Computational Structures for Robotic Computations

C.S.G. Lee and P.R. Chang
Purdue University
West Lafayette, IN 47907

This work was supported is part by the National Science Foundation Eagiseering Research Center Grant CDrasoon22. Any opinions, findings, a conclusions or recommendations expressed ia this article are those of the author and do not aeremarily reflect the views of the fazing agency.
:The andtiproceseor system consists of a MC5809 CPU and even $\mathbf{2 8 0}$ CPU a. Each 280 is accompanied by two 9511 APUs, local memory, and $1 / 0$ interfaces
it A apeed-up factor is defied as the ratio of the computational time of a task raging on a aniprocesor system to the computational time of the ane task raging on the proposed architecture (ie., $20 \mathrm{~ms} / 40 \mu \mathrm{~s}=500$).
\qquad
robot (due to different kinematic structure of PUMA and Stanford robots, direct comparison on processing time is invalid) [10].

This paper discusses the development of a maximum pipelined CORDIC architecture for the computation of inverse kinematic position solution to achieve the pipelined time of $40 \mu \mathrm{~s}$ and an efficient p-fold parallel algorithm to achieve the time lower bound of computing the joint torques. The CORDIC architecture was designed based on a fuactional decomposition of the cloved-form joint equations. Delay bofers are necessary to balance the pipelined CORDIC architecture to achieve maximem pipelining. The buffer assignment problem is solved by the integer linear prograz ming technique. The efficient p-fold parallel algorithm can be best described as consisting of p-parallel blocks with pipelined elements within each parallel block to achieve the time lower bound of $O\left(\left|\log _{2^{n}}\right|\right)$ of cornputing the joint torques based on the Newton-Euler equations of motion, where n is the number of degrees of freedom of the manipulator. The algorithm can be implemented with a group of microprocessors without complex intercommunication among processors and bussing of data. A modified inverse shatile scheme is suggested for connecting the processors together with efficient intercommunications.

2. Inverse Kinematic Position Computation

The general kinematic problem of a Q-DOF robot arm coacerns the problem of finding the generalized coordnates $q=\left|q_{1}, q_{2}, \cdots, q_{1}\right|^{T}$, together with the vector of their generalized velocities and the vector of their generatized accelerations in the n-dimensional space such that the characteristics of the motion of the free end, the hand, coincide with the pre-specified Cartesian trajectory. This inverse problem has earned considerable attention because of its importance in relating the Cartesian trajectory of the hand to the corresponding joint-variable trajectory of the manipulator. This paper focuses only on the inverse kinematic position solution.

In solving the inverse kinematic position problem, we are always interested in obtaining a closed-form solution (ie. an algebraic equation relating the given manipulator hand position and orientation to one of the unknown joint displacements), which yields all the possible solutions in 2 fixed compatation time. Fortunately, most industrial robots have simple geometry and exhibit closed-form joint solution. Utilising the inverse transform technique [1], the joint angle equations of a six-link manipulator with simple geometry reveal the computation of a large set of elementary operations: real number multiplications, additions, divisions, square roots, trigonometric functions and their inverse. However, these elementary operations, in general, cannot be efficiently computed in general-purpose uniprocessor computers. In order to obtain a fixed computation time for the joint angle solution, time-consuming transcendental functions (sine, cosine, and are tangent) are implemented as table look-up at the expense of the solution accuracy. The CORDIC algorithms [11-14] are the natural candidates for efficiently computing these elementary operations. They represent an efficient way to compute a variety of functions related to coordinate transformations with iterative procedures involving only shift-and-add operations at each step. Thus, cordic processing elements are extremely simple and quite compact to realise [14] and the interconnection of CORDIC processors to exploit the great potential of pipelining and maltiprocessing provides a cost-effective solution for computing the inverse kinematic position solution.

2.1. CORDIC Algorithms and Processors

In conventional uniprocessor computers, computation of elementary functions such as square roots, sine, cosine, hyperbolic sine and cosine and their inverse consumes a considerable amount of ellort than multiplication operation. These elementary functions can be efficiently computed by the cordic algorithms which can be described by a single set of iterative equations parametrized by a quantity $m(=-1,0,1)$ which determines the type of rotations. To establish connections between CORDIC and rotation-based algorithms, let the angle of rotation 9 be decomposed into a sum of a sub-angles $\left\{d_{1} ; i=0, n-1\right\}$

$$
\begin{equation*}
\theta=\sum_{i=0}^{-1} x_{i} d_{i} \tag{1}
\end{equation*}
$$

where the sign $u,(\pm 1)$ is chosen based on the direction of rotation. Similarly, the plane rotation matrix $R(0)$

$$
\mathbf{R}(\theta)=\left[\begin{array}{cc}
\cos \theta & \sin \theta \tag{2-x}\\
-\sin \theta & \cos \theta
\end{array}\right]
$$

or hyperbolic rotation matrix $\mathbf{R}(3)$

$$
R(\theta)=\left[\begin{array}{cc}
\cosh \theta & \sinh \theta \tag{2.bj}\\
-\sinh \theta & \cosh \theta
\end{array}\right] .
$$

can also be decomposed into a product of sub-angle rotation matrices

$$
\begin{equation*}
R(\theta)=\prod_{i=0}^{\bullet-1} R\left(d_{i}\right) \tag{3}
\end{equation*}
$$

Thus, 2 single rotation of θ angle can be replaced by n smaller rotations with d_{i} angle each. In the cordic algorithms, d_{i} is chosen such that

$$
d_{i}= \begin{cases}\tan ^{-1}\left(2^{-i(i)}\right) & , m=1 \text { (circular) } \tag{4}\\ 2^{-i(1)} & , m=0 \text { (linear) } \\ \tanh ^{-1}\left(2^{-a(i)}\right) & , m=-1 \text { (hyperbolic) }\end{cases}
$$

where m determines the type of rotations and $\{0(i) ; i=0, n-1\}$ is a noa-decreasing integer sequence. Using \boldsymbol{q}_{i} from (4), $R\left(d_{i}\right)$ can be written as

$$
R\left(d_{i}\right)=p_{i}\left[\begin{array}{cc}
1 & -m m_{i} z^{-(i)} \tag{5}\\
n_{i} 2^{-0(i)} & 1
\end{array}\right]
$$

where p_{i} is a scaling factor and equak to $\left(1+m 2^{-3 n(0)}\right)^{-4}$. Let $R^{N}(0)$ and $R^{N}\left(d_{i}\right)$ be the normalised form of $R(0)$ and $\mathbf{R}\left(\alpha_{1}\right)$, reapectively, then from (3), we have

