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t. Abstract

Tactile perceptinn nf shape Inv_l yes an nn-llne controller and a shape perceptor.

The purpose of the nn-line controller is tn maintain g|tdtnq nr rolltnq contact with the
slmrface, and collect information, or track specific faat,res of the siirface s_ich as

edges of a certain sharpness. The shone perceptor ,ses the information to perceive.

estimate the paraL_eters of. or recnqnlze the shape. The dlfferentlal s, rface _del

depends on the _nformatinn collected and on the a-prlorl infnrmatlnn known ahn, t the

rohot and its p>dsical parameters. These differential m_deIs are certain functlnnaIs

that are projections of toe dynamics of the rnhnt onto the surface gradient or nntn the

tangent plane. They involve the states of the robot (i.e., angles and anglllar _Incl-

ties), input torques nr force,; to the rohnt, the coefficient of friction _i. and some. of

the differential prnperti_s nf the s.rface s.ch as the units of tangent and normal to

the s.rface, gradient. Hessian. and the radi.s of curvet.re and its projections onto

planes. A number of th_se differential prnpertles tmay_he directly m_asured from present

day tactile sensors. (_th_rs may have. to he indirectly computed from meas.re_nts.

Others may constit,t n dp_iqn objectives for dlstrih.ted tactile sensors of the f.turP.

A parameterization nf the q.rface leads to llnear and nonlinear seq.antla] para_ter

estimatinn techniques fnr iApntificatinn of the s.rfacp. Many interesting r.nmprnmises

hetween m_aq.rempnt and cnmputatinn are pnssihle.

2. lntrod.ctinn

Tactil_ perceptinn nf shap_ hy natural systems has hewn the s.hject nf many recent studies Fll. Tactile

perr.eptinn in robotic systen_; _q.ires maintenance of glidinq and/or rnllinq cnntact with th_ tlnknnwn object and

" " / hinfprinn inforr_atlnn ahn.t the S ape. A major Component of this kind nf probing is the controller. The cnn-

trnl1_r n_n,ds nn-line cnnstri!ctinn of th_ kinematics F2l. force feedback F3]. and invers_ dynamics F41 tn qener-

ate the needed inp.t torques to the robot joints. Th_ availahle tactile sensors to date, howe.mr, are not ade-

q.atP for fast and efficient;' exec.tinn of rnl|ing and gliding manip.lations KS.IS]. Once glidin_l or rollins is

maintained, the perceptinq/of shapes involves using kinematic, and dynamic Information to qather information

ahnut the manip, lated nh_ect F7]. The process of determining the shape Inv_Ive.s availability of a-priori cnr_i-

tational and symbolic r_de'is nf shape FF_].

For sr_nth surfaces, that are linear in an _#nknnwn parameter _ctnr. linear s_quentlal estimatlnn algnr-

ithms can he used to arrive at thes_ para_e.ters FQ.IO,II]. Aiternatiwly. solution of partial differential

eq.ations or nonlinear estimation alqnrithms are needed Fin].

_lhen the object nr s_,rface is knnwn, the trajectory of the rnhot _nd effector can he a-prinri determir_d

the cnntrol of both qlidinq F12,13] and rolling FI4] on knnwn sl,rfaces has heen Studied hero re. r._own F151 _s

considered the control nrnhlem for qlidinq nn .nknnwn objectS. This paper d_als with the kinemat,cs and n_tn_m-

its of glidinq and rnilinq cnntaCt nf a known end effector gliding and/or rolling on an .nknnwn silrfac_. Two

differential surface models fn.r perception are dpriwd. For para,-_'tric surfaces a linear sequ_ntlal estlmatinn

algorithm is sketched.

3. The Kinematic _rohle_

The on-line kinematic prnhlem for p, rpnses nf qliding and rollinq nn an _Inknnwn s.rfac_ is discussed h_r_

hy a simple two riqid hedy problem. A planar riqid body end effectnr is considered that maintains cnntact with

an iinknown rigid hndy hy sliding nr rollins on it (Fin. I). The internal conrrlinatm qystBm of th_ end _ffectnr

is the YlY2 axes centered at the center of qravity of thP end effectnr A and parallel with th_ principal axes _f

the end effectnr. The Smooth s.rface of the end effectnr is aSSumed to he known i_plicitIy or para_trically in

its own coordinate system.

