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1) introduction: “ (_/ /%

The SOLON Planner provides an architecture for effective real-time planning and |
replanning for an autonomous vehicle. The acronym, SOLON, stands for: State-Operator LOgic /
MachiNe; the highlights of the system, which distinguish it from other Al-based planners that ’
have been designed previously, are its hybrid application of a state-driven control
architecture and the use of both schematic representations and logic programming for the
management of its knowledge base (1).

SOLON is designed to provide multiple levels of planning for a single autonomous vehicie
which is supplied with a skeletal, partially-specified mission plan at the outset of the
vehicle’s operations. This mission plan consists of a set of objectives, each of which will be
decomposabie by the planner into tasks. These tasks are themselves comparatively complex
sets of actions which are executable by a conventional real-time control system which does |
not perform planning but which is capable of making adjustments or modifications to the \
provided tasks according to constraints and tolerances provided by the Planner.

f Le4@ar current implementation of the SOLON is in the form of a real-time simulation of the

Planner module of an Intelligent Vehicle Controller (IVC) on-board an autonomous underwater
vehicle (AUV). The simulation is embedded within a larger simulator environment known as
ICDS (Intelligent Controller Development System) operating on a Symbolics 3645/75 computer

@.

it) Real-Time Operational Context

Many planning systems have been developed over the years of Al research, but few
have been built expressly for use in the control of an autonomous vehicle which will be
operated in extremely remote, inaccessible environments (3). Most autonomous vehicles to
date have been land-based,and the focus of research has been upon problems of mobility and
obstacle avoidance. We recognize that tha AUV problem includes all of the same issues faced
in the design of any autonomous vehicle but in our case long-range goals dictate the need for
modularity and interchangeability of system components (e.g., sensor subsystems,
manipulators, photographic equipment, etc.) and the integration of these subsystems with the
controller responsible for moving the actual vehicle. Furthermore, an onboard IVC must be
capable of performing in real time, without the typical options that are generally available to
terrestial vehicles. An AUV has additional directional degrees of freedorn than a terrestial
vehicle as it moves through 3-space but it has less operational freedom to stop or to undo
certain motions. For example, with the exception of certain experimental-only vehicle
architectures, an AUV cannot retrace its path exactly and bringing the vehicieto a haint
cannot make use of braking systems or high degrees of friction.

The underlying philosophy of the SOLON planner includes the following basic premisses:

i) Both the knowledge base and the work (the processing) must be distributed, allowing
for concurrent processing by different components, in order to solve the real-time bottieneck;

i) The architecture must be dynamic and flexible to allow for the fact that different
environmental and decision-making situations will require a different balancing of the
processing loads;

iii) Any intelligent controller must evolve in i;s”design from the simple to the complex




foreseeable should not require major restructuring of a system design or implemented, operabie
software.

itf) High-Level Architecture

SOLON is composed of five logical processes (logptom)whnd\operata as cooperative

but autonomous agents in the Planner. These are:
i) Serategist - central decision-making; selection and scheduling and detaifing of
objectives and tasks within objectives;
ii) Event Assessor - processing of events and conditions reported by other IVC
modules about outside environment or intemal vehicle systems;
iii) Tactician - interfacing between Planner and lower-level vehicle control systems
responsible for driving actuators and effectors;
iv) Plan Simulator - evaluating alternative plans in cases where Strategist’s
first-cut logic cannot derive a clear and distinct best choice;
v) Plan Registra:- - central editing and modification of the Active Plan.

Each logproc communicates with others by means of an message-passing system which
is also the structure employed for inter-modular communications within the whole IVC. The
logprocs may be multiple processes which share a single-processor machine such as the
Symbolics or they may be implementedin a distributed processing environment where each
logproc has its own physical processor. Their relationships are described in a data flow
diagram (Figure 1) and their functions are described in more detail later in this paper.

IV) Distribution of Intelligence and Decision-Making

A major stumbling block to the implementation of real-time Al systems has been in the
area of performance. Typically a system is bound with achieving a particular goal and
events occur which cause one of the following types of situations:

i) The original problem that the system is working upon is no longer relevant

i) The data being used by the system in its current problem-solving has been changed

i} A new problem has higher priority and should take precedence over the current
activities of the system.

