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1. Abstract

Tactile perception of shape invnlves an on-line controller and a shape perceptor.
The purpnse of the on-line contreller is to maintain gliding or rolling contact with the
surface, and collect information, or track specific features of the surface such as
edges of a certain sharpness. The shape perceptor uses the information to ‘perceive,
estimate the parameters of, or recognize the shape, The differential surface madel
depends on the information collected and on the a-priori information known about the
robot and its p-,sical parameters, These differential models are certain functionals
that are projections of the dynamics of the rohot onto the surface gradient or onto the
tangent plane. They inwlve the states of the robnt (i.e., angles and angular wlnci-
ties), input torques or farces to the robat, the corfficient of friction ., and some of

K the diffarential properties of the surface such as the units of tangent and normal to
1 the surface, qradient, Hessian, and the radius of curvature and its projections onto
\ . planes. A numher of these differential properties .may /be directly measured from present

day tactile sensors. (Others may have to he indirectly - computed from measurements.
Others may constituts desiqn abjectives for distributed tactile sensars of the future,
A parameterization of the surface leads tn linear and nanlinear sequential parameter
estimatinn techniques for identificatinn of the surface. Many interesting compromises
haetween measnrement and campitatinn are possihle,

2. Introduction

Tactile parception of shapeé hy natural systems has heen the suhject nf many recent studies ri. Tactile
perception in rohatic systems fequires maintenance af gliding and/or ralling contact with the unknown object and
infaring informatinn ahout the’ shape. A major component of this kind of proping is the controller. The -con-
troller naeds on-line construction of the kinematics 27, force feedback 31, and inverse dynamics (41 to gener-
ate the napded input torques to the robot joints. The availahle tactile sensors to date, howewer, are not ade-
quate for fast and efficient’ execution of rolling and gliding manipulations f5,67. Once qliding or rolling is
maintained, the perceptinn’nf shapes involves using kinematic, and dynamic infarmation to qather information
ahout the manipulated objeét 771, The process of determining the shape invnlwves availability of a-priori compu-
tational and symholic rodels of shape 8],

Far smooth surfaces; that are linear in an unknaown parameter vector, . linear sequential estimation alqor-
jthms can bhe used to arrive at these parameters f9,10,111. Alternatively, solution of partial differential
equations or nonlinear estimation alqarithms are needed {101,

Wihen the nhject or surface is knawn, the trajectory of the rohot end effector can he a-prinri determined
the contral of hoth gliding 12,13] and rolling f141 on known surfaces has been studied hefore. Srown 187 has
considered the contral nroblem for qliding on unknown ohjects. This paper deals with the kinemat.cs and dynam-
ics of gliding and rotling contact of a known end effector gliding and/or rolling on an unknnwn surface, Two
differential surface models for perception are derived, For parametric surfaces a linear sequential estimatinn
algorithm is sketched,

3. The Kinematic 2rnhlem
The an-line kinematic prohlem for purposes of gliding and rolling on an unknnwn surface is discussed here
hy a simple twn riqid hody prohlem, A planar rigid hady end effector is considered that maintaing contact with
an unknown rigid hady hy 1liding or rolling on it (Fiq. 1), The internal coonrdinate system of the end effectnr
is the yyyp axes centered at the center of qravity of the end effector A and parallel with the principal axes of
the end effectar. The smrath surface of the end effector is assumed ta he known implicitly or parametrically in
its own coordinate system,
C(Y) =0 (1.2}
Y = ¥(a) = yy(=), y2la)] (1.

and the point of contact B (in gliding} is specified hy xy:
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Similarly the smooth unknown surface may he characterized parameterically or implicity. An implicit representa-
tion is assumed here:
N(X) = N{xy,xp) = 0 : (3)

Let the coordinates of A be given by the two-vector Xa. The coordinates of the contact point R in the inertial
coordinate system are .

|I” coss3 -sing3 7}
Xp = Xq ¢ | | Ys (4
[_sint3  cosoz _|

The control requirements for gliding contact are:

existence of the normal contact force to making sure that the contact is maintained,
knowledge ahout wiag noint of contact, ¢

guiding the mtion of the end effector, along the unknown surface,

and finally, 4. knovnedge of the radius of curvature of the unk nown surface,

WNH
.

along the unknown surface. A control input to this guidance is the tangential wlocity of contact w(t), The
- latter guidance requires sensing of the unit tangent wector T at R in the end effector conrdinate system and
transforming it to the inertial coordinate system

