CORE

# A Framework for Qualitative Reasoning About Solid Objects 

E. Davis<br>New York University<br>New York, NY 10012

## 1. Abstract

Predicting the behavior of a qualitatively described system of solid objects requires a combination of geometrical, temporal, and physical reasoning. Methods based upon formulating and solving differential equations are not adequate for robust prediction. since the behavior of a system over extended time may be much simpler than its behavior over local time. This-paper discusses a firstorder logic. in which one can state simple physical problems and derive their solution deductively, without recourse to solving the differential equations. This logic is substantially more expressive and powerful than any previous Al representational system in this domain.

## 2. Introduction

To operate effectively in an uncontrolled environment, an autonomous robot will have to reason about. understand. and predict external physical events. In many circumstances. however, it will be necessary to reason about physical events on the basis of partial information: the objects involved may not be wholly perceived, or the complete physical specifications may be too complex to use, or the robot may need to reason about hypothetical or generic situations. In such cases. the robot will have to reason qualitatively, inferring general characteristics from incomplete knowledge. Human common sense is often very good at speedy prediction of physical events in qualitative terms: conventional computational schemes are typically very poor at it.

Understanding solid objects is particularly important in physical reasoning, and human beings are particularly adept at thinking about solid objects. Our objective is to build an AI program that can reason qualitatively about solid objects and that can derive correct predictions about their behavior in eases where these predictions are intuitively obvious. This is harder than one might first guess, owing to the many complex ways in which the geometry of the objects affects their behavior.

As a first step toward building such a program. we have analyzed the kinds of knowledge needed to support such reasoning, and we have defined a formal language $L$ in which this formae language ian te expressed. We save shown that interesting problems can be solved qualitatively by inference from plausible axioms expressed in $L$. The language $L$ is more expressive and supports richer inferences than in y previous representation scheme in this domain. Wee give the full details of $L$ and its applications in [i]: here, we give only a sketch.

In concentrating on the representation and formulation of knowledge. and postponing questions of algorithms or control structure. we follow Haves $[21$. How ever, we depart from Haves research program in some respects. Lie do not attempt to model naive physics: rather. we have made free use of Newtonian
mechanics. including concepts that have no commonsense analogue, such as total mechanical energy. Also, our proofs are lengthy, violating Hayes' dictum that obvious facts should have short proofs.

The mathematics used here is not "qualitative" in the restricted sense of representing quantities purely in terms of order relationships and constants [3]. Such a representation is 100 weak to support the inferences needed in this domain.

We have chosen two kinds of problems as loci for our analysis; predicting what happens when a die is dropped inside a funnel (Figure 1) and what happens when a block is dropped onto a table (Figure 2).

## $\because$



Figure !: A die is released inside a funnel


Figure :- A block is released onto a tache.
Different forms of these problems involve a rich. interconnected body of geometric and physical knowledge for their solution. This paper will focus primarily on the "die in the funnel" example.

## 3. Background

Several previous AI projects have studied the qualitative physics of solid objects. For example. Fahlman's BLILD program $[4]$ determined the stability of a tower of polyhedral blocks. De Kier's NEWTCN [5] predicted the hehavor of a point mass sliding on 3
constrain. Bundy's MECHO [6] used force analysis and conservation laws to make physical predictions in situations of specialized format. Forbus' FROB [7] predicted the behavior of a point mass flying among constraints. Funt's WHISPER [8] predicted the behavior of a collection of objects by simulating it in a retina-like image. Novak's ISAAC ( 9 ) identified English-language programs of fixed form, and apptied special case equations to them. Shoham [10] analyzed the local mobility of an object within constraints.

All these programs provided valuable insights. They were, however, limited in geometrical expressivity and in the range of physics understood. Of these systems, only BUILD dealt with three dimensions; and onily MECHO dealt with the motion of extended objects. Only a few kinds of physical interactions were considered.

Another limitation of these programs was more subtle, but more fundamental; they were based almost entirely on extrapolating differential bebavior. To make a prediction, the program first determined how each state of the system will tend to change, and then extrapolated these changes to predict a continual trend of change up to the point that the structure of the system changes. This extrapolation could be done qualitativelv, as in FROB and NEWTON, or symbolically, as in MECHO, or using point-by-point simulation, as in WHISPER, or by numerical integration, as proposed by McDermott and Bernecky (personal communication).