C(Y) = n (1._'l

y = y(_) = F.Yi(.:) ' y2(_)] _ (1._I

and the point of contact A (in gliding_ is specified hy ':I:
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Y_ " Y(al) (2)

$1milariy the smooth unknown surface my h_ characterized para_terically or i_liclty. An implicit representa-
tlon is assumed here:

n(X) • n{xl.x2) • 0 (3)

Let the coordinates of A be gl_n hy the two-_ctor XA. The coordinates of the contact polnt R in the inertial

coordinate system are

l- cos03 -sln03 "7
XR " XA + I I YR (4)

I_ sin03 cos03 _l

The control requlre_nts for gliding contact are:

I. existence of the normal contact forte'to _klno sure that the cnntact is _IntainpH,

2. knowledge ahout dWS_,ooint of contact.

3. guiding the _tinn of the end effector, along the unkn_n surface,

and finally, 4. kn_ledge of the radius of curvature nf the unknown surface.

along the unknown surface. A control input to this guidance is the tangential wlnclty of cnntact v_Ttl. The

latter guidance requires sensing of the unit tangent _ctor T at I in the end effector coordinate _y_te_ and

transforming it to the inertial coordinate system

XR(t) • v(t)T (_I

Differentiating Eq. (4) with respect to time and suhstltutlng in Eq. (5) gives

XA(t) v(t)l" _3 I- slnC 3 cost3 --I= + I ) YR (61

I_-COSC 3 +sin:3 (

Eq. (6) relates the local translational _loclties XA to the angular _Ioclty of the end _ffector :3.

Another interpretation of Eq. (6) is t_at the ter_ on the right side of Eq. (6l are r_snecti_Iy a small

translation of point A and a small rotation of point A aho,,t point II. The angular _Inclty "3 itself is a f,mnc-

tlon of toe local curvature of the unknown sqrface at the point of contact. Let ds _ tho tra_rse_ dil_nce nn

the *Jnknown surface. Ry definition, the radl,,s of c_zrvature II gl yen hy

I ds

-'+l = = _, [7_

d_ 3/ds dC 3 - .

. d: 3 I as v(t l

.3 = =- /R_

rtt : ,jdt _,)

Therefore, Eqs (6) and (F))tnqet_er define t_p instantan-n, ls klnematics of th_ qli_inq _tlnn.

In t_e rolling motion the contact Dnint _S on trl_ _nd pffectnr ac; well a_ nn th_ ,,n_nnwn _.)rf_ca _n _hAt

t_e incremental distances tra_rs_ on hoth Ss)rf,Ice_;ar_ e'l,,al. In a_ditinn tn t_- fo,_r _-q,,IrP_nt_ nf _li_inn

_tion as before, the end effector shn_lld _ave knowledq_ nf its _n It)col rar|ius nf C,lrv.il_,mrp_ _no ?hint nf

contact. ASSII_ v(t) = ds/dt is the SDecifieH contr_l Inp,,t, and aSSurr_ a convex Srlrfaco. an_ _ cn-_w on_

effector s(_rface as _n Fiq. I. It is not dlffic_)It to snow that

I I

3 = v(t) + " _ql

where Je and cu are respectively the local radii of Cilrvature of the end effector ann the ,)nKnown s(¢rfac_ at tn_

point of contact.

Similarly from the incremental form of Eq. (4) and the definition of rollinq, it follows that

l--+sin03 cos'_3 --I l-- sin03 cosC,3 --I

dXA : ) ) dO3 YR (If)) or XA : 03 I I YR

I -cos,_3 _ sinC.3 I I_ -cos_3 sine,3 1

(Ill

To summarize. Eqs (q) and (11) are the instantaneot_s kinematics of the rolling m_tinn.
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If the unknown surface ts con_x, Eq. (g) is rep]aced hy

1 1

03 - vet)C-- ---)

Pe Pu

Suppose the center of gravity of the end effector Is connected to a two ltnk rohot (Ftg. 2).

