View metadata, citation and similar papers at core.ac.uk

L=
T

brought to you by .{ CORE

provided by NASA Technical Reports Server

Chaos Motion in Robot Manipulators
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Ah.xz.e%mfN“Thfﬁmﬁiﬁtr”%hows/lhat a aihple two-1ink planar manipulator exhibits a phenomenon
of global instability in a subspace of its configuration space. A numerical example, as well
as results of a graphic simulation,is given.

The problem of unpredictability in deterministic mechanical systems without random
disturbances w posed more than a century ago in connection with turbulence motion. A new
interest in the oblem was aroused only recently when it became clear that even lew order
deterministic dynamical systems can be unpredictable from any practical point of view. A
classical example of a“Henon-Heiles system (1) [2}]

o2

H = 0.5(p,2 + ql? + Py Q&g?z) + q12q2 - q32/3 (1)

represents a case of a well poses“deternlnistlc conservative system with only two degrees of
freedom. While (1) cannot be solved.analytically for arbitrary initial values, it can be
integrated numerically. Henon and Heiles did it in 1964, and the results showed that for the
system energy above E=1/6, a phase portralt looks seemingly random, while for the E=1/12 <for:
energy levels above E=1/8, while for E<1 system (1) exhibits traditional smooth curves
(Pi1g. 1). buring the last twenty years, xistence of chaos in nonlinear dynamic systems
became a well established fact.

Another type of chaos that is important for us éhn\Pe well demonstrated by equation (2).
.

XK(n+l) = 2*X(n) MOD(1) ‘ . (2)

For a binary representation of X(n), it simply states that on éacp step we are shifting the
decimal point in X one bit right and throwing out an integer part. It is easy to see that (2)
has an analytical solution (3) -

X({n) = 2M*X(0) MOD(1) (3)

but to compute a result for a given N, one must know exactly N bits in the initial value of
X(0). '

This example demonstrates a case of orbital instability that was first studlied in (1}.
Equation (3) 1is a case in which an initial separation between two close solutions grows
exponentially along the trajectories. 0f course for any real dynamical system, orbital
instability can exist only for the general coordinates that don't increase ths system's total
energy. It 1s worth mentioning here that while an exponential “explosion" of solutions is
very well known in the Linear System Theory, there it only means that a linear gystem
description cannot be used, and the system moves toward its limited circle or breaks down as
a result of too high stresses. Conversely, an orbital instability in nonlinear systeas does
not lead to an alternative stable equilibrium, and the system description is done, in the
framework of Newtonian mechanics. without any simplification and linearization.

II. Geometric Approach.

For our future discussion. a geometrical representation of orbital instability may be
useful. Let us start from an example of an inertial motion of a single particle M on a
smooth surface S. In the absence of external tforces, a point mass M would mcve along ‘the
geodesics line on this surface. It is shown in differential geometry [5] that the distance
between two initially close geodesics is

dare) = do'exp(tV—G ) (4)
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where do is an initial separation, G - Gaussian curvature, and t i1s a trajectory parameter
not necessarily time. One can see from (4) that for a negative surface curvature the
separation increases exponentially. Such a case is shown in Fig. 2. Alternatively, for the
surfaces with a positive curvature, separation |is bounded by its initial value.

This geometrical representation is very important for a question of system orbital
stability. Indeed if it is possible to find a space where the system behavior can be
deacribed as an inertial motion of a single particle, one need examine only the sign of a
space Gaussian curvature without solving the equations themselves [(4].

For the case of conservative finite-degree-of-freedom systems, such a space is very well
known. It is a configuration space with a metric tensor corresponding to the structure of the
system kinetic energy [4]. Let qi {i=1..N] denote generalized coordinates, and the kinetic
energy is

£ - ayyatd? (s

then a should be used as a new metric tensor for the configuration space. In (5) and
thereagéer, summation is assumed upon repeated indexes. In such constructed space, the
solution for the free motion of the original system will correspond to an inertial motion of
a single particle of a unit mass along the geodesic lines [5.6].

For this metrics triang]e; equality is hot true any more. Now an elementary arc is
das? = aydqiaq? ' (6)

and ds? can be less, greater, or equal to the sum of dqlz. The sign of the resulting Gaussian
curvature is connected to this relation. An jllustration of a two dimensional case i: shown
in FPig. 3.

In the rest of the paper, we are going to show that a free frictionless motion of a
simple mechanical system of a two-link planar manipulator, in the absence of gravitly, can
demonstrate orbital instability that can be characterized as a "weak chaos" [4].

III. Solution for a Two-link Arm.

A model for a two—link planar manipulator is shown in Fig.4. Angles f, and f, can
be chosen as generalized coordinates q,. qj- System kinetic enerqy 1is

B2 a; "2 + aj .ty ¢ ay,°t,2 (6)

ay; = (I; +aL?)

ay, = m'i'lg'cus(fz—tl)

az, = I, (7}
where I, and I, are moments of inertia, m - mass of the link 2, L - length of link 1, and lg
is the éistance from B to the center of inertia of the link 2.