This is more than a problem of conflicting goals in which the system must decide to
satisfy one. Rather, we are faced with goal conflicts that may not arise until after a given
attempt to satisfy a goal is underway and which may not be communicated to the system to
satisfy the goal. The costintime and computation resources for determining how to alter
the current activity and how to respond to a new situation may be prohibitive given the
other requirements of the control system.

The approach undertaken in SOLON distributes the work among the multiple logical
processes which can proceed independently. The performance of the Plan Simulator is not
impacted by the Strategist, which may be in an idle state or eise busy running PROLOG
inferences, other than by the constraints imposed by the scheduler if both logprocs are
running off the same physical processor. Obviously there is signficant advantage to a logproc
having its own processor. At any given time, messages can be sent between logprocs in
order to interrupt or provide additional information. There are a finite number of message

types ;.otential-obstacle, task-completed, relevant-object, task-status, etc.) which may be
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FIGURE 1 - High-Level Placner Archilecture
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sent between logical processes but the schema-based representation structure allows for this
number to grow as the complexity of the Planner implementation increases.

When a message is sent, for instance, from the Tactician to the Strategist, the
message is sent with the priority that has been assigned by the sender. This indicates how
significant or urgent the sender believes the message to be. That will not necessarily be the
way the message is treated by the receiver, which may be working on a task that is the
result of a previous message and which may be rated with a much higher priority.

When the receiver gets a message, it is not automatically interrupted from its work.
Instead, each process follows a cycle of execution followed by checking for messages. This
has been implemented for the Strategist and is described further in section X. If the receiver
is at a point where it can be interrupted, then it will determine if there is any message in its
queue that demands a jump to a new task. The receiver process uses the Process-Msg
function to determine what message is the most critical one in the queue. Currently
Process-Msg is a LISP function that employs several simple rules but in future implementations
it will be a compact expert system in its own right within the Planner. '

What becomes of the work that a logproc was doing if and when it is redirected by a
message to tackle some other task? There are two possible approaches. One is to interrupt
the original task, save a history of what was going on and possibly resume it at a later time.
However, this poses many problems in truth maintenance and non-monotonic reasoning
because the situation that gave rise to the original task may be aitered as a result of the
new operations being executed. Rather than attempt to keep track of all changes and
determine that the original task should be resumed or not, the approach in SOLON is to simply
drop the original task altogether. If in factthe original task should be resumed, then the
conditions which led to that task will surface again in the form of a message from one
logproc to another. Otherwise the system will deal with the highest priority messages that
currently sxist. The Planner is always responding to the latest, most current state of
affairs, even it this means doing some extra work or duplicating a few steps to determine
what should be done next. In other words, one may ask the question "What is the most
pressing business right now?" more often, but one will always have the best and most
up-to-date answer to that question, given the rules that have been built into the Planner
through its functions and specific PROLOG axioms.

V1) Multiple Forms of Knowledge Representation

Factual knowledge of the environment and the vehicie is maintained in a database
which employs the schema-slot-value structure as implemented in Knowledge Craft, a
Common LISP based system tool developed by Camegie Group, Inc. There is a fundamental
taxonomy of world objects and relations’ which hold between various objects, as indicated in
Figure 2. Generally, knowledge about “what is” is stored in this schematic representation,
whereas "how 0" knowledge, rules and operational guidelines, is represented in PROLOG
axiomatic expressions. The PROLOG mechanism was deemed to be suitable for making queries
and deriving solutions that could best be found using backward-chaining inference processes.
However the PROLOG form was not deemed sufficient to be used as the only form of

The power of the schematic representationis thatthe “2cts are easily storec ina
well-structured format and the information is easily accessible. Moreover, from a
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" experimentalist point of view It is a good representation for building a prototypical system,
" one that is open-ended and intended to evolve beyond one’s current expectations.