For example. FROB [7] predicts the behavior of a bouncing ball in a well by dividing physical space into + regions the interior of the weil, the bottom, and the two sides), and dividing the velocity space oi the ball into nine (motionless, up, down, left, right, and the four quadrants.) (Figure 3) There are thus 27 possible states of the system. ( $t \times 9.9$ impossible states). The laws of physics are then used to determine which iransitions between states are allowed. and thus a transition graph of states is developed. FROB predicts that the system follows a path in this transition graph. ending in a stable state of rest.


Figure 3: Discretized space and velocity in FROB

However extrapolation is done, simulation is inadequate for robust prediction. In this kind of analvsis. each different set of boundary conditions is a different ivstem state Each isch itate must he eparately detected. eategonized, and analvzed. and the system's progress through these states must be recorded. Often, however. such a categorization is difficult and pointless. Consider the problem in figure 1: a small die is released inside a large steep funnel. Many states are possible: the die may be in free-fall: it may be colliding or in continuous contact with the top or bottom part of the funnel filnnet on any oi eight vertices. twelve sides, or six faces; it mav be spinning, sliding, or rolling, up. down, or around the funnel. But the prediction that the die comes out the funnel does not iequire the enumeration of the states and the paths through them.

There are two further arguments. First, the sequence of states traversed depends delicately on the exad shapes. sizes, and physical properties of the die and the funnel, while the conclusion that the die comes out the bottom is robust with respect to small variations in these parameters. Therefore, if the problem is specified with some small degree of imprecision, simulation will either be impossible, or involve some monstrously branching tree of possibilities. But in qualitative reasoning the prediction that the die comes out the bottom should be almosi as easy with imprecise data as with precise. Second, the complexity of simulation goes up rapidly with the number of interacting objects. In figure 4, for example, with one die inside another dropped inside a funnel, the set of system states is the cross product of the possible interactions of the two dice with the possible interactions of the outer die and the funnel. Nonetheless, the prediction that the two dice will come out the bottom is intuitively almost as easy as with, only one die.


Figure 4: One die inside another released inside a lunnel

In short, formulating and solving differential equations is an inadequate tecinnique in this domain. since the behavior of these physical sysiems over extended time is often easier :o characterize than their behasior over local time. A poweriful physical reasoning system must be able to infer the general quality of a course of events from broad characterizations of the physical properties of the objects involved, without calculating each subevent.

The programs cited do use some techniques besides simulation. MECHO and NEWTON use energy conservation to prune possible systerr. behaviors. Any state with more nechanical energy than the starting state can be ruled out as a possibility in all tuture states; for example. the die cannot come oft the top of the funnel. FROB predicts that the system ends in a stable state. We believe that effective qualitative reasoning requres more inferences like these, and less use oi simuiation.

A natural know ledge engineering approach would use rules that state the desired prediction, sian is it small object released inside a steep. large-mouthed funnel will fall out the bottom." But rules of :his kind are inadequate, and have rightly been rejected by previous researciers. Any single such rule covers only 1 imall dass of problems; covenng large classes of problems requires many secarate disconnected rules. In particular. 1 rule like the one suggested above applies only when the tie and the funnel are the only objects involved. As soon as another object enters, the rule gives no guidance. That is, such rules are not compositional across objects. Even withour other objects. if we alow wide ranges in the siape of the
die and the funnel, the conclusion will sometimes apply and sometimes not. Since there is no simple, general rule for when the die comes out the bottom, a different rule must be stated for each special geometric case.

Maintaining a knowledge base with many special case rules is not effective. First, the knowledge base will have to be large and inefficient. Second, if a new case is not precisely covered in pre-canned categories, the system cannot even begin to deal with it. Third, this approach is aesthetically distasteful. A well-designed system should use similarities among different cases of a die falling through a funnel, and similarities between this problem and similar probtems. such as a die shot through a tube, or a die dropped into a box. The analyses of these cases ought to have more in common than the use of rules which are syntactically similar. Finally, it seems plausible that an integrated system of rules will support learning better than a tabulation of special cases.

