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Abstract : VA

" “Wedemsibe. progress made toward having :n(vn/ bile robot and plan complex tasks in real-world environments/ To cope with the
{ dynamic and uncertain nature of the world w€ use a highly reactive system to which is attributed attitudes of belief, desire, and intention. Because these

attitudes ase explicitly represented, they can be ipulated and d about, Iting in complex goal-directed and reflective bebaviors. Unlike most
planning systems, the plans or intentions formed by the system need only be partly elaborated before it decides to act. This allows the system to avod
overly strong expectations about the environment. overly constrained plans of action, and other forms of over-commitment common to previous planners. In
addition, the system is continuously reactive and has the ability to change its goals and intentions as situations warrant. Thus, while thecystem architecture
allows for reasoning about means and ends in mwch the same way as traditional pl it also p the reartivity required for survival in complex
real-world domains. wWh o et

Waebaye tested-she systemfusing SRI's autonomous robot (Flakey) in a scenario involving navigation and the performance of an emergency task in & space

-

station scenatio.

. 1 Introduction ™

One feature that is critical to the survival of all ling creatures is their ability to act appropriately in dynamic environments. For lower life forms, it
seems that sufficient capability is provided by stimuls-response and feedback mechanisms. Higher life forms, however, require more complex abilities,
such as reasoning about the future and forming plans ¥f action to achieve their goals. The design of reasoning and planning systeins that sre srfwated in

environments with real time constraints can thus be seer\as fund tal to the develop of intelligent sutonomous machines.

performing complex tasks in dynamic envi and d trate how the system can be
tem, called a procedural reasoning system (PRS), is endowsd with the psychological attitudes
of belief, desire, and intention. At any instant, the actions thet the system considers performing depend not only on the current desires or goals of the
system, but also on its beliefs and previously formed intentions. \Jhe system also haa the ability to reason about its own internal state - that is, to reflect
on its own beliefs, desires, and intentions and to modify these as id\chooses. This architecture allows the system to reason about means and ends in much
the same way as traditivual planners, but provides the reactivity ired for survival in complex real-world domains.

In this paper, we describe a system for reasoning about
applied to the control of an autonomous mobile robot. The s

astronaut’s assistant. When asked to get a wrench, for example, the robot works
the wrench is not where expccted, the robot may reason further about how to
aut with the wrench or explains why it could not be retrieved.

As the task domain, we envisage a robot in a space station acting as
out where the wrench is kept, plans a route to get it, and goes there.
obtain information on its whereabouts. It then finally returns to the ast
he wrench when it notices a malfunction light for one of the jets in the reactant
is of higher priority than retrieving the wrench and sets about diagnosing the
ly telling the astronaut what has happened.

In another scenario, the robot may be midway through the task of retrieving
control system of the space station. It reasons that handling this malfunction
fault and correcting it. Having done this, it continues with its original task, fi
ute plans, but must be willing to interrupt or abandon s plan when
ging and b other agents and processes can
that is highly reactive as weil as goal-directed.

To accomplish these tasks, the robot must not only be able to create and
circumstances demand it. Moreover, because the world in which the robot is situ
issue demands at arbitrary times, performance of these tasks requires an architecti

e have used PRS with the new SR] robot. Flakey, to accomplish much of the two scenarios described above, including both the navigation and malfunction-
handling tasks. In the next section. we discuss some of the problems with traditional'glanning systems. The architectute and operation of PRS is then
described. and Flakey's primitive capabilities are delineated. We then give a more deti)l{d analysis of the problems posed by this application and ocur
progress to date. We concentrate on the navigation task; the knowledge base used for the jet maifunction handling is described elsewhere [15,17).

is conti ly ch

2 Previous approaches

Most architectures for intelligent autonomous systems consist of a plan constructor and a plan executor. Typically, the plan constructor plans an entire -
course of action before commencing execution of the plan {1,11,25.28,30.32.33,34]). The plan itself is usually composed of primitive actions - that is, actions
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that are dnectly performable by the system. The motivation for this approach, of course, is to ensure that the planned sequence of actions actually achieves
- the prescribed goal. As the plan is executed, the system performs the primitive actions in the plan by calling various low-level routi Usually, executi
is monitored to ensure that these routines achieve the desired effects; if they do not, the system may return control to the plan constructor to modify the
existing plan appropriately. There are, however, a number of serious drawbacks with this architecture as the basis for the design of autonomous agents.
First, this kind of planning is very time consuming, requiring exponential seazch through potentially enormous problem spaces. It is thus usual for classical
Al planners to spend considerable time thinking before performing any effector actions. While this may be acceptable in some situations, it is not suited to
domains where replanning is frequently necessary and where system viability depends on readiness to act. In real-world domains, unaaticipated events are
the norm rather than the exception, necessitating frequent replanning. Furthermore, the real-time constraints of the domain often require almost immediate
reaction to changed circumstances, allowing insufficient time for this kind of planning.

Second, in real-world domains, much of the information about how best to achieve a given goal is acquired during plan execution. Forhsx‘imple, in planning
to get from home (o the airport, the particular sequence of actions performed depends on informstion acquired on the way - such as which turnoff to take,
which lane to get into, when to slow down and speed up, and s0 on. Traditional planners can only cope with this uncertainty in two ways: (1) by building
highly conditional plans, most of whose branches will never be used, or (2) by leaving low-level tasks to be accomplished by fixed primitive operators
that are themaelves highly conditional (e.g., the intermediate level actions (ILAs) used by SHAKEY [23]). The former case is combinatorially explosive or
simply cannot be done - the world around us is simply too dyramic to anticipate all circumst The latter, as usually implemented, seriously restricts
flexibility and reasoning capabilities. Of course, in situations where we can paint ourseives into & corner, some preplanning is necessary. But even this need
not involve expanding plans down to the level of primitive operators; indeed, we may do the planning in quite a different abstraction space than that used
to guide our actions in the real world (see, for ple, the rep tations in the missionaries and cannibals problem discussed by Amarel (3)).

