Differential Surface Models for Tactile Perception of Shape and On-Line Tracking of Features

H. Hemami
Ohio State University
Columbus, OH 43210

1. Ahstract

Tactile perception of shape inwlves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track spectfic features of the surface such as edzes of a certain sharpness. The shape perceptor uses the information to perceive, estimate the paraneters of, or recognize the shape. The differential surface molel depends on the information collected and on the a-priori information known about the ronot and its pi;sical parameters. These differential models are certain functionals that are projectians of the dynamics of the rohot onto the surface gradient or onto the tangent plane. They inmive the states of the robnt (i.e.. angles and angular velnctties), input toriues or forces to the rohnt, the enefficient of friction H, and some of the differential propertios of the surface such as the units of tangent and normal to the surface, gradient. Hessian, and the radius of curvature and its projections onto planes. A number of these differential properties may he directly measured from present day tactile sensors. nthers may have to he indipectily compited from measurements. Others may constituta design nhjectives for distributed tactile sensors of the firture. A parameterization of the surface leats to linpar and nonlinear sequential parampter estimation techniques for irentification of the surface. Many interesting enmpromisps hetween masiarement and compitation are possinle.

2. Introdiction

Tactile nerception of shapé hy natural systems has heen the subject of many recent studies rli. Tactile opereation in rohntic systems requires maintenance of gliding and/or rolling contact with the unknown anject. and infering information about the shape. A major component of this kind of proning is the controller. The controller nems on-line construction of the kinematics $\lceil 27$, force fepdhack $[37$, and inverse dynamics $\lceil 41$ to generate the nemded input torques th the robot joints. The dvailahle tactile sensors to date, howexp, are not adequate for fast and officient execution of rolling and gliting manipulations $[5,67$. nnce gliding or rolling is maintained, the perception of shapes involves using kinematic, and dynamic information to gather information ahout the manipulated ohject i77. The process of determining the shape invives avalability of a-priori computational and symbolic mote's of shape 「81.

For smonth surfaces, that are linear in an unknown narameter vector, linear sequential estimation algneithms can be used to arrive at these parameters $94,10,117$. Alternatively, solutinn of partial differential equations or nonlinear estimation alqorthms are nepeded $\mathbf{~} 107$.

When the onject or surface is known, the trajectory of the rohot end effector can he a-prinri determined the control of hoth gliding $[12,13]$ and rolling $[147$ nn known surfaces has heen studied hefore. ramn $[157$ has considered the contral problem for gliding on linknown ohjects. This paper deals with the kinemat, cs and tynamics of gliding and rolling contact of a known end effector gliding andior rolling on an unknom surface. Two differential surface models for perception are deriver. For parametric surfaces a linear sequential estimatian algorithm is sketcher.

3. The Kinematic Prohlem

The on-line kinematic prohlem for purposes of qliding and rolling on an unknown surface is tiscussed here hy a simple twn rigid hody prohlem. A planar riqid hondy end effector is considered that maintains contact with an unk nown rigid hondy hy fliding or rolling no it (Fiq. 1). The internal conrdinate systom of the ond effector is the yly? axes centereci at the center of gravity of the end effector A and parallel with the princinal axes of the end effector. The smnoth surface of the end effector is assumen to he knnwn implicitly or paramet.rically in its own conrdinate system.

$$
\begin{gather*}
r(Y)=0 \tag{1.7}\\
Y=Y(r)=\left[y_{1}(c), y_{2}(r)\right]^{\top} \tag{1,7}
\end{gather*}
$$

and the point of contact B (ingliding) is specified hy $: 1$:
\qquad

$$
\begin{equation*}
Y_{R}=Y\left(a_{1}\right) \tag{2}
\end{equation*}
$$

Similarly the smooth unknown surface may be characterized parameterically or implicity. An implicit representation is assumed here:

$$
\begin{equation*}
n(x)=n\left(x_{1}, x_{2}\right)=0 \tag{3}
\end{equation*}
$$

Let the coordinates of A be given by the two-vector X_{A}. The coordinates of the contact point R in the inertial coordinate system are

$$
x_{R}=x_{A}+\left[\begin{array}{ll}
\cos 03 & -\sin 93 \tag{4}\\
-\sin 0 & \cos 03
\end{array}\right] y_{R}
$$