The curvature of the resulting two dimensional space can be computed explicitly
G*a? = meL*lg*(a2+(m*L*1g*sin(f,~£ )12} 2 cos(£,-£y) (8)
and differential equations for f; and f, can be solved numerically.

One can see from (8) that the sign of the curvature G depends only on the c¢os(f,-f,).
Fig.5 gives the region on (£y.%5) plane where G s positive and therefore the system is
orbitally unstable. In other words folded arm configurations are orbitally unstable. and
extended arm configurations are orbitally stable.

IV. Numerical Simulation.

For a numerical simulation, we chose parameter values that had been used for a real
manipulator {7].

I, = 0.126, I, = 0.075, m = 4.978 . :
L = 0.27, 1g = 0.0485 : (9)

The system was exercised in the tollowing way: For various initial conditions. two arm 3
were run with a slight difference in their start points. The time history, configuration
plane trajectories, as well as graphical animation of the arms themselves had been iisplaved.
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Also we computed and graphically displayed a running estimation of a  Lyapunov exponent for
the £,-f )
2”1

Lit) = [Ln{d(t)/dg)]/t ) ) (10)

where d{t) is the difference between the arms in the value of an internal angle (tz(t)-
tl(t)). It had been shown (8] that a motinn is chaotic it

L(t) --> ¢ >0; when t --> inf (11)

Integration was done by using Runge-Kutta with adaptive size steps. To avoid the influence of
numerical errors, integration was repeated with a tolerance parameter varying more than an
order of magnitude. All runs gave the saf®, -sults within desired tolerance.

V. Results.

wWhile the fact of positive but not constant curvature over the whole space is a
necessary but not sufficient condition for the orbital stability, the opposite is true. ‘A
system is orbjtally unstable if the curvature of the space defined by {5),(6) is negative in
all points.

Since there are "good” and "bad" regions on the f; vs t, plane (as shown on Fig.5), to
get definite results it would be desirable to find an initial condition that would keep the
system only in the region with positive or negative curvature. However it is clear, that §f
one can hope to. find a trajectory that stays completely in the "good" region (G>0), there is
no trajectory that would stay in the region with orbital instability. Indeed, any solution
for the fz-f is of MOD(2Pl), and the separation can not grow indefinitely without forcing an
arm to "unfold".

In our simulatian we found a case when an arm starting from unfolded position would stay
there. In that case the original difference between the arm almost did not grow as can be
seen from Fig.6a. This case will be further referred to as Case 1. Its initial conditions
were .

arml : £, = 80, f,

a5 (dgl. £,
arm2 : f; = 80, b

300, Ez = 0 {dg/sec]
37 (dgl). £,

300, 52 = 0 [dg/sec]

nou

For the arm started from a folded position a small initial difference grew very fast as
could be seen from Fig.6b. Fig.6c shows arms in one of the intermediate positions. It is
clear how far apart they become. The initial conditions .for the Case II were

200 {dgi,
202 [(dgl.

arml : t, = 80, fq

00, f, = 0 (dg/sec]
arm2 fl = 80, f,

3
300, fz = 0 [dg/sec]

. The estimate of the Lyapunov exponent for the Case T clearly goes to zero, while
Case [I stayed positive at least during the time of observation - Fig.7a,b. It is not clear
nevertheless that it will never go to zero, due to the reascns described above (crossing both
good as well as bad regions).

V1. Discussion.

A phenomenon of chaotic motion has been theoretically found and numerically illustrated
for a simple mechanical system of a two-link manipulator. It nas been shown that a talded
arm is arpitally unstable, opposite to an extended one.

While the assumption of a nonfriction, zero gravity environment is guite unrealjstic, we
believe that our finding warrants further and more detailed investigations of the described
phenomena. It is gquite possible that low-friction, many degrees of freedom redundant flexible
arms of the future will exhibit more complicated behavior that could lead to orbital
instability under more realistic conditions.

The importance of the geodesics in the configuration space with metric a4y as minimum
time trajectories has been recently shown by K.G. Shin and N.D. McKay {9l]. Qur result
suggests that an open loop control should not be used in the region with negative curvature
since trajectories there rapidly diverge.

A gquestion of a closed loop control in the area of negative curvature also deserves
more detajled investigation. While it had been shown that a simple PID control under the same
conditions (no friction and no gravity) makes an arbitrary robot manipulator asymptotically
stable (10] it is not clear how trajectory curvature affects an admissible sampling rate.
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V1. Conclusion.

‘Using a geometric apprcach we have shown that a simple robot manipulator can be orbitally
unstable depending on its configuration. A numerical simulation supported this finding. We
feel that further efforts in this direction will help better understanding of the dynamical
properties of such complicated nonlinear systems as robot manipulators.
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