A third drawback of traditional planning systems is that they usually provide no mechanisma for reacting to new situations or goals during plaa execution,
let alone during plan formation. For example, many robots (e.g., SHAKEY [23]) effectively shut off their abilities to react to new situations and goals
while moving from one location to another. Only low-level feedback mechanisms and emergency sensors such as collision detectors remain enabled. Such
disregard for sensory input is particularly undesirable in realistic’ eavi te in which unpredictable events may occur or other agents may be active -
because of innaccurate information about the actual state of the world, actions may be chosen that are inappropriate to achieving the goals of the system.
By remaining continuously aware of the environment, an agent can modify its actions and goals as the situation wazrants.

Indeed, the very survival of an asutonomous system may depend on its ability to react guickly to new situations and to modify its gosls and intentions

accordingly. For example, in the scenario described above, the robot must be capable of deferring the task of fetching a wrench when it notices something
more critical that needs attention (such as a jet {ailure). The robot thus needs to be able to reason about its current intentions, changing saad modifying

these in the light of its possibly changing beliefs and goals. While many existing pl have replanning capabilities, none have accomodated modifications
to the system’s underlying set of goal priorities.
Finally, cutrent p! are overc itted to the planning strategy itself - no matter what the situation, or how urgent the need for action, these systems

always spend as much time as necessary to plan and reason about achieving a given goa! before performing any external actions whatsoever. They do
not have the ability to decide when to stop planning, nor to reason about the trade-offs between further planning and longer available execution time.
Furthermore, they are commitied to one particular planning strategy, and cannot opt for different methods in different situations. This clearly mitigates
against survival in the real world.

In sum, the central problem with traditional planning systemns may be viewed as one of overcommitment. These systems have strong expectations about
the behavior of the environment and make strong assumptions about the future success of their own actions. They ste strongly committed to their goals
and intentions and, except in certain simple ways, cannot modify them as citcumstances demand. This would be fine if it were possible to build plans
that accommodate all the complexities to which an agent must be responsive; unfortunately, in most real-world domains, the construction of such plans is
infeasible.

Of course, we are not suggesting that preplanning, followed by later replanning, can be completely avoided: because of unanticipated changes in the
environment, an agent will often have to reconsider its goals or its intended means of achieving these. This is a property of the environment that an agent
can do little about. If the agent did not make some assumptions about the behavior of the environment, there is little chance it would ever be able to act.
On the other hand an agent should not make too many assumptions about the environment - to the extent possible, decisions should be deferred until they
have to be made. The reason for deferring decisions is that an agent can only acquire more information as time passes; thus, the quality of its decisions can
only be expected to improve. Of course, there are limitations resuiting from the need to coordinate activities in advance and the difficulty of manipulating
excessive amounts of information, but some degree of deferred decision-making is clearly desirable.

There has been some work on developing planning systems that interleave plan formation and execution (10,21,29]. While these systems can cope far
better with uncertain worlds than traditionsl planners, they are still strongly committed to achieving the goals that wete initially set them. They have no
mechani for changing focus, adopting different goals, or reacting to sudden and unexpected ch in their envi t. The reactive systems used
in robotics also handle \.hlﬂ‘ﬂ in situation better than traditional planning systems (2,7,18]. Even SHA!\EY [23] utilized reactive procedures (ILAs) to
realize the primitive actions of the high-level planner (STRIPS), and this idea is pursued further in some recent work by Nilsson [24). Howevez, there is no
indication of how these systems could reason rationally about their future behaviors, such as to weigh the pros and cons of taking one course of action over

another.

3 Knowledge Representation

The system we used for controlling and carrying out the high-level reasoning of the robot is called a Procedural Reasoning System (PRS) (15]." The system
consists of a dala base containing current deliefs or facts about the world, a set of cusrent gosls or desires to be realized, a set of procedsres (which, for
historical reasons, are called knowledge areas or KAs) describing how certain sequences of actions and tests imay be performed to achieve given goals or to
react to particular situations, and an interpreter (or inference mechanism) for manipulating these components. At any moment, the system will also have
a process stack (containing all currently active KAs) which can be viewed as the system's current intentions for achieving its goals or reacting to some
observed situation.

The basic structure of PRS is shown in Figure 1. A brief description of each component and its usage is given below.? Later sections will give examples of
PRS use in the the robot scenario.

!Flakey is being used in @ variety of experiments st SRI, and PRS is just one of variows systems being employed for controlling Flakey.
7A more formal description of PRS may be found in {17].
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Fligure 1: System Structure

3.1 The System Data Base

The contents of the PRS data base may be viewed as representing the current beliefs of the system. Some of these beliefs may be provided initially by the
system user. Typically, these will include facts about static properties of the application domain — for example, the structure of some subsystem, or the
physical laws that some mechsnical components must obey. Other beliefs are derived by PRS itself a6 it executes its KAs. These will typically be current
observations about the world or conclusions derived by the system from these observations. Consequently, at some times the system may believe that it is
in a particular hallway, and at other times, in another. Updates to the data base therefore necessitate the use of consistency maintenance techniques.

The data base itself consists of a set of state descriptions describing what is [believed to be] true at the current instant of time. We use first-order predicate
calculus for the state description language. Free variables, represented by symbols prefixed with $, are assumed to be universally quantified. The statement

(V (~ (on $x tadle)) (red (color $x)))

for example, represents states of the world.in which every object on the table is red. Data base queties are done using unification over the set of data base
predicates.