Vehicle missions consist of human-specified skeletal plans, the elements of which are
known as objectives - high-level types of operations such as transiting to a destination,
searching a region for a given set of objects, following a moving object, etc. Objectives are
deocmposable into tasks, more elementary types of activity (ransit to waypoint, hoid
position, send transmission, manipulate arm or sensor platform, etc.). Mission specifications
are, therefore, short program-like structures that provide the Planner with a first-cut set of
objectives to perform in a given temporal sequence with some parameters of those objectives
detailed and others left for the Planner to address at run-time. The sequence of objectives
and the parameters (e.g., bounds of a region to search, starting position for a search
operation) are the default or first-choice values for the Planner to use as optimal guidelines.
Through the built-in logic of the Planner and rules that are specified within the mission (see
next section) the sequence and parameters and the choice of tasks for satisfying each
objective are modified in response to events that occur both in the external environment and
within the vehicle.

Vil) Hierarchy of Operational Rules

A considerable database of operational rules is implemented using PROLOG. Cartain
rules are applicable to any mission for any type vehicle and these may be considered the
most basic planning rules, modification of which constitutes a redesign of the planning
algorithms. These rules are stored in a structure called Act-Prolog and are always present in
the working set of PROLOG axioms available for inferencing operations. Other rules are
specific to the vehicle but apply to any mission that such a vehicle might undertake. They
are known as Sys-Oper rules and will also be available during the entirety of a given mission
but may be replaced at pre-deployment time without disturbing the Act-Prolog body of rules.
Obviously, this type of partitioning is principally for the benefit of easy system maintenance
and modification and does not affect the actual Planner operations.

A similar body of rules are global for a given mission and are accessible at all times
during the Planner operations for any objective thatis a component of the mission. Next
there are three classes of rules which are not accessible uniformly; these include:

i) rules that apply during a specific type of mission objective; i.e., a special rule for
search operations, which does not apply to transit or escort operations;

ii) rules that apply for a specific type of task within an objective; i.e., a special rule
that applies to ‘waiting’ tasks and does not apply to motion-oriented tasks;

iii) rules that apply for a specific objective within a mission; i.e., a special rule for
when the vehicle is searching area B for a sunken object and only for that objective, having
no applicability to other objectives within that mission.

The purpose of this subdivision of rules is to allow efficient entry of new rules into the
system and to manage the PROLOG inferencing process so that the system never has to deal
with more than those rules which could possibly apply at a given instance. The aimis to
reduce the size of the rulebase whergver possible, reducing the number of rules that must be
examined and eliminating from consideration those rules that could not possibly have any
relevance at a given instancs.
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VIl) The Strategist ' ,
The Strategist is clearly the most compiex logical process within the Planner,and it is
within the Strategist that the state-operator architecture is employed most fully. Ris also
the logical process that makes most extensive use of the message processing and evaluation
logic which is a critical element in the SOLON design. Messages which arrive from other
Planner logprocs are processed according to an algorithm which attends to both the sender’s
and the receiver’s evaluation of the message priority and significance for the current state of
the vehicle’s mission plan. The algorithm we have initially employed is a simplified version of
what we expect will evolve into an expert system in its own right, a clear place-holder for
future machine leaming studies. Depending on the message chosen to address, the Strategist
moves into one of several state-operator functions or processes (currently all are
implemented as LISP functions) and future actions of the Strategist are then governed by
two factors:
i) The results of function evaluations and hypothesis generations within the
current state-operator;
ii) The appearance in the Strategist’'s message-queue of a "critical message”
demanding immediate attention and the overriding of current repianning activities.
Examples of current state-operators include:
i) Analyze-Next-Scheduled-Objective
ii) Expand-Objective-Into-Tasks
i) Examine-Task-Status-Msg
iv) Determine-Plan-Change-Directive
Within each state-operator, the main activities consist of determining what is the
appropriate hypothesis to test-and then making queries into the PROLOG-based knowledge
base. This consists of a dynamic set of axioms (modifiable facts and constant nLlss).
Through the PROLOG mechanism employed within our implementation (CRL-PROLOG) these
have full access to the major body of represented knowledge about the vehicle, mission plan
and environment, which is in the form of schema-siot-value-relation data structures.
The basic algorithm of the Strategist top-level function is presented in Figure 3.