$$
\begin{equation*}
\mathrm{R}(0)=\prod_{i=0}^{-1} P_{i} \prod_{i=0}^{-1} \mathrm{R}^{N}\left(\alpha_{i}\right)=k_{-\infty} \prod_{i=0}^{-1} \mathrm{R}^{N}\left(\alpha_{i}\right)=k_{n} \mathrm{R}^{N}(0) \tag{6-A}
\end{equation*}
$$

where

$$
k_{1}=\prod_{i=0}^{-1} p_{i}=\prod_{i=0}^{-1}\left(1+m 2^{-50(i)}\right)^{-4} \quad ; \quad R^{N}(0)=\prod_{i=0}^{n-1}\left[\begin{array}{cc}
1 & -m x_{i} 2^{-0(i)} \tag{8.b}\\
x_{i} 2^{-0(i)} & 1
\end{array}\right]
$$

Usually, k_{m} is a machine constant and $k_{m}=0.6072$ (for $m=1$) or 1.00 (for $m=0$) or 1.205 (for $m=-1$), when $n \geq 10$ [12, 15]. The normalised rotation matrix of (6.b) indicates that each small rotatioa can be realized with one simple shift-and-add operation. Heace, the computation of a trigonometric function can be accomplished with n shift-and-add operations, which is comparable to conventional multiplications. This makes a CORDIC ALU a very appealing alternative to the traditional ALU for implementing the elementary functions. In general, the sormalised CORDIC algoritha can be written as follows:

FOR $i=0,1, \cdots, n-1$, DO

$$
\begin{align*}
{\left[\begin{array}{l}
x_{+1}^{N} \\
y_{i+1}^{N}
\end{array}\right] } & =\left[\begin{array}{ccc}
1 & -m & x_{i} \\
2^{-a(0)} \\
x_{i} & 2^{-a(i)} & 1
\end{array}\right]\left[\begin{array}{l}
x_{i}^{N} \\
y_{i}^{N}
\end{array}\right] \\
z_{i+1}^{N} & =z_{i}^{N}+x_{i} d_{i} \tag{7.b}
\end{align*}
$$

where $x_{0}^{N}=x_{0}, y_{j}^{N}=y_{0} m$ determines the type of rotation, d_{j} is chosen as in (4), and the zuxiliary variable x_{i}^{N} is introduced to accumulate the rotation after each iteration. And the corresponding "unnormalised" CORDIC algorithm is described as:

FOR $i=0,1, \cdots, n-1$, DO

$$
\begin{align*}
{\left[\begin{array}{l}
x_{i+1} \\
y_{i+1}
\end{array}\right] } & =p_{i}\left[\begin{array}{cc}
1 & -m \\
u_{i} 2^{-r(i)} \\
z_{i} 2^{-(i)} & 1
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right] \tag{8.8}\\
x_{i+1} & =z_{i}+u_{i} d_{i} \tag{8.b}
\end{align*}
$$

where $x_{0}=x_{1}$, and $y_{0}=y_{0}$ It can be shown that z_{i} and $z_{i}{ }^{\text {N }}$ will accumulate the angle of the total rotation and have the same value after n iterations. However, the end results of (x_{n}, y_{8}) from the iterations of (8.a) and the end results of $\left(x_{i}^{*}, y_{i}^{*}\right)$ from the iterations of (7,2) are related according to

$$
\begin{equation*}
x_{1}=k_{m} x_{n}^{N} ; y_{n}=k_{m} y_{n}^{N} \tag{9}
\end{equation*}
$$

Consequently, one may evaluate x_{0}^{N} and y_{i}^{N} by using only the shift-and-add operatiols in (8 , a), then realize x_{0} and y_{0} by other simple methods such as ROM look-up tables and regular combinatorial logic, etc. Fortunately, it is possible to find a simple way to normalise the scale factor k_{m} using the same shift-and-add hardware [14, 15]. The supplementary operations that are used to force the scale factor k, to converge toward unity can be either performed after all the operations of (7.2) are terminated, that is,

$$
\begin{equation*}
x_{i+1}^{c}=\left(1+\gamma_{i} 2^{-}\right) x_{i}^{c} ; y_{i+1}^{c}=\left(1+\gamma_{i} 2^{-i}\right) y_{i}^{c} \tag{10}
\end{equation*}
$$

where $\dot{x}_{\dot{c}}=x_{n}^{V}, y_{\dot{j}}=y_{i}^{V}$, and $0 \leq i \leq n-1$, or interleaved with the operations of (7.a), that is,

$$
\begin{equation*}
x_{i}^{6}=\left(1+7_{i} 2^{-i}\right) x_{i}^{N} ; y_{i}^{f}=\left(1+7_{i} 2^{-i}\right) y_{i}^{N} \tag{11}
\end{equation*}
$$

where $0 \leq i \leq n-1$. The parameter γ_{i} in (10) or (11) may be -1 or 0 or 1 depending on the value of i and the type of rotations (i.e. m) $[14,15]$.

Haviland et ai. [14] realised the CORDIC algorithm on 2 CMOS chip and showed that the processing time of the CORDIC chip is $40 \mu \mathrm{~s}$. They also suggested $n=13$ as the minimum cycle time of a two-byte (24 -bit) fixed point operation. However, in practice, they used $n=24$. For a conventional CORDIC module, it reqgires 5 shifl-and-add modubs to compute one CORDIC iteration and one normaliation iteration in parallel (that is, 3 shift-and-add modales for (7a) and (7.6), and 2 shift-and-add modules for (11)). The desised output can be obtained in 24 iterations ($n=24$). Thas, 24 iterations of 5 shift-and-add modules computing in parallel will be enough to realize CORDIC algorithms. This indicates that the CORDIC processing time is no slower than the time for a serial multiplier computing two 24-bit operands.

Figure 1 summarisen the clementary functione that can be obtained froen the CORDIC procomor whea in in at to -1, 0 , or 1. In thin fgure, a CORDIC procespor in depieted as a bou with three impots x_{0}, y_{0}, s_{0} which are tian miniol
 the outpats x_{1}, y_{0}, z_{0} are the decired elempatary functiona, when m is appropriately set to $-1,0$, ar 1 . These CORDIC procespors will be confgured and comsected, based on a fanctional decomposition of the joint ande equatione, to arrive at an eficient architectare for the computation of invertk kimematic pocition sohution.