State desctiptions that describe inlernal system states are called metalevel expressions. The basic metalevel predicates and functions ate predefined by the
system. For example, the metalevel expression (goal g) is true if g is a current goal of the system.

3.2 Goals

Goals appear both on the system goal stack and in the representation of KAs. Unlike most Al planning systems, PRS goals rep t desired behaviors
of the system, rather than static world states that are to be (eventually) achieved. Hence goals are expressed as conditions on some interval of time (i.e.,
some sequence of world states).

Goal behaviors may be described in two ways. One is to apply & temporal predicste to an n-tuple of terms. Each temporal predicate denotes an action type
or a set of state sequences. That is, an expression like “(walk a b)" can be considered to denote the set of state sequences which embody walking actions
from point a to b.

A behavior description can also be formed by applying a temporal operator to a state description. Three temporal operators are currently used. The
expression (1p), where p is some state description (possibly involving logical connectives), is true of a sequence of states if p is true of the last state in
the sequence; that is, it denotes those behaviors that schieve p. Thus we might use the behavior description (t(walked a b)) rather than (valk a b).
Similarly, (?p) is true if p is true of the first state in the sequence ~ that is, it can be considered to denote those behaviors that result from a successful test
for p. Finally, (8p) is true if p is preserved {maintained invariant) throughout the sequence.

Belfavior descriptions can be combined using the logical operators A and V. These denote, respectively, the intersection and union of the composite
behaviors.

As with state descriptions, behavior descriptions are not restricted to describing the external environment, but can also be used to describe the internal
behavior of the system. Such behavior specifications are called metalevel behavior specifications. One important metalevel behavior is described by an
expression of the form (s> p). This specifies a behavior that places the state description p in the system data base. Another way of describing this behavior
might be (1 (belief p)). ’

3.3 Knowledge Areas

Knowledge about how to accomplish given goals or react to certain situations is tepresented in PRS by declarative p d pecifications called knowledge
areas (KAs). Each KA consists of a body, describing the steps of the procedure, and an i tion condition that specifies under what situations the KA is
useful. .
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The body of & KA is represented s a graphical network snd can be viewed aa & plan or plan schems. However, it differs in a very important way from
the plans produced by most Al planners: it does not consist of possible sequences of primitive actions, but, rathez, of possible sequences of sslgosls to be
achieved. Thus, the bodies of KAs are much more like the high-level “operators” used in planning systems such as NOAH (28] and SIPE [34]. They differ in
that (1) the subgoals appearing in the body can be described by complex temporal expressions (i.e., the goal expressions described in the preceding section),
and (2) the allowed control constructs sre much richer, and include conditionals, loops, and recursion. One important advantage of using abstract subgoals
rather than fixed calls to actions is that the knowledge expressed in any given KA is largely independent of other KAs, thereby providiag a very high
degree of modularity. It is thus possible to build domain knowledge incrementally, with each compoaent KA having & well-defined and easily understood
semantics.

The invocation part of 8 KA contains an arbitrarily complex logical expression describing under what conditions the KA is useful. Usually, this consists of
some conditions on current system goals (in which case, the KA is invoked in a goal-directed fashion) or current system beliefs (resulting in data-directed or
reactive invocation), and may involve both. Together, the invocation condition and body of & KA express a declarative fact about the effects of performing
certain sequences of actions under certain conditions.

The set of KAs in a PRS application system consists not only of procedural knowledge about a specific domain, but also includes metalevel KAs — that is,
information about the manipulation of the beliefs, desires, and intentions of PRS itself. For example, a typical metalevel KA would supply a method for
choosing between multiple relevant KAs, or how to achieve a conjunction of goals, or how much further planning or r ing can be undertaken given the
real-time constraints of the problem domain. These metalevel KAs may, of course, utilize domain-specific knowledge as well. In addition to user-supplied
KAs, each PRS application contains a set of system-defined default KAs. These are typically domain-independent metalevel KAs.

3.4 The System Interpreter

The system interpreter runs the entire system. From a conceptual viewpoint, it operates in a relatively simple way. At any particular time. certain goals
are active in the system, and certain beliefs are held in the system data base. Given these extant goals and beliefs, a subset of KAs in the system will be
relevant (applicable). One of these KAs will then be chosen for execution.

In the course of traversing the body of the chosen KA, new subgoals will be posted and new beliefs will be derived. When new goals are pushed onto the
gonl stack, the interpreter checks to see if any new KAs are relevant, and executes them. Likewise, whenever a new belief is added to the data base, the
interpreter will perform appropriate consistency-maintenance procedures and possibly activate new applicable KAs. During this process, various metalevel
KAs may also be called to make choices between alternative paths of tion, to ch bet multiple applicable KAs, to decompose composite goals
into achievable components, and to make other decisions.

This results in an interleaving of plan selection, formation, and execution. In essence, the system forms a partial overall plan (chooses a KA}, figures out
near terrn means (tries to find out how to achieve the first subgoal), executes them, further expands the near-term plan of action, executes {urther, and
s0 on. At any time, the plans the system is intending to execute (i.c., the selected KAs) are both pertie! and Aierarchical — that is, while certain general
goals have been decided upon, specific questions about the means to achieve these ends are left open to future deliberation.

This approach has many advantages. First, systems generally lack sufficient knowledge to expand a plan of action to the lowest levels of detail - at least if
the plan is expected to operate effectively in a real-world situation. The world around us is simply too dynamic to anticipate all circumstances. By finding
and executing relevant procedures only when needed and only when sufficient information is available to make wise decisions, the system stands a better
chance of achieving its goals under real-time constraints.

