A San
Franciwco. April 19%6.

1 U. Korein. G. E. Maser. R. H. Taylor. and L. F Durfee, A
Configurable System for Automation Programeming and Con-
wol”, IEEE Imternutional Conference om Roborxs and Ause-
munon, San Francisco. Apnl 19%6.

G. E. Maier. R. H. Taylor. 1. U. Korcim., "A Dynamically
Configurable General Purpose Automation Contzoller”™, Fourth
IFAC/IFIP Symp. omn Software for Compuwier Control, Graz.
Auuna, May 1986

172

10.

2.

13

14

15

S. N. Griffiths, “Desiga Methodologics - A Comperisoc™, in
Twtoriel: Software Desgn Swrwsegies, G. Bergland and R
Gordon, eds. 1979. pp. 189-213.

. G. D. Bergland, "Structured Design Methodologics™, in T

nel: Softwere Design Swasegres. pp. 162-181.

U. S. Dept. of Def Refe M ! for the Ada Pro-
Srammmg Longuage,

V. Dupowrque, “Using Abstraction Mechasioms 0 Solve
Complex Task Programming in Robotics™, /EEE Im. Conf. en
Reborcs end Awsgwmation. San Francisco, April 1986.

M. D. Donner. "The Design of OWL: A Langsage for Walk-
ing”, Proceedings of the SIGPLAN ‘83 Symp. en Prog. Lang.
Issues in Software Syssems. pp. 158-163

K. G. Shin and M. E. Epuein. “Communication Primitives fos
2 Druributed Muhti-Robot System™. JEEE Im. Conf. om
Robotscs and 4 St. Louss, 198S.

K. Schwan, T. Bihari. B. W. Weide. and G. Taslbec, "GEM:
Operating System Primitives for Robots and Real-Time Con-
trol Systems”. JEEE Im. Conf. on Robotics and A

St Lours, 1985,

B. Kermghan and D. Richic, The C Progrummmg Lengmage,
Prentice-Hall, 1978 July 1982,

1BM Monufacturing Srvtem: A Manufoctunng Languoge Ref-
erence Manwal. No. 8509015, IBM Corporation, 1983.

L. R. P} ... man and R H. Taylor. “A Hicrarchical Exceptioa
Handler thinding Mechanism”'. Sofrware - Procixe and Expen-
ence, 14, 10, Oct. 1984, pp. 999-1007.