The control requirements for glfining contact are:

1. existence of the normal contact force to making sure that the contact is maintainet,
2. knowledge about an point of contact,
3. guiding the motion of the end effector, along the unknown surface,
and finally, 4. knowlenge of the radius of curvature of the unknown surface.
along the unknown surface. A control input to this guldance is the tangential velocity nf enntact vR(t). The latter gutdance requires sensing of the unft tangent vector T at R in the end effector conranate systam and transforming it to the inertial coordinate system

$$
\dot{x}_{R}(t)=v(t) T
$$

Differentiating Eq. (4) with respect to time and suhstituting in Eq. (5) gives

$$
\dot{x}_{A}(t)=v(t) T+\dot{b}_{3}\left[\begin{array}{ll}
-\sin 3 & \cos 3 \tag{6}\\
-\cos 3 & +\sin 3
\end{array}\right] Y_{R}
$$

Eq. (6) relates the local translational velocities \dot{x}_{A} to the angular velocity of the end pffector $\% 3$.
Another interpretation of Eq. (6) is that the terms on the right side of Eq. (6) arp respectively a small translation of point A and a small rotation of point A about point R. The angular wolncity 3 itsplf is a function of the local curvature of the unknown surface at the point of contact. Let ds he the traversed dispance nn the unknown surface. Ry definftion, the radius of curvature is given hy

$$
\begin{align*}
& \therefore n=\frac{1}{d: 3 / 4 s}=\frac{d s}{4.3}
\end{align*}
$$

Therefore, Eqs (6) and (8) toqether define the instantananus binematics of the alfaing mation.
In the rolling motion the contact point mues on the ond offoctor as woll as nn tha ink nown sirface sn phat the incremental distances traversed nn hath surfaces aro equal. In additinn tor the four ropitirementes af aliting motion as hefore, the end effector should have knowlodge of its own lical radius nf curvaturo at the anint of contact. Assume $v(t)=$ is/ft is the specified contral input, and assume a convex surface, and a conn wax ent effector surface as in fig. 1. It is not difficult tn show that

$$
\begin{equation*}
3=v(t) \frac{1}{5 e}+\frac{1}{v_{u}} \tag{19}
\end{equation*}
$$

where ρ_{e} and ou are respectively the local radii of curvature of the end effector and the unknown surface at the point of contact.

Similarly from the incremental form of Eq. (4) and the definition of rolling, it folinws that

$$
d x_{A}=\left.\right|_{-\sin 3} ^{-\cos 3} \cdot \cos 3-\left.\sin 3\right|_{-} ^{-\cos 3} y_{R}
$$

or

To summarize, Eqs (9) and (ll) are the instantaneous kinematics of the rolling minn.

If the unknown surface is convex, Eq. (9) is replaced hy

$$
\begin{equation*}
\dot{\theta}_{3}=v(t)\left(\frac{1}{\rho_{e}}-\frac{1}{\rho_{u}}\right) \tag{12}
\end{equation*}
$$

Suppose the center of gravity of the end effector is connected to a two 1 ink rohot (Fig. 2).

$$
x_{A}=\left[\begin{array}{l}
l_{1} \cos \theta_{1}+l_{2} \cos \theta_{2} \tag{13}\\
-l_{1} \sin \theta_{1}+l_{2} \sin \theta_{2}
\end{array}\right]
$$

Differentiating Eq. (13) with respect to time gives

$$
\left.\dot{x}_{A}=\left[\begin{array}{c}
-\ell_{1} \sin \theta_{1}-\ell_{2} \sin \theta_{2} \tag{14}\\
l_{1} \cos \theta_{1}+\ell_{2} \cos \theta_{2}
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
\theta_{1} \\
\dot{\theta}_{2}
\end{array}\right]
$$

The latter equation provides the thstartaneous k inematic of the three-link system.