Because the system is repeatedly assessing its current set of goals, beliefs, and the applicability of KAs, the system also exhibits a very reactive form of
behavior, rather than being merely goal-driven. By reactive, we mean more than a capability of modifying current plans in order to accomphsh given goals;
a reactive system should also be able to completely change tts focus and pursue new goals when the situation warrants it. This is essential for domains in
which emergencies can occur and is an integral component of human practical reasoning.

Because PRS expands plans dynamically and incrementally and also allows for new reactive KAs to respond when they are relevant, there are frequent
opportunities for it to react to new situations and to change goals. The system is therefore able to modify its intentions rapidly on the basis of what it
currantly perceives as well as upon what it already believes, intends, and desires. It can even change its intentions regarding its own reasoaing processes -
for example, the system may decide that, given the current situation, it has no time for further reasoning and must act immediately.

3.5 Multiple Asynchronous PRSs

In some applications, it is necessary to monitor and process many sources of information at the same time. PRS was therefore designed to allow several
instantiations of the basic system to run in parallel. Each PRS instantiation has its own data base, goals, and KAs, and operates asynchronously with other
PRS instantiations, communicating with them by sending ges. The n ges are written into the data base of the receiving PRS, which must then
decide what to do with the new information, if anything.

Typically, this decision is made by a fact-invoked KA (in the receiving PRS), which responds upon receipt of the external message. On the basis of such
factors as the reliability of the sender, the type of the message, and the beliefs, goals, and current intentions of the receiver, it is determned what to do
about the message - for example, to acquire a new belief, establish a new goal, or modify intentions.

We have found the ability to perform multiple activities concurrently to be crucial in the robot domain. Although some systems do generate pians, portions
of which can be executed in parallel (e.g.. NOAH (28] and SIPE [34]), our motivations for parallelism are quite different. In our case, the parallelism
is essential for processing the constant stream of sensory information and for controlling devices continuously. That is, parallelism is required for the
system's proper operation. In NOAH and SIPE, however, the parallelism is simply fortuitous and does not result from any demands on processing speed
or distributed functionality.

4 Flakey the Robot

Flakey was designed and built within SRI's Artificial Intelligence Center, and is being used by several research teams to test software-organization ideas.
It contains two onboard computers, a SUN 1l workstation (with {2Mb disk) and a Z80 microprocessor. The Z80 is the low-level controiler, receiving
instructions from, and returning current information to, the SUN. The SUN, in turn, can be connected to an ethernet cable, allowing the robot to operate
in either stand-alone or remote-control modes. The SUN can also be accessed from a small console on Flakey itself.

The Z80 manages 12 sonars, 16 bumper contacts, and 2 stepper motors for left and right wheels. Voice output and video input are managed by the SUN.
A robot arm will be added in the future. The application described here uses only the sonars, voice. and wheels.
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(nation SUs Sthall Stwing))

Figure 2: Top-level Strategy

The 12 are located imately 5 inches off the ground, 4 facing forward, 4 backward, and 2 on each side. To obtain a sonar reading, the SUN
must issue a request to the 280 and then wait until the msuu hu been returned. While waiting, the SUN can continue with other processing. At present,

the SUN can obtain no more than a few sonar readings per second.

The motors for the left and right wheels can be controlled independently, again by having the SUN send a request to the Z80. For each wheel one can specify
a desired distance, 8 maximum forward speed, and a desired acceleration. The Z80 uses the given acceleration to achieve the maximum speed compatible
with the desired distance.

Changing direction is done by requesting different speeds for the two wheels. When the robot is stationary, this can be reduced to a simple rotation; when
the robot is moving, more complex algorithms are required. Direction changes are much more difficult when they must be negotiated during a forward

acceleration.

As well as receiving the desired values of distance, speed, and acceleration from the SUN, the Z80 transmits current actual values to the SUN. This is done
using interrupts that occur at a rate of approximately fifty times per second. The Z80 also runs a position integrator, thus making available the robot’s
position and orientation relative to particular reference axes. In line with our wish to avoid reliance on dead reckoning, however, we did not use the position
integrator for the top-level navigation task; it was used, however, for such low-level tasks as estimating the robot’s alignment within a hallway.

Thete is significant ncise in every measurement available to the SUN. The sonars, while generally accurate to about 5 millimeters, can occagionally return
invalid readings and can also fail to see an object if the angle of incidence is high enough. Furthermore, Flakey's sonars sense the closest object within a
30-degree cone, 30 that open doorways are not seen until the sonars are well past the doorpost. Similarly, Flakey will stop within about 5 millimeters of
the requested distance and will travel at speeds which fluctuate up to 10 millimeters/second above and below the requested maximum speed.

5 The Domain Knowledge

The scenario described in the introduction includes problems of route planning, navigation to keep on route, and various general tasks such as malfunction
handling and requests for information. In this paper, we will concentrate on the route planning and navigation tasks. However, it is important to realize
that the knowledge representation provided by PRS is used for reasoning about all tasks that the system performs.

The way the robot (that is, Flaxey under the control of PRS) solves the tasks of the space station scenario is roughly as follows. To reach a particular
destination, it knows that it must first plan a route and then navigate that route to the desired location (see the KA depicted in Figure 2). In planning
the route, the robot uses knowledge of the topology of the station to work out a route to the target location, as is typically done in navigation tasks for
autonomous robots {6,7,22]. The topological knowledge is of a very high-level form, stating which rooms are in which corridors and how cocridors are
connected. A plan formed by the robot is also high-level, typically having the following kind of form: “Travel to the end of the corridor, turn right, then go
to the third room on the left.” The robot's knowledge of the topology of the problem domain is stored in its data base, and its knowledge of bow to plan a
route is represented in various route-planning KAs {see Figures 4, 5, and 6). This is quite different from the approach adopted by traditional Al planners,
which would find a route by symbolically executing the actual operators specifying possible movements through rooms and down hallways.