2.2. CORDIC Arehitecture for Inverse Kinematie Pooltion Computation

The desiga phiboophy in to eramine the inverse kinematic position solution for its comprotatioal forw and data dependencies in order to fusctionally decompose the compriations into a set of CORDIC compriational modules (CCM) with at objective that each CCM will be realisable by a CORDIC procemor." Thin fanctional docempocition in ant saipee and can be best representel by a dirscted tack graph with a finite set of modee denoting CCMM and a corrempent
 equations in Appendix A showe a Emited amomat of parallelian with a large amouat of requeatiarime is the fow of cme pulationa and data dependencies. Thin serial nature of the compatational Bow lenda itcelf to a pixelined CORDIC procescors implementation i18). The decomponition of the inverse kimematic position equationa in dome by booking at the equations which can be computed as elementary fuactions by CORDK processors as finted in Figure 1.

The task of compating the inverse kinematic position of a PUMA robot arm, based on the eqzationa in Appendin A, can be decomposed into 25 subtaks in which eack sublack correrponds to a CCM and can be reatised by a CORDIC processor. For example, D_{1} can be computed by the followiag 3 subtasks:

Subtask 1: $\quad x 1_{s}=r=\left(p_{z}^{2}+p_{j}^{2}\right)^{1 / 2}$

Subtask 2: $\quad s 2_{\mathrm{E}}=\sqrt{r^{2}-d_{2}^{2}}=\sqrt{s 1_{0}^{2}-d_{3}^{2}}$
CORDIC Procesoor: \quad CIRC2 $=\left\{\begin{array}{l}x_{0}=p_{z} \\ y_{0}=-p_{y} \\ x_{0}=0\end{array}\right.$ CORDIC Proceswor: HYPE2 $=\left\{\begin{array}{l}x_{0}=x_{1} \\ y_{0}=d_{2} \\ x_{0}=0\end{array}\right.$

Subtank 3:

$$
s 3_{2}=D_{1}=s 1_{n}-\tan ^{-1}\left(\frac{d_{3}}{x 2_{n}}\right)
$$

CORDIC Proceseor: $\operatorname{CIRC2}=\left\{\begin{array}{l}x_{0}=x 2_{2} \\ y_{0}=d_{3} \\ x_{0}=21_{1}\end{array}\right.$

The computational fow of these 25 taska together with the inpat data can be represented by the directed acyclic dala dependency graph (ADDG) with switching nodes and parallel edges as shown in Figure 2 and the detaile about the decomposition of the inverse kisematic position solation into CCMs can be found in [4]. In Figure 2, each compntational node, indicated by a circle, represents a CORDIC computational modale, and each switching node, indicated by a dot, performs no compatations but just awitches data to rarious CCMe. The operands or data move along the edgea. A major bottleneck in achieving maximam throughpat or maximum pipeliniag in Figure 2 is the diflerent arrival time of the input data at the multi-input CCMs (e.g. nodes T18 and T22 in Figure 2). The computations of multi-inpat CCMs can not be initiated antil all the inpat data have arrived. Thia difereat arrival time of input data leagthems the pipelined time. Thus, the ADDG is said to be unbalanced and fail to achieve maximum pipelining. Several techaiques [17)[19] have been suggested to remedy this data arrival problem by iasertiog appropriate mumber of bufers (or delays) in some of the pathe from the inpat node z to the multi-iaput CCMn to "balance" the ADDG and achieve maximam pipelining. This bufer assignment problem for balanciag the ADDG can be reduced to an integer linear optimization problem. Detailed formalation of the optimal baffer assignment problem as an integer linear optimisation problem can be found in [4]. After solving the bufer assignment problem, realisation of the balanced ADDG reatis in a maximum pipelined CORDIC architecture. For a PUMA robot arm, the architecture consists of 25 CORDIC procemors and 141 bufar staget with 4 tapped-delay-line-bufers [4]. The initial time delay of the pipeliae in equal to 18 stage latemey for $720 \mu s$), where the stage lateacy of a CORDIC processor is assumed to be $40 \mu \mathrm{~s}$ [14]. The pipelined time of the CORDIC architecture equals to one stage latency or $40 \mu \mathrm{~s}$. The realiastion of the maximum pipelined CORDIC arch;tecture is showa in Figure 3.

8. Inverse Dymamice Compotation

The gemeral inverse dyamik problem for an m-liak manipelator can be stated as follow: five the gint pocitione and relocities $\left\{q_{i}(t), i_{j}(t)\right\}_{j=1}^{i}$ which describe the state of the manipulator at sime t, together with the jinint aceelors-
 follow:

$$
\begin{equation*}
\tau(l)=r(q(l), \dot{\alpha}(l), \tilde{a}(t)) \tag{12}
\end{equation*}
$$

 vector fanction and superscript T denotes traspoes operation om matrices and vectors.

At present, much attention has been focused on the compatational inemes of the inverse dymamics baced on the Newton-Euler (NE) formulation, realking in varions maltiprocemor-band control aystere (B,21-24). The recuraive stracture of the NB equations of motion is obviowiy well saited to stamdard siagheinatruction-atrean amd sinde-data-direat (SISD) compulers. It in, however, not an eficient parallel proceming for mew single inotruction-bleatim and muliph-data-rifeam (SBMD) computers that are capable of performing many simultaneow operationa. Our appreech in deaigr ing eficieat algorithme for computing the robot inverse dynamics in to book at the computational complexity of the problema first. In particular, we meed to know what it the lizaitation of apeeding af the compatation of the inverse dyamica while ruaning on procemors, where $1 \leq p \leq m$. That in, we would like to eatablinh a time bever bound for the inverse dynamics computation problem so that several eficieat computational schemes can be compared and comtrasted. Then efficient algorithma achieviag the time lower bound can be designed for the computation of the inverse dyamics. The followiag notations and bemma will be used to derive the time lower bound of the inverse dyamic probkem.
Notations:
(1) Linear crithmetic exprestion is any well-formed atriag composed of four arithmetic operators ($+,-, X, \eta$) or, for convenience, two operators + (or -), \times (or /), left and right parentheses, and atoma, which are complanta or variables. We denote a linear arithmetic expression E of m distinct atoms by $E<m>$, ef. $E<4\rangle: c+b-c / d$.
 usias p procescors.
Lemana 1: The time lower bound of $T_{,}|E<m>|$ [25]. The shorteat parallel time to evaluate a limear arithmetic expression $E<m>$ using p processors is bounded below by and equal to $O\left(|m / p|+\left|\log _{2} p\right|\right)$, that i,

$$
T_{,}|E<m>| \geq O\left([m / p]+\left[\log _{2} p\right]\right)
$$

Theorem 1: The shortest parallel time to evaluate the joint torques $\left\{r_{j}(t)\right\} ;$; in equation (12) usiag p procemors is bounded below by $O\left(k_{1}|n / p|+k_{2}\left|\log _{2} p\right|\right)$, where k_{1} and k_{2} are specified constants, that is,

$$
\begin{equation*}
\left.T_{p} \mid r_{1}, T_{2} \ldots, T_{*}\right] \geq O\left(k_{1}\{n / p]+k_{2}\left|\log _{2} p\right|\right) \tag{13}
\end{equation*}
$$