(12)

XA" I-xzc°seI + x2c°se2 -_

1_ _.lstnel + 12stn02 _1

Olfferentlatlng Eq. (13} wlth respect to time 91ws

F-.isinol !-h -I
I i I • I
l_ XIcos01÷ _.2cos02_l 102 I _

The latter equation provides the Instantaneous kinematic of the three-link system,

(13)

(14)

; - [ol 02 (ls 

for elther of the g11dlng or ro111ng motion.

From the above dlscusslon it can he stated that measuring nr estlmatlnq the local radius of omrvature Pu of

the unknown object and determining convexity or concavity are two important parameters for thp kinematics of

rolllng or glldlng. The local radlus of curvature has two more uses. I_ It is needed for an ideal inverse

dynamics systems where the accelerations are needed to construct the input torques Fl11. It Is needed for

detecting snarp edges (small Pu) and consequent tracklng of such sharp edges on three dimensional s,,rfaces.

4. The Oynamlcs Problem for Polnt Contact

Consider the three-llnk planar robot of Fig. 2 with no contact wlth any object or surface, the equations of

motlon for thls system [12,13] are

J(0)O + B(0)02 ÷ E(0) = CH (16_

where U Is the vector of torque acttlators at th_ jointS. Suppose the qlidlng is on a frlctlonless s.nface. Thp

contact force is along the unit normal vector N tn the s.rface, and assume it_ maqnit_Jde Is Y. The _ncrementa]

motlon of the contact point on the rohnt Is

r--sin03 -cos03 -[

dXR = dX A + I YR dC3

I cos03 -sin03 _I

Let N he resolved In the inertial conrdlnate system, The incremental work of thp contact force is

dW = < yN, dX R •

where < > is the inner product, and

v_here

dXt B

dO

dW dXR

-- = < yN, >

d:, dO

]-- -_ is inO I _ [cosO I -I
I
[ ._2sln_)2 12cos_.2 1
I i
1_-YlRSln03 - y?Bcos03 +YlBCOSC.3 - Y2Rsin03 _I

The equation of motion with the contact in effect are:

.. I- dX_B-I
J(_)o + R(o)o 2 * E(0) : C[I + I _ I yN

I_ dO _I

The holonomic constraint governing the dynamics is

(17)
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n(xn) - o

Differentiating Eq. (18) wlth respect to time glJves

(Is)

;_ dXR_ dD • dO• dXR ;

dO dX dX do
= o (19)

A flnal relation that Is l_vportant for the analysis to follow Is the definition of the unlt normal vector

The gradient vector of the unknown surface Is dll/dX and hy definitionN°

dn _dl
N --- / m--m (20)

dX dX

where m m is the Euclidean norm,

Consider the rolling type of constralned motion. Let the magnitude of the tangential constraint

The contribution of these forces to the _luations of motinns is

dW dXn

- • < , (Ny *T_) •
de dO

For the rolling motion, there are two constraints. The hnlnnnmlc contact constraint of Eq, fIR)

holonomlc roll constraint --no motlnn alnng T at the _olnt of cnntact.

dX_ dX R .

T_ -- = T_ e = fl (22)
dt dB

force he X.

(21)

and the non-

Eq. (Ig) l.mplles no motion of the contact polnt along the unit normal vector. Eq. (22) n_an_ no motlnn of the

contact point along the unit tangent vector. Consequently the only pnssihle motinn Is a rotation ahntJt the con-

tact point and hence a r3111ng motion.

In order for rolling to occur and no slippage or gliding to take place, the coefficient of frlctinn = _Jst

he different than zero and the forces of constraint _,st he governed hy

O < _ < _y (23)

5. Differential Surface Models

In this section cnnstltuent relations between the state 9, 0, the input If, the forces and the surface

geometry are derived. If the surface Is known, these equations can he _zsed to solve for the forces nf con-

straint y and k. If alternatively, the forces are known, these _luatlnns can he _msed as differential _urface

models, and used for estimating the shape of the surface. These constituent relatinns are arrived at hy differ-

entiating the constraint Eqs. (IR) and (22) with respect to tlme and eliminating the acceleration _ between the

latter second derivatives and the equatinns of motlnn.