A different set of KAs is used for navigating the route mapped out by the route-planning KAs (see Figures 7, 8, and 9). The navigation KAs perform such
tasks as ing the envir . determining when to turn, adjusting bearings where necessary, and counting doors and other openings.

Yet other KAs perform the various other tasks required of the robot. Many of these are described by us elsewhere [17]. Metalevel KAs choose between
different means to realize any given goal. and determine the priority of tasks when mutually inconsistent goals (such as diagnosing a jet failure and

fetching a wrench) arise. If the robot’s route plan fails, the route-planning KAs can again take over and replan a route to the target destination. In the
implementation described herein, however, we have not provided any KAs for reestablishing location once the robot has left its room of departure, and so

it does not currently exhibit any replanning capability.
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5.1 The Planning Space

As stated above, the robot’s route planning is done in & very abstract space containing only tupological information about how the rooms and hallways
connect. It is, in fact, the kind of map found in street o¢ building directories, stripped of precise distances and angles. This is quite naturak when ome
thinks of going home from the office, one considers primarily the topology of the hallways, footpaths, and roads to be followed, not precisely how long each
is, nor the consequences of drifting from side to side — that is too low a level of detail to be considered before setting out along the chosen route.

The three primary KAs used to plan paths are shown in Figures 4, 5, and €. Given knowledge of the start- and end-points, they first select some intermediate
point. They then repeat the process for the two resulting subpathe until all paths are reduced to straight-line trajectories along single hallways. Although
it is not the planner we would advocate for more general route planning, it is quite sufficient for our purposes. Indeed, the top-level route planning is
probably the simplesi aspect of the navigation task.

The topological information needed for route planning is stored in the system dats base a8 & set of facts (beliefs) about how wings, hallways, sad rooms
are connected. These include facts of the form (conn j1 k1 j4 direct) (hallway jl is connected to hallway k1 DIRECTLY via haliway j4 mather than
indirectly via yet further connections), (in-wing j1 jwiag) (hallway jl is in wing jwing), and (in-hall ¢j226 j1 east 14) (room ¢j225 isim hall j1 om
the east side of the hall, fourteen rooms from the end). A typical plan constructed by the path-planning KAs is shown in Figure 3. This plan was formed
to satisfy the goal of reaching a target room (¢j270 in wing j2) from the robot’s present location {¢j233 in wing j1) and was produced in less than a second.
No further predictive planning is required for the robot to negotiate the path.

(follow-path hall ¢j233 j1)
(follow-path hall j1 j4)
(follow-path ball j4 j2)
(follow-path ball ;2 §270)

Figure 3: Route from ¢j233 to €270

It is important to emphasize that, even during this relatively short plaaning stage, the robot remains continuously reactive. Thus, for example, should the
robot notice indication of a jet failure cn the space station, it may well decide to interrupt its route planning and attend instead to the task of remedying
the jet problem.

5.2 Reactive, Goal-Directed Behavior

The KAs used to navigate the route fall into three classes: those that interpret the path plan and establish intermediate target locations, those that are
used to follow the path, and those that handle critical tasks such 1s obstacle avoidance and reacting to emergencies. Each KA manifests a sif contained
behavior, possibly including both sensory and effector components. Moreover, the set of KAs is naturally partitioned according to level of functionality (cf.
{7]): low-level functions (emergency reactions, obstacle avoidance, etc.), middle-level functions (following already established paths and trajectories), and
higher-level functions (figuring out how to execute a topological route). All of these KAs are simultaneously active, performing their function whenever
they may be applicable. Thus, while trying to follow a path down a hallway, an obstacle avoidance procedure may simultaneously cause the robot to veer
slightly from its original path.

Once a plan is formed by the route-planning KAs, that plan must be converted into some useable form. Ideally, the plan shown in Figure 3 should be
repr d as a procedural KA containing the goals “leave room ¢j233 and go into hall j1," “go to the j1-j4 junction,” etc. Since it is not currently possible
for KAs to create or modify other KAs, we have, instead, defined a group of KAs that react to the presence of a plan (in the data base) by translating #t
into the appropriate sequence of subgoals. Each leg of the original plan generates subgoals such as turning a corner, travelling the hallway, aad updatipe
the data base to indicate progress. The second group of navigation KAs reacts to these goals by actually doing the work of reading the sonars, mterpreting
the readings, counting dooeways, aligning the robot within the hallway, and watching for obstacles ahead.

For example, cunsider the KAs in Figures 7 and 8. After having planned out a path as directed by the KA in Figure 2, the robot is given a goal of the form
(! (room~left $froom)) (the variable $2room will be bound to some particular constant representing the room that the robot is trying to leave). The
KA in Figure 8 will respond and actually perform steps for leaving the given room. The last step in this KA will insert a fact into the system database of
the form (origin $froom $2hall) (again, the variables will be bound to specific constants). This fact alerts & path interpretation KA (depicted in Figure
7) that the robot is now ready to execute a leg of its path, and supplies the KA with the robot’s starting position (i.e., the room adjacent to the robot,
$froom, and the hall in which it stands, $fhall). Assuming that the facts describing a path have been placed in the database (for example, the set of facts
in Figure 3), the fact-invoked FIND-NEXT KA in Figure 7 will respond and begin to interpret the path. It will then proceed and travel down the hallway as
instructed. This will in turn establish a new origin position, thereby allowing for the next step of the path to be executed.

A third group of KAs reacts to contingencies obeerved by the robot as it interprets and executes its path. For example, these will include KAs that respord
to the presence of an obstacle ahead (see Figure 3) or the fact that an emergency light has been seen. These reactive KAs are invoked solely om the basis
of certain facts becoming known to the robot. Implicit in their invocation, however, is an undetlying goal to “avoid obstacles” or “remain safe.”