The proof of Theorem 1 can be found in [10]. Two ext-ame casea follow from Theorem 1:
(a) If $p=1$, then the shortest computing time $T_{p}\left[r_{1}, \tau_{m}, \ldots, r_{n}\right]$ is not bover than $O(n)$. Thus, the NE formalation is the most efficient algorithm of evaluating the iaverse dynamics renniag in aniprocessor computers.
(b) If $p=n$, then the shortest parallel computing time $T_{p}\left[r_{1}, r_{2}, \ldots, r_{n}\right]$ ia not lower than O ($\left[\log _{2} n \mid\right.$).

Theorem 1 indicates that an efficient algorithm ranaing on p procesac:a may not achieve the ame time order an $O\left(k_{1}|n / p|+k_{2}\left|\log _{2} p\right|\right)$. However, if a parallel algorithm posesmes the time lower bound, then it muat be the moot efficient algorithm of evaluating the inverse dynamics. Theorem 1 abo indicates that, although NB formalation is very efficient for compating the inverse dynamics, a better solution is to find an efficient parallel algorithm, ruming on F pro cessors, that possesses a time order of $O\left(k_{1} \mid n / p\right]+k_{2}\left\lceil\log _{2} p \mid\right)$. A parallel algorithm runaige on an SDMD machine and achieving the time lower bound is discusped next.

The recursive NE equations of motion are very efficient in evaluatiag the inverse dyamics whether they are formulated ia the base coordinate frame [8] or the link coordinate frames $\mid 7]$. The clear advantage of refereacing both the dynamics and kinematica to the link coordinates is to obviate a great deal of coordinate transformationa and to allow the link inertia tensor to be fixed in each link coordinate frame, which results in a much faster computation in a uaiprocessor computer. However, the recursive structure of this formulation is in an inhomogeneous linear recursive form, est$\omega_{i}=a_{i} \omega_{i-1}+b_{i}$, where $a_{i}={ }^{i} \mathbf{R}_{i-1}\left(\mathbf{a} 3 \times 3\right.$ rotation matrix) and $b_{i}={ }^{i} \mathbf{R}_{i-1}$ a $\boldsymbol{q}_{i} t$, which requires more calculations and arrangemente for parallel proceasiag than the homogeneous linear recursive form. On the other hand, the NE formalation in the base coordinatea can be rearranged and trannformed into 2 homogeneona linear recurrence form, ef $\omega_{i}=\omega_{i-1}+j_{i} s_{i-i}$, which is more suitable for parallel processing on an SND computer, yieldiag a much shorter conputiag time.

Once the NE equations of motion are formulated in the base coordinates in a homogenecus limear recurrence form, then a parallel algorithm, called recursive doubling [$16,17,26-27$], can be utilised to compute the kinematica in the forward equations and the dynamics (or torques) in the backward equations [5]. The homogeneous linear recurrence problem of sise $(n+1)$ can be described as follows: given $x(0)=a(0)+$ identity and $a(i), 1 \leq i \leq n$, find $x(1), x(2), \ldots, x(n)$ by an algorithm runaing on an SDD compoter of n proceseors, where

[^0]$$
x(i)=x(i-1)^{*} \in(i)
$$
and "*w demolet an acocintive operator, which can be a matris peodoct oe adbition, a vector dot peoket or adriting, etc. If a(0) in equal to an ideatity, then the linear recurreace of sice ($n+1$) can be redoced to the case of sioe a by taling s shif operation as followt: $e(0)-c(1), \quad a(1)-c(2), \ldots, \quad e(n-1)-a(n)$, where "..-n demoles a replacing opecstion. The recursive dombliag alcorithm basically sotves the bomogeseona fivear recurrace form in (14) ty eqtithing the compatatione of a serial aspocistive operation. For an artitrary a(m) the gemeralieation of the ithe allowe ($\mathrm{m}+1$)/2
 then $x(x)$ is computed with one fanal operation. Shailarty, it can the shown that $x(i)$ can be competed in (bead $i+1$ y
 concurreaty so heter than the time step (hoted $n+1$)f

The procedure in computing the inverse dyaamics from the NB equatione of motion formaleted in the bave coonf mates is to ro-arrange the himematic equations and the dymanic equations in a homogemeom linear recurive form, and the following inpet parameters relating the formolation meat be give or evabuated in advasce:
(a) The 3×3 rotation matrices ${ }^{i-1} \mathrm{~B}_{i}, i=1,2, \ldots \mathrm{~m}$, which indicates the orientation of hax i coortimates referetced io link ($i-1$) coordiantet, meed to be evaluated in advame.
(b) ' P_{i} ' demoles the orisim of biak i coordiante frame from the origin of liak ($i-1$) coordimate frame expromed viath respect to Fiak i coordinater; ${ }^{i} m_{i}$ demotes the location of the center of mase of link i from the origin of link i coordinate irame expressed with respect to link i coordinater; and ' J_{i} demotes the imertia matrix of link i about its center of mase expressed with reapect to link i coordinates, mont be given in advance. Note that ${ }^{\prime} \mathrm{P}_{\mathrm{i}}{ }^{\prime} \mathrm{i}^{\mathrm{i}} \mathrm{m}_{\mathrm{i}}$, and ${ }^{\mathrm{i}} \mathrm{J}_{\mathrm{i}}$ are comstants when referred to their own liak coordiantes.
(c) λ_{i} is a joint indicator which specifes link i is rotational or trandational as follow:

$$
\lambda_{i}= \begin{cases}0 & , \text { if link i is rotational } \\ 1, & \text { if link is trandational }\end{cases}
$$