FIGURE 3 - Strategist Top-Level Algorithm

{Outer loop]
IF (Critical Message Received)
THEN (Maks the Critical Message the Current Message)
ELSE (Get the Most Relevant Message From the Queus if there is one)

Basad on the type of mess2ge [related-event, obstacie, task-statss, eic.]
received, (Select Appropriate State-Operator To Activate)

IF (Strategist is in wait-state)
THEN (Put Strategist process info wail stats)
ELSE
{Wnner loop]
UNLESS (Strategist is directed into wait-state)
OR (Critical Message Received)
{Execute the Selected State-Operator)
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IX) A Working Example

The operation of the Strategist may best be described through the use of an example
scenario which will illustrate the manner in which the state-operator functions and PROLOG
rules operate to control the vehicle and replan its mission. We will consider a simple search
mission as described by Figure 4. The tentative path of the AUV, were it to execute each of
the initial scheduled objectives in sequence and without any replanning due to new events, is
indicated by Figure S.

Initially the Strategist is given a start-mission message which activates the
state-operator Analyze-Next-Scheduled-Objective. The obvious first step is to consider
what is next on the list of scheduled objectives given by Mission Control. A series of Prolog
queries are generated to determine if there are sufficient reasons for undertaking this
objective and no overriding reasons to avoid this objective at this time.

Assume that the first objective is to move the vehicle to a given point A. This
objective is represented as Transit-A and it inherits all the default characteristics
associated with transit operations, as well as any special rules that may have been specified
by Mission Control in the skeletal plan. These defaults include the decomposition of the
objective into component tasks. For point-to-point transits, there is only-one elementary
task, that of moving the vehicle in 3-space. However, betfore asserting a new transit-type
current-task, checks are made to determine that there are no known obstacles (which may
have been detected by the sensors) in the vehicle’s path. Using an algorithm which treats
potential obstacles as expanded spheres and represants the vehicle as a point, lines of
tangency are computed which provide possible new waypoints for the vehicle to use in
navigating around the obstacles. An elementary set of rules determines which is the best set
of alternative paths and these paths become the new component tasks for the current
objective.

Suppose that the vehicle is now engaged ina search objective, where there are a
specified number of objects (cylinders or curved surfaces with a radius > 3m but < 10m) which
are deemed relevant to the search and one particular object (a pipeline on the seafloor)
which is the goal object for the search. Specific rules provided with the mission plan indicate
the actions to be taken it and when various relevant objects are detected. These are in the
database of rules which are active while the vehicle is executing its search objective.
Having received a message about a cylindrical object at point A from the World Modeller, the
Event Assessor determines that the object is relevant to the current objective and the
Strategist is notified. The latter responds by determining an appropriate change that applies
to the current state of the Active Plan. This response, based upon rules input with the
mission specification, may be to initiate a new objective, a spiral search operation centered
upon the newly discovered object. Before actually changing activities, the Strategist invokes
a state-cperator which explores "what if* type queries to determine if instituting the change
of plan would cause conflicts for other objectives of the mission. If there are significant
conflicts, then the Sirategist retums to the state-operator charged with determining
appropriate change of plan given the new event (object). Otherwise, the new objectivet is
treated as the next scheduled objective (as if it were part of the original schedule) and the
state-operator charged with checking out all next-zsgc;\eduled objectives is then activated.




FIGURE 4 - Search Mission Scenario
. SCENARIO-1 Test Mission—

TRANSIT-A (movs vehicis in straightest possible path to point (200 200 200))

LADDER-SEARCH-A (ssarch 200m x 200m region for sunken submarine vesssl,
using ladderiks motion pattern; relevant objects include smooth, curved
surfaces and metallic objects)

TRANSIT-B (move from end of search operation to point (1200 1200 400))
LADDER-SEARCH-B (ssarch 400m x 400m region for same submaerine)
TRANSIT-C (move to point (2000 800 800))

SPIRAL-SEARCH-C {search 500m radius region starting fram current pesition,
moving counter-clockwise in a spiral motion pattern)

TRANSIT-D (move to point (400 60 0))
REPORT-TO-BASE (transmit data from surface using radio)

FIGURE 5 - AUV Scenario Path
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The in"."3l mission specification given to the AUU consists of eight
objectives: Transit-A (go to pt.A}, Ladder-Search-A (ssarch an wrea
using a ladderdike motion pattern), Transit-B, Ladder-Search-8,
Transit-C, Ladder-Search-C, Transit-D and Report-To-Base.




