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1. Abstract

An—hte-paper, the problem of position and force control for the
compliant motion of the manipulators {s considered. The external force and
the position of the end-effector are related by a second order mpedance
function. The force control problem 1s then translated into a position
control problem. For that, an adaptive controller is de. gned to achieve
the compliant motion. The design uses the Liapunov's direct method to
derive the adaptation law. The stability of the process is guaranteed from
the Liapunov's stability theory. The controller does not require the
knowledge of the system parameters for the implementation, and hence is easy
for apr . :atlons.

2. Introduction

While position control is appropriate when a manipulator is following a trajectory through
space, when any contact {s made between the end-effector and the manipulator’'s environament,
position control may not suffice. Precise control of manipulators, in the face of uncertainties
and varfations in their environments, {s a prerequisite to feasiule application of robot
manipulators to complex handling and assembly problems, in {ndustry and space. An lmportant
step toward achieving such control may be taken by providing manipulator hands with sensors that
provida {nformation about the progress of interactions with the environment. Properly applied
force control can reduce the positioning accuracy necessary to perform a given task accurately,
and in fact make possible assembly tasks which would be otherwise |mpossible.

The problem of position/force control has attracted many researchers {n the recent past
years (1-5]. Among these works one can distinguish two different approaches. The first
approach 13 aimed at providing the user with a means of specifying and controlling forces and
positions (n a non-conflicting way, [1-3]. This tnvolves specification of a set of positicr
controlled axes and an orthogonal set cf force controlled axes. The second apnroach ls almed at
developing a relationshlp between [nteraction forces and manipulator positions, (u,5]. This
way, by controlling the manipulator position and specifying its relatlonship to the interaction
forces, a designer can ensure that the manipulator will be able to maneuver i{n a constrained
environment while maintaining appropriate contact forces.

In the first group, Paul and Shimano (1] partition che cartesian space and find the best
joints to force servo to approximate the desired force and position commands. Raibert and Craig
{2] involve all joints Ln satisfying the cartesian position and force commands simultaneously.
wWwhitney (3] arrives at a single loop velocity control scheme with the net effect of controlling
the contact force. In that paper, the {mpedance matrix approach establishes a connection
between the two different approaches mentioned above, In all the above works, the structure of
the controller depends on the kinematics and dynamics of the manipulator and of the environment.
That is, If the 2nd-effector of a manipulator in motion encounters a point with new constraint,
then the controller structure must be changed. In the second group, Salisbury {[4) defines a
linear statlic function that relates I(nteraction forces to end-effector positlon, by 3 stiffness
matrix in a carteslian coordinate frame. Monitoring this relationship ensures that the
manipulator will be able to maneuver successfully in a conatrained environment. Kazerooni, et.
al. [5] extend the previous work [4] and define a generallzed mechanical {mpedance for the
manipulator which {s used for the compliant motion control. Their approach (s an extended
frequancy :iomaln approach of 3alisoury's stiffness control. Also, their 4esign {3 stable and
snu.'3 robustness in the face of bounded uncertainties. In the second group approach, the
coitroller's structure does not depend on the kinematles and dynamics of the manipulator and
t1at of the environment. However, in both groups, the controller requires the knowledge of the
parameters of the aystem.

In this work, the concept of mechanical impedance, [4,5] 1s used in order to relate the
external forces to the position and orientation of the end-effector. Hence, the problem of
force control i{s recasted {n the position control prodlem. The objective ls to design a
controller for the manipulator, so that the perturbed dynamic relationship for the overall
system {s given by a second order impedance function. For that, a model reference adaptive
controller is destgred [6,7], where the desired impedance function |3 used to select the
adaptive control model. The direct method of Liapunov is used for the derivatf{on of adaptation
laws. This guarantees the stability of the overall 3ystem.
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3. Manipulator Dynamics

Consider a manipulator with n joints, providing n degrees of freedom. The dynamic equation
of such manipulator is given by

M(g) q + h(q.,q) * g(q) = T ()
where q is the n-dimensional veotor of joint angular positions, q and ; are, respectively, the

veotors of joint angular velocities and joint angular aocol.cnuono. M(q) 1s the nxn symmetric,

positive definite inertla matrix of the manipulator, h(q,q) is the n-dimensfonal vector of
Coriolis and centrifugal forces, g(q) is the n-dimensional vector of gravitational forces, and T
is the n-dimensional veotor of torque inputs, applied to the manipulator.

Let 8q be the perturbation of the joint angular position veactor q, from qe, and 4T De the
perturbation of the input torques, from T,. Then the linearized dynamic equation is given by

M(q,) 8q * G(q,) = &T (2)
where, G(q,) = fas/aq,...aglaqn] for q = q,.

The joint input torques applied to the manipulator, the external forces on the end-
effector, and the actuator torques are related by

T
8T LGT. . JCGF (3)
where §T, 61'. and &F are n-dimensional perturbations of the joint input torques, the actuator
torques and the end-effector external forces, and J_ is the Jacobian matrix which transform

Joint angle coordinates to end-effector position and orientation. Also, ,the dynamic equation
of actuators are approximately given by

61" - AaGTa L BGGU . (4)

where

A, = dlag [-Aa‘.....-xan]
Ba = diag [b‘.....bn] ¢
and &U is the n-dimensional vector of actuator inputs, (5].