Xp{t) = v(t}T (5Y
Differentiating Eq. (4) with respect to time and substituting in £q.. (5) gives
. « |7 singy  cosiz T}
Xalt) = v(t)T + 3 | : | Ya (63
|_ =costy +siniz _|
Eq. {6) relates the local translational welocities Xp to the angular velocity of the end effector %3
Another interpretation of Eq. {6) is that the terms on the right side of Fq. (R) are rfspnctivply a small
translation of point A and a small rotation of point A ahout point B, The angular wlncity ©3 itself is a func-

tion of the local curvature of the unknown surface at the paint of contact. Let ds he the traversed distance on
the unknown surface. Ry definftion, the radius of curvature is given hy

1 ds
Ty ¥ = T (m
di3/ds 4.3 .
. diy 1 ds ()
1y = 2 — = 3
dt T oy

Therafore, Eqs (A) and (8) tngether Adafine the instantanenns kinematics of the qliding matinn,

[n the rolling motion the contact point mwes nn the end affactar as well as an tha unknawn surface sn that
the incremental distances traversed nn hoth surfaces are equal, In addition to the four rennirerears of qliding
motion as hefore, the end effectnr should have knowledge nf its own lncal radius nf curvature ar tha anint of
contact, Assum v(t) = ds/dt is the specified. contral {nput, and assume a convex surface, and a cn» voy end
effector surface as in Fig. 1. [t is nat difficult tn shnw that

. 1 1
3= v(t) — & —" (93
fe 2y

where og and o, are respectively the local radii of curvature of the end effectnr and the unknown surface at the
point of contact.

Similarly from the incremental form of £q. (8) and the definition of rolling, it foliaws that

[T+singg  cosoy | .« |7 singz  coszg |
dXp = | - | dog v (10) or XA = 93 | I Ygq (1
| -coss3  sing3 | |_ -cosz3  sinzy |

To summarize, Eqs (9) and (11) are the instantanecus kinematics of the rolling mation,
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If the unknown surface 1s convex, Eq. (9) is replaced hy

. 1 1
83 = v(t) (— - —) (12)
Pe Pu

Suppose the center of gravity of the gnd effector is connected to a two link robot (Fig. 2).
T 11c0881 + 12¢0502
XA ® (13)
|_ 21siney + tpsinez |
Differentiating Eq. (13) with respect to time gives

. |7 -1ysiney -225in92 -{ r 51 7

A= . . (14)
|_ 2jcosay + 2cosez _| o214 _ ‘

The latter équation provides the instastaneous kingmaticof the three‘-H‘nk system. - )
o =[07 02 83]" (15)

for either of the gliding or rolling motion.

From the above discussion it can he stated that measuring or estimating the local radius of curvature p, of
the unknown ohject and determining convexity or concavity are two important parameters for the  kinematics of
rolling or gliding., The local radius of curvature has two more uses. 1) It s needed for an ideal inverse
dynamics systems where the accelerations are needed to construct the input torques fi1l. It is needed for
detecting snarp edges (small p,) and consequent tracking of such sharp edges on three dimensional surfaces.

4, The Dynamics Problem for Point Contact

Consider the three-1ink planar robot of Fig., 2 with no contact with any ohject or surface, the equations of
motion for this system [12,13] are

3(s)o + B(0)0Z + E(o) = CH (16
where U is the vector of torque actuators at the joints.  Suppose the qltiding is on a frictionless surface, The
contact force is along the unit normal wector N to the surface, and assume its maqgnitude is v. The incremental
motion of the contact point on the rohat is

. |T-sino3  -cos63 |
dXg ="dXp + | | Yp dG3
|_ coso3 -sino3 _|
Let N be resolved in the inertial coordinate system, The incremental work of the contact force is

dd = < yN, dXg >

where < > is the inner product, and

du dXg
—z < yN, — >
de do
vithere

1~ -115in3] 21c0821 1
arrg | r
= | -1psinop 12c08%9 ]
- | |

_-y1asing3 - yspcoscy  +y1pcosi3 - yzpsine3

The equation of motion with the contact fin effect are:

J(5)e + R(0)32 + E{g) = CU + | N _ an

The holonomic constraint governing the dymamics is
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0(Xg) = 0 (18)
Differentiating £Eq. (18) with respect ’to time gives

. dXg® dn dD*  d¥g .
T (19)
dg  dx daX  do

A final relation that is important for the analysis to follow is the definition of the unit normal wector
N. The gradient wvector of the unknown surface is dD/dX and hy definition
dn dn
Ne— / 31— (20)
dX dx

where 1 1 {s the Euclidean norm,

Consider the rolling type of constrained mtion, Let the magnitude of the tangential constraint force he A,
The contribution of these forces to the ejuations of motions ‘is

™ axXg : ‘
— o <—— , (Ny +TA) > (21)
de do

For the rolling motion, there are two constraints. The holonamic contact constraint of £q. (18) and the non-
holonomic rall constraint --no motion along T at the point of contact.

daXy daXg .
TT = 2 Tt—g = 0 (22)
dt de

£q. (19) implies no motion of the contact point along the unit normal wctor. Eq. (22) means no motion of the
contact point along the unit tangent wvector. Consequently the only pnssihle motion is a rotation ahout the con-
tact point and hence a ralling motion.