## 4. Examples and Analysis

We propose that the "die in the funnel" can be analyzed as foliows: (i) Due to the topology of the funnel. if the die goes from inside it to outside it. the die must either exit the top or exit the bottom. (ii) Since the die is Jropped from rest inside the funnel, it cannot aave the energy to exi .ie top of the funne. (iii) There is no stable resting point for the die inside the funnel, since it is smaller than the funnel's mouth. and the funnel's sides are steep. (iv) The die cannot stay orever moving within the funnel. Sor its kinetic energy will eventuaily be dissipated. Therefore, the die nust exit the bottom of the funnel. 'Ne claim that in most cases where common sense predicts that the die will come out the bottorn, it wiil be possible to carry out suci in anaiysis. and to support the substeps by inferences from sencral rules. Different problems will vary in the jusilications of the substeps.

Related problems will share parts of the analysis. For instance. in predicting that a die in a small-necked funnel will come to rest at the op of the neck, we may use the identical arguments (i) :nat the die must either exit the top. exit the bottom. or stay inside; (ii) that it eannot exit :he top; and (iv) :hat it annot stay inside in a perpetual state of motion. The argument (ini) that it annot rest stably inside the cunnel fust be modified to an argument that it can only eest staoly at the top of the nexx of the funnel: and :he axditional argument must be mave that it eannot exit he bottom oi the cunnel. since the orifice is too smail.

This analysis avoids both problems discussed in section 2. We can avoid inaivsing, or even determunng, the states of motion of the die inside the funnel: al the need to determine is that the die cannot rest stably inside. Different ategories of problems are anadvsed in simiar but not identical ways from general principies.

In the eest of this section. we look at varations ji this example, and sinow how this analysis man beplied.

We begin antin simple zase ifigure 5 i. The die s 3 unform iphere. Tae sunnel is the turface oi eevoiution 100ut 3 vertucal $3 x$ is of 3 pianar :igure with a convex nner side. The radius of the die is Yess than the tadius of revolution of the funnel. The steps of the argament are
 the univ onilices of tree soace connecting che inside of the :unnel with its outside. Teerefore. if the die is to go :rom inside to outside. it must go through the top or the bottom. (ii) Since the die is spherical, its zenter of mass is in its interior. Since the : 00 of the funnei is horizontal. and directed upward, if the die were :o exit it. each point in the interior of the die would be above the top oi the tunnel at some ime. In partucular. the senter of mass would be above :he top it some time. But the die started vut irom rest below the top of the funnel. and there is no source of additional energy for the die. Thereiore. tine die zannot come out ihe tof. (iii) By 1 geometncal argurnent.
the die can only abut the inside of the funnel in a single point. A uniform sphere can be stably supported at a single point only if the supporting surface is horkontal there. The inner surface of the funnel is nowhere horizontal. Hence there is no resting plece for the die inside the funnel.


Figure 5: A spberical die inside a radially symmetric iunnel

### 4.1. Out the top, out the bottcin, or stay inside

We now consider how this argument an be generalized and modified. (Further modifications are discussed in [1].) Part (i), that the die must either exit the top, exit the bottom. or stay insid. Joes not require that the funnel be a solid of revolution; it requires oniv that the funnel be a tube with only two onfices. 1 'e can weaken the condition further, and require only that all orifices other than the top or the bottom be ioo smail to let the die through. Determining whether 1 die an go through a hole is ar, easy geometric calculation ior "arious special cases.

### 4.2. Vot out the top

Part (ii), the argument irom energy conservaticn that the die cannot come out the top. depends on the die reing convex and on the center of mass of the die starteng out below unv part of the top. Convexity is miv xed to establisn that the center of mass oi the voject is n its interior. If this can be done otherwise - fer exarric. by exact alculation, or ov establishing that the ojece shape is a small perturbation of a convex shape. - cat is sufficient.

A still weaker sufficient condition is that the :anged illing in of the die is convex. The anged alling a wi a ithree-dimensional shape $\mathcal{S}$ is Jefined is follows: Cinsider uny pianar cross section of $S$. Lei $C$ be any impie iosed -arve that lies entire:y in this cross iecticn. Let = je a zoint :n the giane in ine inside of $C$. Then 3 .s a the cinged tilling in oi $S$. Figure o)

Let $S$ be the shape of some $0^{1}$ ect $O$. an.d let $R$ xe the ringed filling in of S. Assume $R$ is convex. Cearv. $R$ is
 mass of $O$. Let $C$ be 1 dosed curve iving in $S$ ino in a plane containing the center of mass of 0 . If $C$ zoes through a planar suriace, then so does every point nside $C$. Thus. if $O$ exits the top of the funnei, then the senter oi mass of $O$ must ikewise, and the prooi zoes trough. Thus we can stablisi step (ii) \%or yuch shapes is 1 :orus, 3 wiffle ball. or a cratered convex shapd.