From equations (2), (3,) and (4), the dynamic equation of the manipulator and the actuator {s
glven by

X = A &X ¢ B 8U + D &F (5)
8q = C §X

where

M T
6x = [6a",8q 87,1 ¢ A"

a=[o, L o_,
MG 0 ML
o 0 A
d a
B-fo
0
B »
a
p - {0
'yl
-0 4
c=11 ] 0l.

and the pairs (A,B) and (A,C) are respectively controllable and observable.
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8, Model Reference Adaptive Contiol

In this section, a controller is designed so that the dynamio perturbdation equation of the
overall closed-lo0op manipulator systes is given according to the lnverse of the desired
impedance. To achieve this, a model reference adaptive control strategy is employed. The
reference model is chosen such that its transfer matrix is ifdentiocal to the inverse of the
desired mechanical impedance. Hence, the dynamic equation of the reference model is given by

GX. - A.GX. + B.GP

dq. - cnax. (6)
“where 0 L 0 o
- ’ B = 0
Aﬂ 2:»0 20 t . :mz . ) "‘o
Cm = [1 0 0]

“such that cxm is the 3n-dimensional incremental vector of wmodel's joints and actuators values,
8F 1s the n-dimensional vector of incremental external forces. The tranafer function matrix of

the model is given by
-1
Gp(8) = 8q,(8)/8F(s) = C [s1 LN
such that the two dominant poles of the model are given by
2 -1
Jccmls) = (Ja” * s e ko) 7

where J_ is the Jacobfan matrix, and J, k,, and k' are respectively the inertia matrix,
stiffness matrix, and damping matrix of the desired mechanical lmpedance, given by

6F/6¥-- (Js2 e k.8 e ko), 6Ym = model's spatial displacement.

1
Let us define the state error to be
e = §X_-8X. (8)
m

Subtracting equation (6) from (5), we get the dynamic equation of the state error as

e Ame J (Am-A)GX * (Bm-D)dF - B&U. 9)
et us now choose the Input torque to be

U - KxGX o K.6F ¢ Kee (10)

F

where K are variable gain matrices with appropriate dimensions. Plugging SU from (10)

, KWK
tnto (9% weegef
L) (Am-BKe)e . (Am-A-BKx)GX . (BM-D-BKF)GF. (1)

The problem, now, 1s how to vary the feedback and the feedforward gain matrics, Kx. K. and Ke'
such that equatfon (11) {s stable and the state error e approaches zero, accorslng to a
prespecified transient behavlor.

To achleve perfect model following, the state error and its derivat{ve should become zero,

that i{s e = e « 0. The conditions for perfect model following are given by

B~D-BKg = O
A'~A-BK_ = Q (12)
m X

A-Am’BKe «0

Furthermore, under perfect mocel following conditions in (12) the error equation (11) will
become

e = Ae. (13)

that is, the transient behavior of the state error {s determined by the constant matrix ;. which
is defined by the designer and is Hurwitz.
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5. Adaptation Law

The controller gains of the adaptive system should dbe adjusted such that the overall
closed=100p system is stable and follows the reference model. The direct method of Liapunoy may
te chosen for determining the adaptation law, [6,7].

Let the corresponding Liapunov function for adaptation be given by
Ve el pel18,-D-BKp || o[ 1A -A-BK || o] [A-a +BK ], (1)

where P,R, and S are 3n x 3n arditrary positive definite symmetric constant matrices. Also, the
quadratic norm for any matrix F and any positive definite symwetric oconstant matrix G is defined
by

||'||0 . tP[FTGF]. where tr = trace.

The function V is positive definite, except when there {s a perfect model matching it becomes
zero. Differentiating V, we get

V = oT(PR*AP)e

T (15)
oztr(<an-n-axr) (Pe &F

T.pd (Bl-o-ax,)]

dt

d
¢+ 8 = (A ~A-BK )]
at @ x

T T
ozzrl(hn A Bxx) [Pe &x

02tr((A-Am08K°)T[Pa of oM §t(An-BKO-A)].

Also notice that, since matrix A ts Hurwitz, then for any given positive definite symsetric
matrix Q there exists a positive definite symmetric matrix P such that

PReiTra-q

Now, for the stability, V should be negative. One way to satisfy this is to choose

Ke = B8R Pesr”

K, - 8's™'Pesx” (16)
K = -B'H-‘Pe eT

e

where Bf - [0.0,B-i {s the pseudo-inverse of B, However, since R, S and M are arbditrary
matrices, we can cfloose them such that RB_ = al, SB_ = 81 and MB_ =~ YI, where a,8,Y ars positive
scalars. Then denoting £ = [0,0,1], the gdaptatlon laws can be alven by

T
KF = aEPesF

Kx - BEPeéXT “a7)

Ke - -YEPeeT

With these adaptation laws, the ‘derivative of the Liapunov function, V, is given Dy

Ve -lfellq - -eTge<o

which 1s negative for non-zero state arror, (l.e. es«0). This guaranteas the asymptotic
stab{lity of the equilibrium point, e = O,

The proposed design adaptively controls both the position and the end-effector force, and
{s appropriate for compliant mot{on of the robotic manipulators. The proposed adaptive
controlleir {s shown in Figure 1.

Moreover, if the spatial displacement and velocity cau be directly measured, then the
knowledge of Jc is not necessary for the implementation of the adaptive controller.
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6. Conolusions

In this paper, the definition of mechanical impedance used in (4,5], is employed. The
external force and the position of the end-effector are related dy a second order impedance
function. The force control problem is then translated to a position control problea. An
adaptive controller {s designed for the latter problem to achieve the compliant motion for the
manipulator. The design uses the Liapunov's direct method to derive the adaptation law. The
stability of the process is guaranteed from the Liapunov's stadbility theory. The major
advantage of this method is that the controller does not depend on the knowledge of the aystes
parameters and those of the environment. It uses the measured forces at the end-effector and
the position and velocity of the end-effector in the Joint space. The controller is simple and
can be easily implemented by small computers.
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Figure 1. Adaptive Position/Force Controller for Robot
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