Since a fact-invoked KA can be executed as soon as its triggering facts are known, the KAs invoked by these contingencies can interrupt whatever else
is happening. Of course, this may not always be desirable. Ideally, domain-specific metalevel KAs should deter:nine whether and when preemption s
desirable, but, at this stage of the project, we have not used metalevel KAs besidcs those provided as PRS defaults (which give immediate preemption).
An alternative to preemption is to send a contingency memage 1o another PRS instantiation that can process that message in parallel.

5.3 Parallelism and Mediation

Because of the real-time constraints and the need for performing several tasks concurrently, it is desirable to use multiple instances of PRS running in
parallel. In particular, parallelism can be used for handling conun‘mcaa -mbout murrupun; other ongoing tasks. Multiple PRS instantiatioss can aleo
be used as informiation filters to protect other instantiations from a barrage of ting sensory information. (The need for such filters arises in many
blem d ins -~ for ple, in monitoring sensors on the space shuttle [4].) The mon;en reasons, however, have to do with the inherextly parallel
tnd largely independent nature of the various computations that must be performed in dynamic enviroaments.
For example, as the robot rolls down a hallway, it fires its sonars to determine how far it is from the walls, and also to count doors. Suppose it decides that
the walls are too close and a change in course is warranted. Becanse speed chang t be plished instantaneously, changing course may take as
long as two seconds. This is long enough for the robot to roll past a doorway. If the procedure that monitors sonar readings is interrupted to effect the
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course change, the robot might completely miss & door reading. Co ly, delaying hanges for the sake of sonar monitoring could make » collision
with a wall inevitable. Of course, travelling at lower speeds would solve the problem, but would also render the robot too slow to be useful.

The most effective way to handle this problem is to allow muitiple PRS instantiations to execute concurrently. Running several instantiations asynchronously
has its own problems, however. For example, it is desirable to have one PRS instantiation devoted to the task of keeping the robot in the center of the
hallway, with another driving the robot to the target location and adjusting speed appropriately {e.g., slowing down when approaching the target). Changes
in course are effected by changing the relative velocities of the two wheels, depending on their current velocity, and changes in speed by changing the
accelerations of the wheels. The problem is that, if both tasks need to be performed at once, the required wheel operations may interfere with one another.
This is an interesting enmple of a situation in which domain-independent decomposition operators will not work - because of the real-time constraints of
the problem domain, it u not suitable to achieve one goal (say, a change in direction) snd subsequently achieve the other (change in speed); neither can
each goal be achieved i dently, as the for accomplishing these goals interact with one another.
h ' l

To mediate between murutmg goals, we chose to implement a thitd PRS capable of sccepting both speed and direction ge req

This PRS could be viewed as a virtual controller. Because the virtual controller is in complete control of the wheels, it can issue lnltr\lmonl that u.lneve
both kinds of requests at once. In this respect, it serves as a special-purpose solution to a particular kind of conjunctive goal; goals to change both speed
and direction are decomposed into independent goals to change the left and right wheel speeds.

Related to the problem of interacting goals is that of goal conflict: just as one may have possibly conflicting beliefs about & situation that need to be
resolved (the problem of situation assessment), one may also have conflicting goals (or desires) that need mediation {18]. For example, the virtual controller
discussed above often gets conflicting speed requests from KAs: the hallway tr I KA might request that a certain velocity be maintained, the KA that
detects approach of the target location may request s decrease in velocity, and the KA that detects obstacles could request that the robot stop altogether.
At the same time, other KAs might request changes in direction to stay in the center of the hall or to pass around small obstacles.

To resolve these conflicting goals, the virtual controller has to be able to reason about their urgency and criticality. This, in turn, may involve further
communication with the systems requesting these goals. Our present solution is to define domain-dependent mediators where necessary, but, at present, no
general approach to this problem has been attempted.

5.4 Coping with Reality

Our initial implementation of the robot application used multiple PRS instances interacting with a robot simulator, all running on the Symbolies 3600
‘This worked well, and demonstrated the suitability of the system for controlling comnplex autonomous devices. That done, we hegan work on driving the
real robot. This transfer took considerably longer than estimated. Two major problems caused this divergence between expectations and reality.

First, b PRS was impl téd on a Lisp machine, interaction with Flakey was confined to occur via an ethernet cable. Software for remote procedure
calls over the ethernet limited communication to 15 function calls per second ~ too slow for timnely response to sensor input. Consequently, we were forced
to transfer much of the functionality of PRS to Flakey's SUN. This required translating the functionality of the lower-level KAs into C code, as well s
explicit coding for message and clock-signal handling. Unfarlunntely Flakey's operating system also did not supj ort interprocess communication at the
bandwidth and efficiency we wanted. This forced us to impl ication through shared memory, with all the concommitant synchronizatioa
code needed. After these efforts, the information flowing over the etbemet was at the level of “move N doors™ (PRS to Flakey) and “I'm stopping for as
obstacle™ (Flakey to PRS). Obviously, the translated system is no longer solely constructed from instances of PRS. As a result, our final implementation

considerably more constrained than the simulation version in its ability to reason about its low-level actions and to react appropriately to changing goals.

The second obstacie to translating from our simulated application to the one that could function in the physical world is the nature of the real world itself.
A realistic environment is simply not controlled enough to foster efficient debugging. It is hard to repeat experiments (and get the same bugs), time delays
become critical, and the behaviors of real sensora and effectors can differ significantly from simulated ones.