In order for roliling to occur and no slippage or gliding to take place, the coefficient of frictfon , mist
he different than zero and the forces of constraint mist he qoverned by

0 <A <uy (23)
5. Differential Surface Models

In this section constituent relations hetween the state 4, 6, the input !}, the forces and the surface
geometry are derived. If the surface is known, these equations can he used to solve for the forces of con-
straint y and A. If alternatively, the forces are known, these equations can he used as differential surface
models, and used for estimating the shape of the surface. These constituent relations are arrived at hy differ-
entiating the constraint Eqs. (18) and (22) with respect to time and eliminating the acceleration 7 bhetween the
latter second derivatives and the equations of motion, N
. The ahnve procedure could he carried out similtaneously for hoth constraints, Howewer, it is dane for the
individual constraints here in order to demonstrate two alternative formilations, one more analytical, one
slightly more suitahle for computational purposes.

5.1 First Formilation. The differentiation of £q. (1B) with respect to time giwves:

. dXg® dD
9t

= 0 (24)
dg  dX

This equation implies no velocity component exists along the unit normal., An alternative form for £q. {24) is
XgT{LIN = 0 (25)

The differentiation of Eq. {24) with respect to time qi ves

dXgT dD . dXg® d?n dxg . .3 (T dot ¥ Y.
9%t - + 9% — —= 8 + ot — | — e =0 (26)
. de  dX 48 4x2 de 26 |_dx do |
Elimination of o between Eqs. (26) and the dynamics of the system
- . dXp
Jo + R(g)e2 + E(g) = CU + <—— Ny +Tr > (21)
de
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gives the first form of the constituent equation

. dXgt d20 d¥g . . 8 |Tdt dxg T} . dot d¥g I~ . dxvg |
-9t —— " g - gf | — — |9 = — — J1 | -ReZ -Eg +CU+ (N +TA) | (28)
do  4x2 do 20 |_dx do _| dx  de I do A

If all parameters and quantities in Eq. (28) are availahle, it {s a constituent relation in the unknown
gradient and Hessian dD/dX and 42n/d%2, If N and T are alsn not available, it is easy to include Eq. (?0) for N
and the following for T _ ’

0 -1
T = { N (29)
1 0]
The result s a more complex constituent ralation, Recause Eq. (28) involves the first and second partial
decfvatives of the surface, it is a differential model of the unknown surface. [f A and y are negligihly small,
and/or if 0 --the angular wlocities --are relatively small, £Eq. (28) simplifies. :

5.2 Second Formilation. Eq. (28) estahlishes one relaticn among y and A, A second relation among A and y could
he obtained in a similar fashion from the second constraint equation, . However, an alternative formulation is
gi ven here.

If £q. (22) is differentiated with respect to time, one ohtains

dXg - . d dXg . ’
TF — g + 0%t — (TF— ) = 0 (30)
do de do

Retween Eqs. (27) and (30) one can eliminate 0 to ohtain the second differential surface model

d dXg . d¥p

. dXp . i~ dxeg T
ot — (Tt — Jo + Ts— J-1 (RoZ 4 E) = TT — gl jen+ (Ny +AT) (31
’ do do do dn Ao ,

The above two differential surface models, are twa independent Egs. in y and A. If everything else is
known including the unknown surface, these equations can he solved for these constraint forces as functions of
the state 0%, pT1, input U and the surface N(X) = 0. They pravide differential infarmation ahout the surface,
if everything else including y and X is known,

6. Shape Perception hy Parameter Estimation
Suppose the unknown surface is representahle hy a wector of unknown parameters g.

D(X) = PT(X)g = 1 (32)
one may use coordinates of the many contact point Xg to arrive at a system of linear equations in g, under the
ahove assurption, the gradient and .the Hessian are also linear in p. As a result the constituent differential
surface models, sampled at some interval T of time provide independent infarmation about vector 8. These sys-
tems of over specified linear equations can be solved for 3. Let the owerspecified systeam he

Mg = N . (33)
where each row of the equation is one additional piece of information from sampling the constituent surface
models or Eq. (32), etc. {an example {s worked out in r10]). The hest estimate for 3 1s the mean square error
sense 9] is

g = (MtM)-lmen (34)

This equation is also robust with respect to a certain amount of independent random measurement noise.
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Figure L: The planar two-body contact problem. Figure 2: Gross motion of the end effector center of jravity
by & two-link robot.
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