(d) Let $\mu_{0}=\dot{\omega}_{0}=0, \ddot{p}_{0}=\left|g_{s}, g_{j}, g_{f}\right|^{T}$ and $\mid g_{i}^{\prime}=9.00321 m / s^{2}$. If external force f_{0} and external moment n_{q} are exerting on link n, then $f_{s+1}=f_{i}, n_{n+1}=n_{f} ;$ otherwiee, $f_{a+1}=n_{n+1}=0$.
The procedure of evaluating the NE equations of motion as a limear recurrence probjen is then givea below (mole b_{i} are used here as variables):
STEP 1. Compute the rotation matrix ${ }^{\circ} \mathrm{R}_{\mathrm{i}}$ witi reapect to the bave coordinatea for $\mathrm{i}=1$, mon

$$
\begin{equation*}
{ }^{0} R_{i}={ }^{0} R_{i-1} \cdot{ }^{i-1} \mathbf{R}_{i} \tag{15}
\end{equation*}
$$

STEP 2. Compate $p_{i}{ }^{\circ}, a_{i}$, and s_{i} for $i=1,2, \ldots, n^{n}$

$$
\begin{equation*}
\mathrm{s}_{i}={ }^{0} \mathrm{R}_{i} \cdot s_{0}, \mathrm{~s}_{0}=|0,0,1|^{T} ; \mathrm{P}_{i}^{\prime}={ }^{0} \mathrm{R}_{i}{ }^{i} \mathrm{P}_{i}^{\prime} ; \mathrm{s}_{i}={ }^{0} \mathrm{R}_{i}{ }^{i} \mathrm{~s}_{i} \tag{18}
\end{equation*}
$$

The evaluation of s_{i} only involves taking the third columa of ${ }^{\circ} R_{i}$.
STEP 3. Compute

$$
\begin{equation*}
b_{i}=s_{i-1} \dot{y}_{i}\left(1-\lambda_{i}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{i}=\omega_{i-1}+b_{i} \tag{18}
\end{equation*}
$$

STEP 4. Comprite

$$
\begin{equation*}
b_{i}=\left(s_{i-1} \ddot{q}_{i}+\omega_{i-1} \times s_{i-1} \dot{q}_{i}\right)\left(1-\lambda_{i}\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{u}_{i}=\dot{\dot{u}}_{i-i}+b_{i} \tag{P}
\end{equation*}
$$

STEP 5. Compute

$$
\begin{equation*}
b_{i}=\dot{u}_{i} \times p_{i}^{\cdot}+\omega_{i} \times\left(\omega_{i} \times p_{i}\right)+\left(s_{i-1} \ddot{q}_{i}+2 \omega_{i} \times\left(s_{i-1} \dot{q}_{i}\right)\right) \lambda_{i} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{P}_{i}=\bar{P}_{i-1}+b_{i} \tag{2}
\end{equation*}
$$

STEP 8. Comprte

$$
\begin{equation*}
\ddot{r}_{i}=\dot{\dot{u}}_{i} \times{s_{i}}+\omega_{i} \times\left(\omega_{i} \times s_{i}\right)+\ddot{p}_{i} \tag{20}
\end{equation*}
$$

STEP 7. Compute

STEP 8. Compute

$$
\begin{equation*}
F_{i}=m_{i} \bar{r}_{i} \tag{P1}
\end{equation*}
$$

$$
\begin{equation*}
N_{i}=J_{i} \dot{\omega}_{i}+\omega_{i} \times\left(J_{i} \omega_{i}\right) \tag{25}
\end{equation*}
$$

Por the sake of saviag the calculations of evaluatiag $J_{i}=\mathbf{R}_{i}{ }^{i} J_{i}$ i R_{0}, which Luh et ah [7] stowed that the computation was geite complicated, (25) in modifed to

STAP 8. Compale.

$$
\begin{equation*}
f_{i}=f_{i+1}+F_{i} \tag{28}
\end{equation*}
$$

six.p 10. Cempute

$$
\begin{equation*}
b_{i}=N_{i}+\left(p_{i}^{0}+a_{i}\right) \times F_{i}+p_{j}^{i} \times P_{i+1} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{i}=n_{j+1}+b_{i} \tag{30}
\end{equation*}
$$

STIEP 11. Compule

$$
x_{i}= \begin{cases}\left(n_{i}\right)^{r} z_{i-1} & , \text { if } \lambda_{i}=0 \tag{31}\\ \left(f_{i}\right)^{r} s_{i-1} & , \text { if } \lambda_{i}=1\end{cases}
$$

Previombly madefined cerma, expressed in the bace coordinates, are given as follows: m_{i} is the mase of Fink i, ω_{i} is the angular velocity of link i, \dot{H}_{i} in the angular acceleration of link i, \dot{P}_{i} is the linear acceleration of link i, \ddot{r}_{i} is the linear acceleration of the center of mase of link i, F_{i} is the total force exerted on link i at the ceater of mang, N_{i} is the total moment exerted on fink i at the center of mase, f_{i} is the force exerted on link i by link $i-1, n_{i}$ is the moment exerted on link i by link $i-1, T_{i}$ in the torque exerted by the actuator at joint i if rotational, force if translational, fis in the joiat variable of joint i (θ_{i} if rotational and \boldsymbol{i}_{i} if tramalational).

Eqeation (15) shows that the evaluation of ${ }^{\circ} \mathrm{R}_{i}$ is a simple recursive matrix product form. Equations (18), (20), (22), (28), and (30) ouly involve simple recaraive vector addition formo. The other equations in the NB equations can be computed parallelly. Thas, the evaluation of the total compatational complexity of the parallel algorithm for a PUMA robot arm can be derived as follows:
(a) The parallel evaluation of (15) using recursive donbling indicates ($27\left\{\log _{2} n \mid-19\right.$) scalar multiplieations and (18 [logna $]$-14) scalar additions.
(b) Equations (18), (20), (22), (28), and (30) all have the same recuraive vector addition form, the total parallel evaluation of these equatione requires ($6\left\{\log _{g} n\right\rceil+9$ [loge $\left.(n+1)\right\rceil$) scalar additiona.
 and all the b_{i} of (17), (19), (21), and (29) can be calculated by simple parallel computations, yieldiag a constant computation of 135 xcalar maltiplications and 98 scalar additions
Combiniag the resalte of (a), (b), and (c), the total computational complexity of the parallel algorithm applied to a PUMA robot arm in $\left(27\left\lceil\log _{2} n\right\rceil+116\right)$ scalar multiplications and $\left(24\left\{\log _{2} n\right\rceil+9\left\lceil\log _{2}(n+1)\right\rceil+84\right)$ scalar additions Note that it in of time order O ($\left.\left[\log _{2} n\right]\right)$ because we are asiag $p=m$ processorm. If further reduction on the coefficients of ($\left[\mathrm{log}_{g}\right.$ n)) is desirable, this can be accomplished by maing matrix multiplier chipa. This would reduce the coefficients 27 and 18 in evaluating (15) as discasped in (a). If $n=8$, then the complexity of the parallel NE algorithm is 197 multiplies (mults) and 183 additions (adds) 20 compared with the complexity of the NE algorithm running on a uniprocessor [7]: 852 multe and 738 adds. Moreover, even if a becomes large, zay $n=12$ (for reduadant robots), then the number of multiplicatione and additiona increases only by 27 and 33 , respectively. Thus, we have shown that coasiderable asvings in compatation time can be achieved from embedding the inverse dynamic computation in a parallel algorithm, whicl has a time complexity of logarithmic in the amber of joints, $O\left(\left[\log _{z} n\right]\right)$.