The ahove procedure could he carried out sl_mltaneously for hoth constraints. However, it Is done for the

indi_dual constraints here in order to demonstrate two alternative fnr_Jlatlnns, one more analytical, one

slightly more suitable for computational purposes.

5.1 First For_Jlation. The diffp_entiation of Eq. (1R) with respect to time qive_:

;_ dXR_ dD = 0

do dX

This equation implies no velocity component exists along the unit normal.

The differentiation of Eq. (24) with respect to time gives

0_'" dXB_ dD + ;_ dXR_ d2O dXR ; + ;_ __0

do dX de dX 2 de Oe

Elimination of O between Eqs. (26) and the dynamics of the system

... dXR
Jo + n(0)o2 + E(o) = CU + <--

dB

I-- dO_

I
l_dX

, Ny +Tx >

(24)

An alternative form for Eq. (24) is

(25)

dXR --I •

do _I
= g (26)

(27)
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gives the first form of the constituent equation

.2o ; dX --I. I- -I- - I " I O • J-I -Ro 2 - E6 + CII +-- (NX + T _) I (2R)

dO dX 2 dO _e l_ dX de I dX dO [_ de _1

If all parameterS and quantities in Eq. (2R) are avatlahle, tt is a constituent relation tn the unknown

gradient and Hessian dll/dX and dLn/dX/-, If N and T are also not avatlahle, it is easy to include Eq. (?O_ for N
and the following for T

- o -1 -IT- I N (2q)
I_ i o _I

The result is a more complex constituent relation. Recause Eq. (2R} tnvelves the first and second partial
derivatives of the surface, it ts a differential model of the unknnwn stirface. If _. ann y are neqltgthly s_ll,

and/or if 0 --the angular velocities --are relatively small, Eq, (?R) simplifies.

5.2 Second Forr_llatton. Eq. (2R) estahltshes one relation among y and _. A second relatton among X and y could
he ohtained'in a' stmt la'r fashion from the second constraint eqlmatton. However, an alternative fnr_mlatton iS

gl yen here.

[f Eq. (22) is differentiated with respect to time, one ohtatns

dX R .. ;¢ d dXRT'_ e + -- ( T'¢ ) ; = 0 (30)
do dO dO

Retween Eqso (27) and (30) one can eliminate 0 to obtain the second differential surface model

d dXR dXR dXR I- dX_R -]
( T_ -- )e + T¢ j-I (R;2 + E) = T¢ j-1 I CII + (Ny + _T) I (31)

dO dO dO dO -- nO _

The above two differential surface models, are two IndPpendent Eqs. in y and },. If everything else is

known includln_] the unknown surface, these eql,atlnns can he _olved for these cnnstralnt forces as functions of

the state [Oz, 0¢] _, input i) and the s,lrface niX) = (l. They provide dlffPrentlal Infnrmatlon ahnq,t the surface,

if everything else including y and k Is known.

6, Shape Perception hy Para_ter Estimation

Suppose the _mknown surface is representahle hy a _.ctnr of unkn_wn para_w_ters _.

D(X) = P_(X)_ • I (321

one n_y use coordinates of the _ny contact point XR to arrive at a system of linear equations in i). under the
above assumption, the gradient and,the Hessian are also linear in (3. AS a result the constituent differential

surface ,_dels, sampled at so_ interval T of tl_ provide independent information ahout vector 8. These sys-

tems of over specified linear equations can he solved for _. Let the o_rspecifled system he

M(3 • N (33)

where each row of the equation is one additional piece of infor_tlon from sampling the constituent surface

models or EQ. (32). etc. (an examole is worked ntlt In FIO]). The best estimate for B Is the r_an square errnr

sense F9] is

B = iMaM) "IM_N (34)

This equation is also rohust with respect to a certain a_w},mt of IndepPndent random r_easurement noise.
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Figure2: Gross._otionof the end effectorcenterofIr_vlty
by ¢ _-]ink robot.
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