$$
\begin{equation*}
\dot{\theta}=\left[\dot{\theta}_{1} \dot{\theta}_{2} \dot{\theta}_{3}\right]^{r} \tag{15}
\end{equation*}
$$

for efther of the gliding or rolling motion.
From the above discussion it can he stated that measuring or estimating the local radius of curvature ρ_{u} of the unknown object and determining convexity or concavity are two fmoortant parameters for the kinematics of rolling or gliding. The local radius of curvature has two more uses. 1) it is needed for an inpal inverse dynamics systems where the accelerations are needed to construct the input torques 「11.7. It is needer for detecting snarp edges (small ρ_{U}) and consequent tracking of such sharp edges on three dimensional surfaces.
4. The Dynamics Probiem for Point Contact

Consider the three-link planar robot of fig. 2 with no contact with any onject or surface, the equations of motion for this system $[12,13]$ are

$$
\begin{equation*}
J\left(0 \ddot{0}+R(0) \dot{0}^{2}+E(0)=C 11\right. \tag{16}
\end{equation*}
$$

where U is the vector of torque actuators at the joints. Suppose the gliding is on a frictionless surface. The contact force is along the unit normal vector N to the surface, and assume its magnitude is γ. The incremental motion of the contact point on the rohot is

Let N be resol ved in the inertial conrainate system. The incremental work of the enntact farce is

$$
\lambda W=\left\langle\gamma N, \Delta X_{R}\right\rangle
$$

where < > is the inner product, and

$$
\frac{A W}{4 N}=\left\langle N, \frac{d \theta}{4 x_{B}}\right\rangle
$$

where

$$
d x^{r_{B}}=\left\{\begin{array}{cc}
-i_{1} \sin \theta_{1} & \lambda_{1} \cos \theta 1 \\
-2 \sin \theta_{2} & \lambda_{2} \cos \theta_{2} \\
-y_{1 R} \sin \theta_{3}-y 2_{2 R} \cos \theta_{3} & +y_{1 R} \cos 3-y_{2 R} \sin \theta_{3}
\end{array}\right]
$$

The equation of motion with the contact in effect are:

$$
J(j) \ddot{0}+R(0) \dot{0}^{2}+E(0)=C U+\left.\int_{-}^{-} \frac{d X^{2} R}{d \eta}\right|_{-} ^{-} \gamma N
$$

The holonomic constraint governing the dynamics is

$$
\begin{equation*}
0\left(x_{B}\right)=0 \tag{18}
\end{equation*}
$$

Differentiating Eq. (18) with respect to time gives

$$
\begin{equation*}
\dot{\theta} \tau \frac{d X_{R} \tau}{d \theta} \frac{d n}{d X}=\frac{d D}{d X} \frac{d X_{R}}{d \theta} \dot{\theta}=0 \tag{19}
\end{equation*}
$$

A final relation that is important for the analysis to follow is the definition of the unit normal vector N. The gradient vector of the unknown surface is d / AX and by definition

$$
\begin{equation*}
N=\frac{d n}{d x}, \frac{d n}{d x}, \tag{20}
\end{equation*}
$$

where 1 is the Euclitiean norm.
Consider the rolling type of constralned motion. Let the magnttude of the tangential constraint force he λ. The contribution of these forces to the equations of motions is

$$
\begin{equation*}
\frac{d W}{d \theta}=\left\langle\frac{d X_{R}}{d \theta},\left(N_{Y}+T_{\lambda}\right)\right\rangle \tag{21}
\end{equation*}
$$

For the rolling motion, there are two constraints. The holonnmic contact onnstraint of Eq. (18) and the nonholonomic roll constraint --no motion along T at the point of contact.

$$
\begin{equation*}
T t \frac{d X_{i}}{d t}=T T \frac{d X_{R}}{d \theta} \dot{\theta}=0 \tag{22}
\end{equation*}
$$

Eq. (19) implies no motion of the contact point along the unit normal vector. Eq. (22) means nomion of the contact point along the unit tangent vector. Consequently the only possible motion is a rotation ahnut the contact point and hence a rolling motion.

In order for rolling to occur and no slippage or gliding to take place, the coefficient of friction μ must be different than zero and the forces of constraint mist be governed by

$$
\begin{equation*}
0<\lambda<\mu Y \tag{23}
\end{equation*}
$$

5. Differential Surface Morels

In this section constituent relations hetween the state θ, θ, the input 11 , the forces and the surface geometry are derived. If the surface is known, these equations can he used to solve for the forces of constraint r and λ. If alternatively, the forces are known, these equations can he used as differential surface models, and used for estimating the shape of the surface. These constituent relations are arriver at hy differentiating the constraint Eqs. (18) and (22) with respect to time and eliminating the acceleration $\ddot{0}$ hetween the latter second derivatives and the equations of motion.