### 4.3. Vo resting point inside

Part (iii). the argument that the jie cannot rest anside the tunnel. depended in our itrst example on the itrong


Tonus T is cut by plane S


Cross section of T by S $C$ is a curve in the cross section. $p$ is a point inside $C$.

Figure 6
assertions that the die was a uniform sphere and that it could contact the funnel only in a single point. We can easily generalize to nearly uniform, nearlv spinerical dice. The following iormula holds: let $\theta$ be the siope of the support: let $\mu$ be the coeificient of friction: let $\phi$ be the maximum angle between the line fro:n the center of mass to a point on the surface and the normal to the surface at that point (Figure 7). The ball an stand still only if $\mu \geq \tan (\theta)$ and $0>\theta$. Similarly. if one die is a spherical shell containing another die, they rest stably only if the joint center of mass of the two dice is located directly above the contact point of the outer die with its suppori. and the inner die rests stably inside the outer die.


N is the normal to the suriace.
$z$ is the center of mass.
1 is a line through $e$.
$t$ is the angle between $N$ and 1 .
Figure ${ }^{\text {- }}$ Dis:or:ed ephere

If the die an contact the funnel in severas points with different surface normals. the nalysis becomes harder. The wider the range of the oorizontal component of the surface normals at contact points, the itecper the slope must be, for the normal forces at the various contact points will tend to act against each other. and thus generate larger siction forces. The followiny rule holds: Let $A$ be in contact with $B$. Let $A$ be the minimum slope of the surface of $B$ at a contact point. Consider the horizontal compunents of the iuriace normals of $B$ at the
contact points, and assume that there is some direction which lies within some small angle $\phi$ of all these horizontal components. Let the coefficient of friction be $\mu$. If $\mu<\cos \phi \tan \theta$, then $A$ will slide down $B$.

Combining all the different ways in which the resuts (i), (ii), and (iii) may be established, and all the wass in which their geometrical preconditions may be satisīed. gives a rich. interconnected body of resulis, all with the conclusion, The die falls out the bottom of the funnel-

## 5. The Block on the Table

The behavior of the block on the table can be analyzed using a similar argument. After the bloci is released, it will fall to the table, tipple over a bit, ind then move along the table in some combination of sliding, bouncing, and rolling. (Figure 8). It can be estimated how long it will take for the friction involved in sliding and the inelasticity involved in bouncing to consume all the energy gained in the fall and the tipple, and how far the bloct can travel during that time. A similar estimation can be made for roiling, as long as the object rolls sufficiendy poorly. If the surface of the table is uniform. and if bese motions will not bring the block off the edge of the taile, then it can be predicted that the block will attain a stable state of rest within the estimated time, and within the estimated distance of the point of release.


Block released.


Block tipples over.


Block hits table.


Block bounces
and slides to rest.

Figure 8: A block settling or a table

## 6. The Underlying Knowledge

### 6.1. Geometry

The arguments in section 3 used several differnt kinds of geometric knowledge. in luding:

- The ability to name and describe particular point ets :hat are connected to objects and are lisefui :or physical reasoning, such as the top and botzom $x_{i}$ :unnel. These are called "pseudo-ibjects" in zur system; the problem of constructing them effecsely is the same as the problem of constructing mexic liagrars in FROB! 3 !.
- Topological predicates. For example, the -mel torms topologically a box with two orifices, and the die starts out inside the box. [11]
- The use of a property quantified over ill irregularities of 3 certain kind in an object. For instance. the funnel has no hoies large enough : 3 et the die through other than the top and bottom.
- Special snapes, such as spheres and surface of rotation.
- Inequalities on metric dimensions. For example the radius of the die is less than the radius of the furme.,
- The bounding of the range of the surface normal over a part of an object's surface. For example. we wish to say that the slope of the funnel is everywhere positive in its inner surface.
- Convexity and related properties.

Any adequate geometric language will be strong enough that these, or most of these, can be either expressed directly or inferred.