When the next-scheduisd chiective "checks out” as being satisfiable and not in conflict
with other objectives (accordirg to the rules provided for determining conflict and
satisfiability). a state-operator is activated which "expands” the objective into appropriate
component tasks. In the case of transiting operations, these tasks will generally all be
motion-oriented, but in the case of a search objective there may be an interspersing of
different types of tasks among the motion segments required to move the vehicle around.
These include performing intensive scanning of a region while the vehicle is at an intermediary
waypoint in the search, manipulating objects if the vehicle is equipped with appropriate
devices, and so forth. Once the new current objective has been "expanded” into an initial set
of tasks, these tasks are sequentially processed in a similar fashion - the next scheduled task
is "checked out” just prior to execution for consistency with the actual state of affairs
(which may have changed significantly since the objective was expanded into a list of tasks)
and if the new task is approved, it is then transmitted via the Tactician to the Vehicle
Operating System, a control program whose function is, akin to the mechanical engineering
staff on a ship, to carry out the high-level commands and operate the servos and actuators
of the vehicle. Communications from the Vehicle Operating System back to the Planner
consist of messages indicating the status of the given iask - either that it has been
completed or that it cannot be completad, given the constraints specified (e.g., maximum time
to perform a transit, maximum deviation from a given course).

Fundamental to the SOLON architecture is this partitioning or distribution of jobs
among many different agents, the state-operator functions (4) of the Strategist. Many
independent specialists, as it were, handle their particular tasks, without burdening each
other or the higher-level modules in the Planner. However, with the message-passing system
that runs throughout SOLON, the higher-level modules, like the captain and officers of a ship,
have access to the activities of the lower-level units and are able to make changes which
can include changing the tasks of those lower, simpler units.

X) Conclusion
The SC' ~*' Planner provides several new features which we believe are important for
planning anc -:- : 1ing, particularly in a real-time mobile context. First, it provides a

mechanism fc ~ _ibuting or partitioning the knowledge required for high-to-medium-level
vehicle control into a number of different representation schemes (rather than just one
method) and ir:to a number of independent but communicating databases. Secondly, SOLON
provides a mechanism for distributing the work of evaluating altemnatives and selecting
sequences of objectives and tasks among several agents (logprocs) which can readily be
implemented in a concurrent, MIMD-type machine architecture. Thirdly, SOLON operates by
“default reasoning™ principles - the network of state-operators is such that problem-sclvingis ¢
attempted first using the simplest, most probable or most expected searches and queries.
When the default methods fail, more complex logic is invoked. There is a definite redundancy
built into SOLON; certain logprocs will receive messages and initiate activity which may turn
outto be not required because of solutions implemented by another logproc. (Thisis
particularly true in some cases of obstacle avoidance). This redundancy, we feel, is not only

admissible but important. The justification for such mechanisms and for a good part of the
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state-operater architecture lies not only with the failure of many previcus planning systems
but the obvious histcrical success of biclogical planning in humans and animals.
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Problems, Southampton Univ., England, April 1986

(4) In our design the state-operators are entties represented using the common
schema-based structure employed throughout SOLON. They are program objects which have
among their attributes (slots) a list of LISP functions (usually only one) to be evaluated-when
the state-operator has been activated. These functions can, in a muttiple-processor
("parallel machine”) environment, easily be converted into individual processes running on their
own CPUs. In this way the SOLON system is evolvabie in two important respects:

First, new state-operators may be added and integrated into the overall
state-operator network structure without disruption to other parts of the net,asitis
deemed necessary to subdivide jobs among state-operators or handle new dimensions of the
planning problem;

Second, state-operators which are currently functions or processes sharing a single
CPU resource may be moved off to other processor machines as the work-load grows to an
point where muitiple processors become important for maintaining required real-time
performance.
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