The above procedure could he carried out similtaneously for hoth constraints. However, it is inne for the individual constraints here in order to demonstrate two alternative formalations, one mire analytical, one slightly more suitahle for computational purposes.
5.1 First Formulation. The differentiation of Eq. (18) with respect to time gives:

$$
\begin{equation*}
\dot{\theta} \frac{d X_{R} \tau}{d \theta} \frac{d D}{d X}=0 \tag{24}
\end{equation*}
$$

This equation implies no velocity component exists along the unit normal. An alternative form for Eq. (24) is

$$
\begin{equation*}
\dot{x}_{R} \tau(t) N=0 \tag{25}
\end{equation*}
$$

The differentiation of Eq. (24) with respect to time gives

$$
\begin{equation*}
\ddot{\theta} \frac{d x_{R}^{\tau}}{d \theta} \frac{d D}{d x}+\dot{\theta} \tau \frac{d x_{R}^{\tau}}{d \theta} \frac{d^{2} \eta}{d x^{2}} \frac{d x_{R}}{d \theta} \dot{\theta}+\left.\left.\dot{\theta}^{\tau} \frac{\partial}{\partial \theta}\right|_{-} ^{d X} \frac{d x^{\tau}}{d \theta}\right|_{-} ^{d x_{R}}=0 \tag{26}
\end{equation*}
$$

Elimination of 0 between Eqs. (26) and the dynamics of the system

$$
\begin{equation*}
\ddot{J \theta}+R(0) \dot{0}^{2}+E(\theta)=C .11+\left\langle\frac{d X_{R}}{d \theta}, N_{r}+T_{\lambda}\right\rangle \tag{27}
\end{equation*}
$$

gives the first form of the constituent equation

If all parameters and quantities in Eq. (28) are availahle, it is a constituent relation in the unknown gradient and Hessian $d n / d X$ and $d^{2} n / d X$? . If N and T are alsn not avaliahle, it is easy to include Eq. ($2 n$) for N and the following for T

$$
T=\left|\begin{array}{cc}
0 & -1 \tag{29}\\
1 & 0
\end{array}\right|_{-} N
$$

The result is a more complex constituent relation. Recause Eq. (28) involves the first and second partial derivatives of the surface, ft is a differential model of the unknown surface, lf λ and y are negligitly small. and/or if o-the angular velocities --are relatively small. Eq. (2R) simplifies.
5.2 Second Formulation. Eq. (28) estahlishes one relation among γ and λ. A second relation among λ and r could he ontained in a similar fashion from the second constraint equation. However, an alternative formulation is given here.

If Eq. (22) is differentiated with respect to time, one ohtains

$$
\begin{equation*}
T \tau \frac{d x_{R}}{\text { do }} \ddot{\theta}+\dot{\theta}^{\tau} \frac{d}{d 0}\left(T r \frac{d x_{R}}{40}\right) \dot{\theta}=0 \tag{30}
\end{equation*}
$$

Between Eqs. (27) and (30) one can eliminate 0 to ohtain the second differential surface model

The above two differential surface motels, are twn independent Eqs. in r and λ. If everything else is known including the unknown surface, these equations can he sol ver for these constraint forces as functions of the state 「 $\left.0^{r}, 0^{r}\right\}$, input 11 and the surface $n(x)=0$. They provide differential information ahout the surface, if everything else including γ and λ is known.

6. Shape Perception hy Parameter Estimation

Suppose the unknown surface is representahle hy a wector of unknown parameters β.

$$
\begin{equation*}
D(x)=\rho \tau(x) \beta=1 \tag{32}
\end{equation*}
$$

one may use coordinates of the many contact point X_{R} to arrive at system of linear equations in β, under the ahove assumption, the gradient and the Hessian are aiso linear in β. As result the constituent differential surface models, sampled at some interval T of time provide independent information ahout vector β. These systems of over specified linear equations can he solved for β. Let the overspecifted system he

$$
\begin{equation*}
M \beta=N \tag{33}
\end{equation*}
$$

where each row of the equation is one additional piece of information from sampling the constituent surface models or Eq. (32), etc. (an example is worked out in $[10]$). The hest estimate for g is the mean square error sense [.9] is

$$
\begin{equation*}
\beta=(M \tau M)^{-1} M \tau N \tag{34}
\end{equation*}
$$

This equation is also rohust with respect to a certain amount of independent random measurement noise.