### 6.2. Temporal Logic

Our temporal logic follows McDermott's [12]. A scene is an instantaneous snapshot of the universe. In our domain, a scene specifics the positions and velocities of all objects. A chronicle is a function from the time line to scenes. Chronicles include all continuous motion of objects through space, not just those that are physically possible.

The velocity of an object at an instant is defined to te the limit of its velocity from preceding time. Thus. we can speak of the velocity of an object at the instant of a collision.

The "frame" or "persistence", problem of determining what remains true over time [12. 13] does not arise. There are two classes of predicates in the domain. The first class includes predicates thai depend on position and velocity of objects. These are not issumed to remain constant over any interval unless proven to do so. The second class includes structural predicates. depending only on the shapes and material properties of the ofjects. These are always constant over the problem. and so are defined stemporaily. The closed world assumption is made explicit through the predicate "isolated (OO.C)", which asserts that, during $C$. no mobile object in the set of ohiects $0 O$ ever comes into contact with any object outside $O O$.)

### 6.3. Physics

The world consists of 1 tinite set of solid objects moving in space through tume. Objects are rigid and indestructible. The interior of obicts may not overlap. Objects have two internal properties nesides their thape: a distribution of mass. and 1 coefficient of clasticity. which determines how the ohect henaves in a coilision. Any par of ebjects have a voefficient of friction. which determines the trictive :ores between the ohects.

Objects are subject to tour kinds of forces: a uniform Jownward gravitational force, normal forces. which act to prevent objects from owerlapping: Eriction: and 1 weak irag force, which dissipates sinetic energy. Certain objects are jured: they do not move. whatever the cores.

Vecessary physical deductions include the collowing:

- Determining whether a set of objects san attain a stable scene while certain geometnc conditions told.
- Finding constrants on the 'ocation of the center oi mass of an object or a set of objeas.
- Resolving 1 set of forces and fetermining motion ancer ianse forses.
- Predicting that the existing structure of zontacts between ubjects will change.
- Predicting a coilision.
- Predicting the result or a collision.
- Determining whether a inronicle violates a conservation law.
- Characterizing the faths that in object can take without coming to acerlap other ubects.


## 7. Ontology

The ontology for our language requires a number of sorts of individuals.

Quantities. Instants of time. quantities of mass. quantities of energy. These are modelled as real numbers.

Points and vectors. These are modelled as elements oi $R^{3}$.

Point sets. Subscts of $R^{3}$.
Vector fields. These are functions from some point sets to the space of vectors. For example. the surface normals to an object in a fixed position, directed outward. form a vector field.

Rigid mappings. Mappings from $R^{3}$ to $R^{3}$ whici preserve distance and handedness. These specify a change in position.

General velocities. The derivative of a rigid mapping. A general velocity is the composition of a linear velocity and an angular velocity about a specified axis.

Objects. These are primitive entities. The shape of an object is the point set that it occupies in some particular standard position. This is assumed to be connected. closed, and normal.

Scenes. A scene is a snapshot of the worid. Formally. it is a function which maps an object to 3 pair of a rigid mapping, giving the position of the object. and a general velocity. The place of an object in a scene is image of the object shape under the mapping associated with the objes in the scene.

Pseudo-mbjects. These are point sets that "move around" with objects, like the hole of a doughnut, the opening of a bottie, or the center of mass of any object. Formally, a pseudo-object is a pair of a source object and a point set, designating the point set cocupied by the pseudo-object when the object is in standard position. Tixe place of a pseudo-object in a scene is the image of its shape under the alapping associated with is source oble: in the scene.

Chronicles. A chroniste is a function from an inten ${ }^{\text {a }}$ of time to scenes.

All chronicles are subiect to the following constraines:
i. All scenes in the range of the chronicie aave the same objects in their demain.
ii. Cbjects nove continiously in space.
iii. Obiect velocities are zontinuous tron zresious time
iv. The velocity of an object is the Eernvative of 15 position.
Chronicles do not have to be physicaly possible. We use the predicate "phys-poss $(C)$ " to distinguish chronicis that obey the laws of phystes.

## 8. Axioms for Physical Reasoning

Based on the above ontology. we have developed a Oirst-order inguage $L$ and a set of axiors adequate o oolve the tirst die in the tunnel" example. The comple:e indusis is rather lengthy: the language ase thout nine: non-logical ierms. not iretuding the stardird arithme:t: oderators. ind the analisis involves sheut 140 exioms Vlost over :wo thirdsi if the terms and axioms are purciy zeometrical: the cest clate oforon and $=$ physics. We give below inree sample ixioms. and ve compicte statement of the die in the funnei example. $x$ illustrations.