2.1. An Eficient Parallel Algorithm With p-Fold Paralleliam

Last section showed that the bottleneck of paralkel computation of the inverse dyamics dependa on solving the homogemeoss linear recturrence of the N-E formulation. If the reatriction that one microprocessor "handes" one joint in relaxed, it is denirable to obtain an efficient parallel algorithm which ean greathy improve the evaluation of the linear recurrence maing procemosh A parallel algorithm of evaluating the inverse dyamics with a restricted number of y processons has been developed to achieve the time lower bound of $O\left(k_{1}[m / p]+k_{2}\left[\log _{2} p\right]\right)$. The proposed p-fold paralbl algorithm can be best described as concinting of p-parallel blocka with pipelined elements within each parallel block. The results from the comprations in the p blocks form a new homogeneons linear recurrence of sise p, which again can be computed uaing the recuraive doubling algorithm. The parallel algorithm with p-fold parallelism (PFP) is sammarised and preseated as follown:

Atgorithm PPP (p-fold Parallelime). This alsorithm divides the computatioss into p-parallel blocks of computationa The j th processor computes the elements in the j th block serially. The results from the the p-paraliel blocks form a new homogeneons linear recerrence of sise p, which can be computed by the recursive doubling algorithen.

$$
M(i)= \begin{cases}a(i-1) & , 1 \leq i \leq m+1 \tag{34}\\ 0 & , n+1 \leq i \leq m\end{cases}
$$

where simfiealee the block ise (number of elemente in a block).
P2. Divile into p blockel Divide $M(i) 1 \leq i \leq m$, into p blocks as followse
j th block $=\{M(j-1)+1) M(j-1)=+2), \ldots, M(j)\}$ and let $N(1, j)=M(j-1)=+1), 1 \leq j \leq p$ where $N(i, j)$ indieatee the i th element in the j ih block.
P2. (Compete $N(i, j)$ in a DO loopof The j th procemor merially compates $N(i, j)$ in the j th block are
For $i=2 \operatorname{dop} 1$ until o Do

$$
\begin{equation*}
N(i, j)=N(i-1, j) * M((j-1):+i), \quad 1 \leq j \leq p \tag{7}
\end{equation*}
$$

END

It in seen that $x(1), x(2), \ldots, x(s-1)$ has been evaluated in the DO loop as well as $N(i, 1), 2 \leq i \leq \varepsilon$. That in, $x(1)=N(2,1), x(2)=N(3,1), \ldots, x(s-1)=N(s, 1)$.
P4. Form a nem homogemeons linear recurreace of sise p.] Let $\boldsymbol{\gamma}(j)=N(f, j)$ and $y(j)=x(j,-1)$ for $1 \leq j \leq p$ and referring to (14), (32), and (33), we have

$$
\begin{align*}
y(j) & =x(j-1)=x((j-1) c-1) * e((j-1) s) * e((j-1) c+1) * \ldots * e(j-1) \tag{3}\\
& =y(j-1) * M(j-1) \in+1) * M(j-1) s+2) * \ldots * M(j)=y(j-1) * N(s, j) \\
& =y(j-1) * x(j)
\end{align*}
$$

Equation (34) in a mew homogeneons lipear recurrence of sise p which can be parallelly evaluated by the algorith FOHRA, raning in time proportional to $O\left(\left\{\log _{2} p 1\right)\right.$ and jielding the results $x(s-1)=y(1), x(2 s-1)=y(2),-$, $x(p s-1)=y(p)$ - (Note that if $(n+1)$ is divisible by p, then $x(n)=y(p)$; otherwise, $x(p s-1)=y(p)=0)$.
P5. [Compute intermediate $x(i)$ in equation (35).] Withont lose of gemerality, asuming that $(x+1)$ is not divisible by p, thea there are $m-p-8+3$ intermediate ierms of $x(i)$ that aeed to be determined. They are:

$$
\begin{equation*}
x(j+i) \quad, C \leq i \leq 8-2,1 \leq j \leq p-2 \quad \text { and } \quad 2((p-1) \varepsilon+i) \quad, 0 \leq i \leq n-(p-1) \tag{3}
\end{equation*}
$$

Referriag to (7), (33), (34), and (35), thereby giving

$$
\begin{align*}
x(\dot{j}+i) & =x(\dot{j}-1) * a(\dot{j}) * a(\dot{j}+1) * \ldots * e(j \dot{j}+i)=y(j) \bullet M(j+1) * M(j+2) * \ldots * M(j+i+1) \tag{m}\\
& =y(j) \bullet N(i+1, j) \quad, 0 \leq i \leq:-2, i \leq j \leq p-2
\end{align*}
$$

and $x((p-1) a+i)=y(p-1) * N(i+1, p-1), 0 \leq i \leq m-(p-1)$ a
where $N(i+1, j), y(j)$ of (36) have been evaluated in stepe PI and P4, reapectively. Equation (36) shown that il $(n-p-s+3)$ tasks are of the same evaloation, then the calculations of these equal tasks are saited to an SMMD conputer of p proceseors. It is shown that parallel evaluation of (36) requires $[(n-p-8+3) / p]$ time steps (note that it $(n+1)$ is divisible by p, then $x(n)$ ean be evaluated in atep $P 4$, yielding ($n-p-s+2$) equal tackes in (36), thereby requirias $[(n-p-s+2) / p]$ time stepe $)$.