7. Acknowledgment

This work was supported by the nepartment of Electrical Engineering, The Ohio State liniversity, Columhis, Ohin 43210. The author is indehted to Professor H. C. Ko, Chairman of the nepartment of Electrical Engineering, The Ohio State University for his sustained support and encouragement of this work.

8. References

[1] Gordon, G., Editor, Active Touch: The Mechanism of Recognition of Onjects by Manipulation, Pergamon Press. Oxford, 1978.
[2] Whitney, D.E., "Resolved Motion Rate Control of Manipulator and Human Prostheses," IEEE Transactions on Man-Machine Systems, vol. 10, no. 2, 1969, pp. 47-53.
[3] Rathert, M.H. and Craig. J.J., "Hybrid Position/Force Control of Manipulators," Journal of nynamic Systems, Measurement, and Control, vol. 102, 1981, pp. 126--133.
[4] Paul, R.P., Shimano, R., and Mayer, G.E., mifferential Kinematic Control Fiuations for Simple Manipulators," IEEE Transactions on Systems, Measurement, and Control, vol. 11, no. 6, 1991, pp. 456-4kn.
[5] Hackwood, S and Rent. G.. "Sensor and High Prectsion Rohotics Research," Procpedings of the lst intl. Symposium on Rotntic Research, pp. 529-545, Camhridge, MA 1984, edited hy M. मrady anतk. Paint, MTT Press.
[6] Harmon, L.D., "Automated Tactile Sensing," Internatinnal Journal of Rohntics Resparch, wl. 1, no. ?, pp. 3-32. 1982.
[7] Rajcsy, R., "What Can We Learn from One Finger Experiments." The Ist Int I. Symposium on Rohotic Resparch, pp. 509-527, Cambridge, MA, 1984, edited hy M. Rrady and R. Paut, MTT Press.
[8] Faugeras, 0, and Hebert, M., "The Representation, Recognition, and Locating of 3-n onjects," Internatinnal Journal of Control, vol. 5, no. 3, pp. 27-52, 1986.
[9] Lee, R.C.K., Optimal Estimation, Identification, and Control, Mit Press, Research Monograph, no. 28 , 1964.
[10] Hemami, H. and Goddard, R.E., "Recognition of Geometric Shape hy a Rohot System," 1987, tn appear in Journal of Rohotic Systems.
[11] Hemami, H., "Shape Neterminism hy Tactile Sensing," Proc. of the National Sctence Foundation Unrkshnp on Machine Dynamics, Denver, CO, Aug. 10-13, 1986, editeतt hy $4 . \mathrm{H}_{\text {. }}$ Sont.
[12] Han, J. -Y., Stahility, Contact Force and Adaptive Trajectory Control of Natural and Ronntic Systeme, Ph. Dissertation, The Ohin State Tniversity, March Iqki.
[13] Ruchner, H.l. Hines, M.J., and Hemami, H., "A Mechanism for Touch Control nf a Gafital five-Link HandFinger," IEFF Transactions on Systoms, Man, and Cyhernetics, vol. SMC-15, nn. itationa-77, 10R5.
[14] Wongchaisuwat, C., Hemami, H., and Ruchner, H.J., "rontenl of Sliding and Rolling at vatural inints," Jnurnal of Rinmerical Enginepring, ml. 105. pp. 364-375, 1984, ASMF Transactinns.
[15] Rrown, O.R., "On-Line Exploration of an Inknown Surface hy a Threp-Link planar Ronot," M.S. Thests, The Ohin State liniversity, June 198K, Report Vn. TH-RG-HH-147.

Figure l: The planar two-body contact problem.

figure 2: Gross motion of the end effector conter of graylty dy a two-link robot.