Geonetre Axiom: Smoothness and the value of the surface normal ure local properties si the houndar: Specifically. if two bodies share part of ineir boundar: then. at any interior point of the overlar. ore is smoeta iff the other is smooth. and their surias normals are ether paralle! or anti-paralel.

```
[ body(XX1) • body(XX2)
    XXA \(\subseteq\) boundary \((X X 1) \cap\) boundary \((X X 2)\)
    \(X \in\) interior \((X X A): \operatorname{smooth}(X X 1, X)\} \rightarrow\)
\(\operatorname{smooth}(X X 2 X)\),
\([\operatorname{surf}-\operatorname{norm}(X X 1-X)=\operatorname{surf}\)-norm \((X X 2 X)\)
        surf-norm \((X X 1, X)=-\operatorname{surf}\)-norm \((X X 2 X) \mid]\)
```

Axiom of Motion: If an object $O$ has zero velocity in every scene of a chronicle $C$. then it stays in the same place throughout $C$.

$$
\begin{aligned}
& \forall_{s} S \text { éscenes }(C) \text { ) } \operatorname{velocity}(O . S)=0 \mid> \\
& \left.\forall \begin{array}{ll}
\text { si.si } S 1 \in \operatorname{scenes}(C) \\
\text { mapping }(S 1, O)
\end{array}=\operatorname{mapping}(S 2, O) \right\rvert\, i
\end{aligned}
$$

Physics axiom: The energy of an isolated set of objects $O O$ never increases in a physically possible chronicle $C$.
[ phys-poss $(C) \cdot \operatorname{isolated}(O O, C) \cdot T 1<T I$ ],
encrgy $(O O$.scene $(C, T 1)) \geq \operatorname{energy}(C O$.scene( $C, T 2)$ )
Problem statement: Consider a spherical die, and a radially symmetric funnel. Assume that the inner radius of the funnel is greater than the radius of the die; and that the inner side of a radial cross section of the funnel is convex. If the die is released inside the funnel, and the funnel is held fixed far from the ground, then the die will eventually fall out the bottom of the funnel.

## Constants of the example:

odie - the die
ofunnel - the funnel
c - the chronicle
xx-piunnel - the planar form from which the tunnel is generated
xx-center-line - the axis of the funnel xeenter - a point on the axis of the funnel

## Assumptions:

sphere(shapetodic)).
(The die is $a$ sphere.)
mobilef(xdie).
(The die is net fixed.)
shapetotunnel) $=$
velid-ot-revolution (xx-piunnel.ax-center-line).
The funnel is the solid of revelution of rx-ptunnet around $x$-center-line.)
p'anar(xx-piunnel $\cup x x-c e n t e r-$ line) $)$
(xx-ptunnel is 1 radal cross section of the funnel.)
ennex-sidefinner-dsidet $x$ x-piunnel. $x x$-cente-line). xx-piunnel).
The inner houndary of sx -piunnel with respect to ex-center-line is convex.)
distance (xx-ptunnel.xx-centerline! > radiustodic) - !)
The radius of the funnel is greater than the radius of the die.)
rreenterline - 7ake-incurcenter.ovo
(The axis of the funnel is vertical.)
standard-position ofunnel.startscene( c )).
(The iunnel is oriented in standard position.)
fixed(oiunnei).
The funnel is fixed.)
isolated(\{odie .of unnel.oground\}.c).
(The die is isolated from ever!thing but the tunnel and the ground. ${ }^{*}$ )
$X F \in$ shape(ofunnel) $X G \in$ shape(oground) $>$
height $(X F)$ - height $(X G)>$ diameter(odie)
(The funnel is more than the diameter of the dic above the ground.)
infinite(c).
(The chronicle is eternal.)
phys-poss(c).
(The chronicie is physically possible.)
motionless(odie, startscene(c)).
(The die starts from rest.)
place(odie, startscene(c)) $\subset$
tube-inside( shape( of unnel), s-tube-top( shape( of unnel)), s-tube-bot(shape(ofunnei)))
(The die starts from inside the funnel.)