The configuration of our current application system is shown is Figure 10. Three machines are involved, 8 Symbolics 3600, & SUN, and a Z80, running
six application processes. The wheels and sonars are also depicted, and may be regarded as physical processes. The rectangular box represents the SUN's
shared memory area; arrows represent interprocess communication.

screen -
|
monitor
prs planner server controller /
virtusl N
controlier sonar

Figure 10: Processes Used in the Implementation

6 Discussion

The primary purpose of this research was to show that the BDI architecture of PRS, the partial hierarchical planning strategy it supports, and its metalewd
(reflective) capabilities could be effective in real-world dynamic domains. Furthermore, the design of PRS .neets somie of the more important desiderata
for autonomous systems: modularity, awareness, and robustness [18]. In this section, we will briefly compare our approach to other work in the areas 4
planning and robotics.
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The partial hierarchical planning strategy and the reflective reasoning capabilities used by PRS allow many of the difficulties sssociated with traditional
planning systems to be avoided, without denying the ability to plan ahead when necessary. By finding and executing relevant procedures only when sufficient
information is available to make wise decisions, the system stands a better chance of achieving its goals under real-time constraints.

Fot example, the speed and direction of the robot is determined during plan execution, and depends on such things as proximity of obetacles and the actual
course of the robot. Even the method for determining this course depends dynamically on the situation, such as whether the robot is between two hallway
walls, adjacent to an open door, at a T-intersection, or passing an unknown obstacle. Similarly, the choice of how to normalize fuel or oxidant tank pressure
while handling s jet failure depends on obeecvations made during the diagnostic process.

Because PRS expands plans dynamically and incrementally, there are also frequent opportunities to react to new situations and changing goals. The system
is therefore able to modify its intentions (plans of action) rapidly on the basis of what it currently petceives as well as upon what it already believes, intends,
and desires. For example, when the system notices a jet-fail alarm while it is attempting to fetch a wrench, it has the ability to reason about the priorities
of these tasks, and, if so decided, suspend the wrench-fetching task while it attends to the jet failure. Indeed, the system even continues to mouitor the
world while it is route planning (in contrast to most robot systems), and this activity too can be interrupted if the situation so demands.

The powerful control constructs used in PRS procedure bodies (such as conditionals, loops, and recursion) are also advaatageous. As a result, the robot
can display behaviors of the form “do X until B becomes true.” When X is “maintain speed at 400mm/sec” and B is “N dootways have been observed™ we
see why we could dispense with coordinate grids and dead reckoning: we could define the robot’s behaviors in terms of conditions that changed over time.
In contrast, classical planning systems often have difficulty in reasoning about such behavior and are thus restricted to using unchanging features such as
fixed locations or distances.

PRS is also very robust in that there may be many different KAs available for achieving some given goal. Each may vary in its ability to accomplish the
goal, and in its applicability and appropriateness in particular situations. Thus, if there is insufficient information about the current situation to allow one
KA to be used, some other - perhaps less reliable - KA may be available instead. For ple, if a topological map of an area is unavailable for planning
purposes, the robot need not be rendered ineflective ~ there may, for example, be some other KA that sets the robot off in the general direction of the tasget.
Parallelism and reactivity also help in providing robustness. For example, if one PRS instantiation is busy planning s route, lower-level instantiations can
temain active, monitoring changes to the environment, keeping the robot in & stable configuration, and avoiding dangers.

The system we propcse also meets many of the criteria of rationsl agency advanced in the philosophical literature on practical reasoning {e.g., see the
work of Bratman (5]). Driven by the demands of explaining resource-boundedness and inter- and ii.ira-agent coordination, recent work in the philosophy
of action has moved beyond belief-desire architectures for rational agents and has provided insights into the nature of plans and intentions, and especially
the nature of intention formation.

In particular, plans ate viewed as being subject to two kinds of constraints: conststency constranis and requirements of mesns-ends coherence. That is, an
agent’s plans need to be both internally consistent and consistent with its beliefs and goals. It should be possible for an agent's plans to be successfully
executed (that is, to achieve the more important goals of the system) in a world in which its beliefs are true. Secondly, plans, though partial, need to be
filled in to a certain extent as time goes by, with sub-plans concerning means, preliminary steps, and relatively specific courses of action. These subplans
must be at least as extensive as the agent believes is required to success{ully execute the plan; otherwise they will suffer for means-ends incoherence.

These constraints on the beliefs, desires (goals), and intentions of an agent are realized by the system proposed herein, and as such it can be viewed as an
implementation of a rational agent. In addition. the notion of intention we use meets the majot requirements put forward by Bratman (5}, who considers
intentions to have the following properties:

e They lead to action,

e They are parts of larger plans,

o They involve commitment,

e They constrain the adoption «f other intentions,

o They are adopted relative to the beliefs, goals, and other intentions of the system.

Of course, our system is far from manifesting the behavioral complexity of real rational agents; however, it is a step in the direction of a better understanding
of rational action.

In contrast to most Al planning work, reseatch in robotics has been very concerned with reactivity and feedback (2,18.23]. However, most of this work
has not been concerned with general problem solving and commonsense reasoning - the work is almost exclusively devoted to problems of navigation and
execution of low-level actions. Furthermore, the reactivity is not of the general form we advocated above; although the systems can adjust the means for
achieving given goals depending on incoming sensory information, they do not exhibit the ability to completely change goal priorities, to modify, defer, or
abandon current plans, or to reason about what is best to do in light of the current situation.

Recently, Brooks {7] has advanced some intriguing ideas concerning the structure of autonomous systems. Rather than the horizontal structure typical of
most robot systems (where lower levels are restricted to performing basic sensory and effector processing, and the higher levels to planning and reasoning)
Brooks advocates a vertical decomposition in which distinct beAaviors of the robot are separately realized, each making use of the robot's sensory, eflector,
and reasoning capabilities as needed.