END PPP

It is seen that the total parallel computing time T, of the homogeneona linear recurrence of sise $(\boldsymbol{m}+1)$ ming p procesmors in:

$$
T_{p}=\left\{\begin{array}{l}
{[(n+1) / p\rceil+\lceil(n-p-s+3) / p\rceil+\left\lceil\log _{9} p\right\rceil-1, \text { if }(n+1) \text { is not divisible by } p .} \\
{[(n+1) / p\rceil+\lceil(n-p-s+2) / p\rceil+\left\lceil\log _{2} p\right\rceil-1, \text { if }(n+1) \text { is divisible by p. }}
\end{array}\right.
$$

Applying the above p-fold parallel algorithmo to the N-E formulation for an n-link rotary manipulator, it is able to achieve the tive lower bound of $O\left(k_{1}|\mathrm{~m} / \mathrm{p}|+k_{2}\left\{\mathrm{log}_{2} p \mid\right)\right.$.

The above m-fold parallel algorithm in suited to be rum on an SDMD computer. A cascade stracture can be med for conneeting the PEe. An alcernate structure in to pocition a network between the processors and memorien. Tin interconnection pattern, called the "perfect shuffile $(23,87)^{\text {" }}$ has the namber of links between procemors proportional to n. An attractive interconnection pattern, called "inverse perfect shume $[26,27]$, " is suitable for the implementation of solving the homogeneons linear recurresce and can be obtained by reversing the arrows of the perfect shaffle. Detrin about this network connection for sotving the homogeneon linear recurreace for compating the joint corques cam in found in [10].

4. Conclusion

A maximum pipelined CORDIC architecture for computing the inverse kinematic position soletion and an effician parallel algorithm for compating the joint torques have been discussed. To achieve maximam throughpat, delay buinss
are mequired to balance the pipeline. Por a PUMA nobot arm, the CORDIC archilecture consiata of 25 CORDIC procet bore and 141 brifar stages with 4 tapped-delay-tine bultern. The initial time delay of the pipeline is equal to 730 pe and
 perting the jotnt torgees has a time compleity of logarithric in the number of jointe. The intercoanection networka for the procemore have abo been inventigatel to inprove the mitiagtion of commanication and internal beferiag between procemors in an STDD competer. Uing the comecpts of the proposed parallel algorithme, it would be poemithe to devive a VLSt chip capable of implementing the inverse tymaniea compatation at apoed primarity bounded by the propoeed paralial alooithn

5. Appeadix As Inverse Klnemalie Pcoition Solution

The inverse kinematic position prohkp can be stated as: Given the position/orientation of the manipalator hand and the Fink/joint parameters, delermine the joint angles so that the manipulator ean be poceitioned as deaied. That in, given

$$
I=\left[\begin{array}{llll}
n_{1} & e_{z} & a_{z} & p_{z} \\
n_{2} & 0_{y} & a_{2} & p_{y} \\
n_{2} & 0_{3} & a_{2} & p_{2} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
n & 0 & a & p \\
0 & 0 & 0 & 1
\end{array}\right]
$$

the joint angle equationa are:

$$
\begin{align*}
& r=\left(P_{s}^{2}+P_{s}^{2}\right)^{1 / 2} \tag{A-1}\\
& \theta_{1}=\tan ^{-1}\left[\frac{p_{1}}{p_{2}}\right]-\tan ^{-1}\left[\frac{d_{3}}{ \pm \sqrt{r^{2}-d_{3}^{2}}}\right] \tag{A-2}\\
& f_{11 p}=p_{3} C_{1}+p_{y} S_{1} ; f_{110}=o_{z} C_{1}+\rho_{y} S_{1} ; f_{25 p}=-p_{z} S_{1}+p_{y} C_{1} ; f_{130}=-o_{3} S_{1}+o_{y} C_{1} \tag{A-3}\\
& f_{114}=c_{3} C_{1}+c_{2} S_{1} ; f_{130}=-\varepsilon_{2} S_{1}+c_{1} C_{1} \tag{A-4}\\
& d=f_{11}^{2}+f_{1 p_{p}}^{2}-d_{4}^{2}-a_{2}^{2}-a_{2}^{2} ; e=4 e_{2}^{2} \varepsilon_{3}^{2}+4 a_{2}^{2} \varepsilon_{4}^{2} \tag{A-5}\\
& \omega_{3}=\tan ^{-1}\left[\frac{c_{3}}{-d_{1}}\right]-\tan ^{-1}\left[\frac{d}{ \pm \sqrt{e-d^{2}}}\right] \tag{A-6}
\end{align*}
$$

$$
\begin{align*}
& o_{2}=o_{23}-o_{3} \tag{A-8}\\
& 0_{4}=\tan ^{-1}\left[\frac{-S_{1} a_{2}+C_{1} a_{1}}{C_{2 x}\left(C_{1} a_{2}+S_{1} a_{2}\right)-S_{22} a_{3}}\right]=\tan ^{-1}\left[\frac{f_{13}}{C_{23} f_{114}-S_{28} a_{2}}\right] \tag{A-9}
\end{align*}
$$

$$
\begin{align*}
& 0_{4}=\tan ^{-1}\left[\frac{-C_{8}\left(C_{4}\left(C_{28} f_{11}-S_{20} 0_{8}\right)+S_{4} f_{130}\right]+S_{6}\left(S_{23} f_{110}+C_{20} 0_{8}\right)}{-S_{4}\left(C_{20} f_{110}-S_{20} 0_{3}\right)+C_{4} f_{120}}\right] \tag{A-10}
\end{align*}
$$

where $\left(-\frac{d_{4}}{a_{2}}\right),\left(\frac{d_{4}}{c_{2}}\right),\left(\frac{a_{3}}{c_{2}}\right)$ are constante, $C_{i} \equiv \cos \theta_{i}, S_{i} \equiv \sin \theta_{i}, C_{i j}=\cos \left(O_{i}+\theta_{j}\right)$, and $S_{i j} \equiv \sin \left(\theta_{i}+\theta_{j}\right)$.
6. Referencee