## Prove:

exits(odie. pseudo-object(ofunnel,s-tube-bot(ofunnel, supl). c).
(The die exits the bottom of the funne! ,

## 9. Conclusions

The strengths and limitations of this theory are evident. On the positive side: Using pure first-order logic, we give a formal analvsis of a class of prohiems beyond the scope of any previous AI theorr. Our analysis suggests that a qualitative physics for solid objects shouid include the following features. among others:

- A rich geometrical theory, inctuding topological. metric, and differential descriptors. and special shapes.
- An acoount of the behavior of physical systems wer extended intervals of time. Such in zecount should incorporate constraints placed bv une object on another: conservation laws. especiaily conservation of energy: the principle that 1 physical system tencis towards a stable resting point: and an account of tie net effects of collisions over extended time perions.
- The ability to determine the existence of a stahte conigguration of objects within qualtatuely described geometrical constraints.
- The ability to calculate. exactly or qualitatively. important physical parameters such as the center oi mass. [14]
- The ability to bound the effect of small perturbations.

On the negative side: We have not sbown that his iype of analysis is extensible to cover all, or most. qualitative reasoning in this domain. We have not shown that such an extension would be. in the long run. iny more parsimonious than simply enumerating special uses. is in the rule-based method rejected in section 2. We save not shown that any effective computationai methods an be developed on the basis of this theory. We cannot give 1 :inal resolution to these problems antil we zave impiemented a working ivsiem. and determined the range of probiems that it is adequate to address.

We plan to tegin impiementation y deelopinz -7 adequate zeometric representation and interence system. Lltimately, we want to implement a phosical reasoning system with all the features mentioned above.

[^0]
## 10. Acknowledgements

Discussions with Sanjaya Addanki, Alex Botta, Pat Hayes, Leo Joskowicr, and Drew McDermott have contributed immensely to the development of this theory. The research has been supporied by NSF grants DCR8402309 and DCR-8603758.
11. References
[1] E Davis. "A Logical Framework for Solid Object Physics," NYU Tech. Report \#245, 1986
[2] P. Hayes, The Naive Physics Manifesto". 1978: revised as "The Second Naive Physics Manifesto", in J. Hobbs and R. Moore. Formal Theories of the Commonsense World, ABLEX, 1985
[3] D. Brbrow, ed. Qualitative Reasoning about Physical Systems, MIT Press, 1985
[4] S. Fahlman, A Planning System for Robot Construction Tasks," Artificial Intelligence Journal. vol. 5. 1974. pp. 1-49
[5] J. de Kleer. "Qualitative and Quantitative Knowledge in Classical Mechanics," MIT AI Lab lech. Report \#352, 1975
[6] A. Bundy, "Will it Reach the Top? Prediction in the Mechanics Worid," Arrificial Intelligence Jcurnal. Vot. 10. pp. 129-146
[7] K. Forbus. "A Study of Qualitative and Geometric Knowledge in Reasoning about Motion," MIT AI Lab Tech. Report \#615, 979
[8] B. Funt. "Problem Solving with Diagrammatic Representations," Artificial Intelligence Journal, vol. 13, 1980, p. 201-230.
[9] G. Novak, Representations of Knowledge ir. 3 Program for Solving Physics Problems," IJCAI 5. 1977, pp. 286-291
[10] Y. Shoham. Naive Kinematics: One Aspect of Shape," IJCA/ 9. 1985. pp. $436-142$
[11] E. Davis, "Shape and Function of Solid Objects: Some Examples,' NYU Teci. Raport $\# 137.198-$
[12] D.V. McDermott. A Temporal Logic Sor Reasoning about Plans and Processes. Copnave Science. 1982. Fp. 101-155
[1:] J. MoCarthy and P. Haves. Some Philosopincal Proolems from the standoont of trificiad Intelligence.' n Macnine intelligence. 3. Mettzer ind D. Michies (eds.), Edinburgin Lniversity Press. 1969
$[1+]$ A. Bundy and L. Burd. Tsing the Method of Fibres in Mecho to Calculate Rudii of Guration. in D. Geniner and A. Stevens. Weniat Hueiels. Erlbaum Assoctates, 1983


[^0]:    - 'Hie meed :he ground. because therwise ixe ivportheser ree אunsintent with the axiems the axioms asert inat an aise
    
     *th ithe zround io rest on