Similarly, PRS provides a vertical, rather than horizontal, decomposition of the robot task d in. Each KA defines a particular behavior of the system,
and can involve both processing of sensory information and the execution of effector actions. For example. there is a KA that manifests a behavior to
remain clear of obstacles, anothier KA whose behavior corresponds to keeping a straight course in a cornidor, and yet another that chooses and traverses
roufes from one room to another. All these KAs use both sensors and effectors to greater or lesser degrees - there is no single subsystem that preprocesses
the sensory data before sending it to the reasoning system, and there is no post-processing of plan information that determines actual effector actions.

In this sense, our system is very similar in structure to that proposed by Brooks - indeed, it can claim the same positive benefits [8}:

o There are many parallel paths of control through the system [many different procedures can be used 1n a given situation]. Thus the performance of
the system in a given situation 1s not dependent on the performance of the weakest link in that situation. Rather, it 1s dependent on the strongest
relevant behaviot for the situation

o Often more than one behavior 1s appropriate in a given situation. The fact that the behaviors ate [can be] generated by parallel systems [muluple PRS
nstances] provides redundancy and robustness to the overall system. There is no central bottleneck [through which all the processing or reasoning
must occur}. »
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o With some discipline in structuring the decomposition, the individual task-achieving behaviors can run on separate pieces of hardware. Thus fthe
design] leads 10 & natural mapping of the complets intelligent system onto a parsilel machine. The benefits are threefold: (1) redundancy again; (2)
opeedup; and (3) s naturally extensible system.

The main difference between our system and that advanced by Brooks is that we employ & much more general mechanism for selocting between appropriste
behaviors than he does: wheress Brooks uses inhibitory sad excitatory links to integrate the set of behaviors defined by each of the system’s functional
components, we use general metalevel procedures and communieation protocols to perform the selection and integration. Of course, sch generality will
likely preclude meeting some of the real-time constraints of the enviroament, in which case the metalevel procedures might need to be compiled into a form
closer to that envisaged by Brooks. Similarly, while our system naturally maps onto coerse-grein parallel machines, sophisticated compilation techniques
would be required to map the lower-level functions onto highly parallel architectures.

Currently, PRS does not reason about other subsystems (i.c., other PRS instantistions) in sny but the simplest ways. However, the message-passing
mechanisms we have employed should allow us to integrate more -omplex reamsoning about interp communication, such as described by Cohen and
Levesque (9). Reasoning about process interference and synchronisation is also important where concurrency is involved. The mechaniems developed by
us for reasoning sbout these problems [12,13,14,19,20,31] could also potentially be integrated within PRS. Qur future research plans include both work on
communication and synchronisation within the PRS framework.

Finally, in giving a description of the PRS architecture, it is important to note thet the actual implementation of PRS is not of primary concern. That
is, while we believe that attributing beliefs, desires, and intentions to autonomous systems can aid in specifying complex behaviors of these systems, and
can assist in communicating and interacting with them, we are not demanding that such systems actually be structured with distinct data structures that
explicitly represent these peychological attitudes (although, indeed, that is the way we have chosen to implement our system). We caa instead view the
specification of the PRS system, together with the various metalevel and object-level KAs, simply as a description of the desired behavior of the robot.
This description, suitably formalised,? could be realised in (or compiled into) any suitable implementation we choose. In particular, the beliefs, desires, and
intentions of the robot may no longer be explicitly represented within the system. Some interesting work on this problem is being carried out currently by
Rosenschein and Kaelbling {26].

7 Limitations

The primary thrust of this work has been to evaluate an architecture for autonomous systems that provides s means of achieving goal-directed, yet reactive,
behavior. We have made enough progress to show that this approsch works. However, the research is only in its initial stages and there are § number of
limitations that still need to be addressed.

First, there is a clase of facts our current system must be told; for instance, the robot’s starting location. If the robot is initialised in some unknown position
on the topological map, the planner will abort. It would be straightforward to solve these problema by including KAs that ask for the missing information,
h =it (Y] D, Y

but a completely autonomous recovery would be a much more ging p m. P spproaches might involve exploration of the terrain (including
movement around the neighboring area) snd pattern matching onto known topological landmarks. 4

Second. thete are many assumptions behind the procedures (KAs) used. For example, we have assumed that hallways are straight and corners rectangular;
that ail haliways are the same width and have that width for their entire length (except for doorways and intersecting halls); that there is only one layer
of obstacles in front of any wall (nowhete is there a garbage can in front of a cupboard); that all doors are open and unobstructed; and that other objects
move much slower than the robot.

We have also made assumptions that limit the robot's reactivity. For example, we assume that the robot does, in fact, arrive at the junction it planned to
reach. If the robot miscounts doorways, it will stop in the wrong place, turn, and start the next leg of its journey without realizing its mistake. The result
is generally that the robot will be found begging & wall 1o “please make way.” If the robot realized it was in the wrong position, it could replan to achieve
its goals. However, because we assume that the door count is always right, the toute planner is never reinvoked.

In addition, some goals are not made as expiicit as one would like, but are implicit in the KAs used by the robot. For example, the robot is designed
to move as fast as possible without miscounting doorways and to travel along the center of the hallway while accepting the fact that this ideal will
rarely he achieved. Such goals are not represented explicitly within KAs. Handling the first kind of goal (*move as fast as possible”) would be relatively
straightforward, requiring simply that axioms relating robot speed and perceptive capabilities be provided to the system. However, it is not obvious how
to explicitly represent the second kind of goal, in which the system attempts to maintain a particular condition but expects at best only to approximate it.

Finally, increased parallelism would have been preferable, allowing the robot to perform more tasks ¢ rently. For example, we could bave included maay
more low-level procedures for, say. avoiding dangers and exploring the surroundings. This would have provided & much more severe test of the system’s
capability to coordinate various plans of action, to modify intentions appropriately, and to change its focus of attention.
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