1. Paul, R.P., Shimano, B.B., and Mayer, G., "Kinematic Control Equationa for Simple Manipalators," IEEB Trasa. Syat. Mint, Cyberti, Vol. SMC-11, No. 6, pp. 456-460, 1981.
2. Kametani, M. and Watanabe, T. "Hardware and Soltware of a Multiprocemor Syatem Applied for Robot Control," 1984 Proc. of Induetrial Electronic Coxf., pp. 749-758.
3. Watanabe, T. et al, "Improvement of the Computiag Time of Robot Manipulators Uaing a Maltiprocespor," Proc. of ASM 3 Winter Areseal Mecting, Miami, Florida, 1985, pp. 13-22.
4. Lee, CS.G. and Chang, PR, "A Marimum Pipefined CORDIC Arehiteeture for Iaverse Kinematics Computation," Technical Report TR-EEE-88-5, School of Electrical Eagineering, Perdue Univerrity, January 1886.
5. $\mathrm{Pu}, \mathrm{K} . \mathrm{S}_{\text {, }}$ Gonsales, R. C, and Lee, C.S.G, Robotice: Coxtrol, Sexpigg, Vision, and Futelligence, McGraw-Hil, September, 1885.
6. Orin, D.B., R.B. MeGhee, M. Vukobratovic, and G. Hartoch, "Kinematic and Kinetic Analysis of Open-chain Linkages ntilising Newton-Euler Methods," Meth. Biosc., Vol. 43, 1979, pp. 107-130.
7. Leh, J.Y.S, M.W. Walker, and R.P.C. Paul, "On-line Compatational Scheme for Mechanical Manipalator," Treme. of ASME, J. of Dymarn. Syat., Meas. cied Coutrl, Vol. 102, pp. 69-76, Jume 1980.
8. Luh, J.Y.S. and C.S. Lin, "Seheduling of Parallel Compatation for a Compater-coatrolked Mechanical Manipulator," IEESB Trass. Syot. Mars, and C3 her., Vol. SMC-12, No. 2, pp. 214-234, Marci/April 1982.
9. Kasahara, H. and Narita, $S_{\text {, }}$ "Parallel Procesing of Robot Arm Control Computation on a Multiprocespor Syztem," IEESE J. of Robotics and Arfomation, Vol. RA-1, No. 2, June 1985, pp 104-113.
10. Lee, C.S.G. and Chang, PR., "Eficient Parallel Algorithm for Inverse Dynamics Compatation," EEEE Trans. on Systems, Man, and Csbernetics, VoL. SMC-16, no. 4, July, 1986, pp. 532-542.
11. Volder, J.E. "The CORDIC Trigonometric Computing Technique," IRE Trans. Electronic Computers, Vol. EC-8, No. 3, Sept. 1959, Pp. 330-334.
12. Walther, J.S. "A Unified Algorithm for Elementary Functions," AFIPS Conf. Proc., Vol. 38, 1971, pp. 379-385.
13. Ahmed, H. M., J. M. Delosme and M. Morf, "Highly Concurrent Computing Structares for Matrix Arithmetic and Signal Processing," IEEE Computer. Vol. 15, No. 1, Pp. 65-82, Jan. 1982.
14. Haviland, G. L. and A. A. Tussynski, "A CORDIC Arithmetic Processor Chip," IEEE Trans. Comput., Vol. C29, No. 2, pp. 68-78, Feb. 1980.
15. Dewide, P. et al., "Parallel and Pipelined VLSI Implementation of Signal Processing Algorithms," in VLSI and Modern Signal Proceseing, S. Y. Kung, H. J. Whitehouse, T. Kailath, (eds.), Prentice-Hall, Inc., Englewood Cliff, NJ, pp. 257-278.
16. Kogge, PM., "Parallel Solution of Recurrence Problems," IBMJ. Res. Develop., Vol. 18, pp. 138-148, Mar. 1974.
17. Kogge, PM. and Stone, H.S., "A Parallel Algorithm for the Eficient Solation of a General Class of Recurrence Equations," IEESE Trans. on Comput., Vol. C-22, Pp. 789-793, Aug. 1973.
18. Knng, H.T. and Lam, M., "Wafer-Scale Integration and Two-level Pipelined Implementation of Systolic Arrays," J. of Pcrallel and Dictributed Computing, Vol. 1, No. 1, Sept. 1984, pp. 32-83.
19. Dennis, J. B. and R. G. Gao, "Maximum Pipelining of Array Operations on Static Data Flow Machine," Proc. of 1988 Int 7. Conf. on Parallel Processing, pp. 331-334, Aug. 1983.
20. Leisernon, CE. and Saxe, J. B., "Optimising Synchronous Systems," J. VLSI and Computer Syatems, Vol. 1, 1983, pp. 41-68.
21. Lee, C.S.G_ Mudge, T.N., and Turney, J. L, "Hierarchical Control Structare using Special Purpose Processors for the Control of Robot Arms," Proc. 1982 Pattern Recognition and Image Processing Conf., Las Vegas, Nevada, June 14-17, 1982, pp 634-640.
22. Lathrop, L.H., "Parallelism in Manipulator Dynamics," MLLT. Artificial Intelligence Tech. Rep. No. 754, Dec. 1983.
23. Nigam, R. and C. S. G. Lee, "A Maltiprocessor-Based Controller for the Control of Mechanical Manipulators," IEEE J. of Robotics and Automation, Vol. 1, No. 4, Dec. 1985, pp. 173-182.
24. Orin, D.R., "Pipelined Approach to Inverse Plant Plus Jacobian Control of Robot manipulators," Proc. 1984 IEEE Int 7 Conf. on Robotics and Astomation, Atlanta, GA, pp. 169-175, Mareh 1984.
25. Horowita, I. and Sahni, S. Fundamextale of Computer Algorithms, Computer Science Press linc., 1978, pp. 488494.
26. Stone, H.S., Introduction to Computer Arehitecture, Science Research Aswocizte Inc., 1975, pp. 319-373.
27. Stone, H.S., "Parallel Processing with Perfect Shafle," IEEE Trane. on Comput., Vol. C-20, pp. 153-161, Feb. 1971.

Figure 2 Task Graph for A PUMA Inverse Kinematic Podition Solution

Buffera:

$$
\begin{aligned}
& b_{13}:=1,1 b_{14} \mid: \operatorname{TDLB}-(5,4,1,1),\left\{b_{15} \mid=15,\left\{b_{16}:: \operatorname{TDLB}-(10,9,1)\right. \text {, }\right. \\
& \left\{b_{17} \mid=8,\left\{b_{18}: \text { TDLB- }(10,4,6), i b_{10} \mid=5,\left\{b_{31} \mid=4,\left\{b_{21} \mid=2,\right.\right.\right.\right. \\
& \left\{b_{22}|=1,| b_{23}\right\}=2,\left|b_{x}\right|=3,\left|b_{2 x}\right|=1,\left|b_{21}\right|=2,\left\{b_{27} \mid=1\right.
\end{aligned}
$$

Figure 3. Realisation of Figure 2 with CORDIC Processcrs

[^0]: t a_{i} and b_{i} are ened bere ne variabian.

