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1. Abstract

A model reduction method for discrete bilinear systems is developed which matches q sets of /
Volterra and covarisnce paraneters. These parsmetars are shown to represent both deterministic f
and stochastic attributes of the discrete bilinear system. A reduced order model which wmatches |
these q sets of parameters is defined to be a q-Volterra covariance equivalent realization (g~ |
Volterra COVER). An algorithm 1is presented which constructs a class of q-Volterra COVERs s
parameterized by solutions to a Hermitian, quadratic, matrix equation. The algoritham is applied ;
to a bilinear mode) of a robot manipulator. S
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2. Inroduction

While model reduction of linear systems has been extensively researched over the past few years, little work
has been done in the area of model reduction for nonlinear systems. One class of nonlinear systeas which {s
especially appealing are bilinear systems ([1]-[4]). Bilinear systems are linesr in the state variables, linear
in the control variables, but nonlinear in the state and control. One reason that this class is of interest is
that nonlinear systems which are linear in the control] variables can be accurately approximsted by bilinear
models ({5],{6}). Bilinear approximations will in general have a higher order than the original nonlinear system
and effective means for reducing bilinear models are needed.

. Most approaches to model reduction of linear systems have strived to preserve or approximate & certsain

characterizing property of the full order model, For deterministic systems this property is typically the
impulse response sequence or the system Hankel matrix (e.g., (7]-[10]). Model reduction of linear stochastic
systems usually involves the output covariance sequence or the corresponding Hankel matrix (e.g., {11] and {12]).
A model reduction technique which considers both deterministic and stochastic properties has also been developed
({13]-(15]) and the resulting reduced order models have been called q Markov COVERs (covariance equivalent
realizations). The model reduction problem for discrete bilinear systems has recently received some attention.
Hsu et al. {16] develop a method for deterministic, discrete, bilinear systems using a generalized Hankel matrix.
Desai has proposed an approach to stochastic model reduction based on his realization theory ([17]).

In this paper we develop a model reduction algorithm analogous to the q Markov covariance equivalent
realization approach for linear systems. The algorithm produces a class of reduced order models which exactly
match a specified number of deterministic and stochastic parameters. This class of reduced order models {s
parameterized by the solutions to a Hermitisn, quadratic, matrix equation., Section 3 presents the deterministic
and stochastic attributes of a bilinear system which we will preserve in our method and defines a g-Volterra
covariance equivalent realization. Next, in section 4 the model reduction algorithm 1is outlined. In section 5 a
parameterization of reduced order models which match q Volterra paraseters and q covariance paraneters is
formulated. Section 6 contains an application of the proposed algorithm to a two degree of freedom robot
manipulator. The final sections are our concluding remarks, acknow]edgements and references.

3. g-Volterra Covariance Equivalent Realizations

Consider the time invariant discrete bilinear system

n
u

x(k+l) = Ax(k) + T (NIX(k) + bi)ul(k)
i=1

y(k) = Cx(k) )

where A and Ni , i-l,...,nu are n xn matrices, b 1.-l,...,nu are nx!l matrices and C 18 an nyxnx matrix. The

1'
state vector x(.) is nxxl, the inputs ul(.). i-l....,nu are scalar, zero mesn, independent Guassian white noise

processes with Eui(”“i(k)' §. and for § >k, Ex(k)ui(j) = 0, The output y(.) 1is an nyxl. zero mean,

Jk
stationary stochastic process. We assume that the bilinear system driven by unit intensity Guassian white noise
‘ is stable in the sense that the state covariance
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x 8 J1ame(i)x" (k) > 0 )
ko=

is finite. It can be shown thst for these input processes the state covariance will satisfy the bilinesr Liapunov
equation
II“
x=aa's tug et 3l L ), )
1=] "

We also assume that there are no redundant inputs or outputs (3 has 1linearly independent columns aad C has
1inearly independent rows).

Ruberti et al. {3] define the product ¢ for an sxl vector a and an rx] vector b and the product [] for - an
mxnr matrix L and an nxs matrix M by

lbl

a*vd| [ [ roMery e 1 OndLa L.
-,

They also establish the following identity,

Li(Ma * b)] = (L O M)(a *b) . (s
With these definitions (1) becomes

x(k+l) = Ax(k) + N[x(k) * u(k)] + Bu(k)
y(k) = Cx(k) ()

and (3) may be expressed as

x-m‘+(nnx)n'+an".n9[ul N )
iH

The zero initial state response of the bilinear system (5) is an infinite Volterra series [4]. This series
in regular form i{s found to be

kg kokly g gy-1
1 LN
y(k) = L CA Bu(k-1 ) + I CA NOA Blu(k-{ -1 )*u(k-1,)] +
. 1 1712 2
=l {,=}] L =}
1 Y
i Bl M JY S SR 0! 1,-1
t I I cA’ NOAZ NOA ! Blulk-f, -1 -1)%u(k-1,-1)%u(k=1,)] + ...
171274 271 3
fy=1 1,=1 =1

where {dentity (4) has been used repeatedly. The matrix valued function in each of the summations 1s called a
Voiterra kernel, the jth Volterra kernel in regular form is then

1,~1 1, .-1 i,-1
Acad 3-1 1 7
hJ“J-‘J—v"--in CA NOA N...NOA B )
vhere 1n>l. ],...,] and the matrix N occurs exactly j-1 times., The step response, u(k)-ln for all k>0, 1s
u

- L k-iz...-ijh
y r : I t J(ij,ij_l....,il)l:

ol 1= - - 30
N 1=1 "

where ln is a column vector of ones with m elements. We shall call the coefficients in the step response the

J

Volterra parameters of the bilinear system (5). The Volterra parameters of the jth Volterra kernel are nytnu

matrices. We define the set of qth order Volterra parameters as those coefficients {in which the aatrices A and N
occur a total of q times, For example,

Vz 8 { CAZB , CANOB , cNOas , oxOxNQgOs }

We now see that the step response is completely characterized by the sets of Volterra parsmeters. We also observe
that for each k a new set of Volterra parameters effects this response. That is, if a reduced order model matches
the first q sets of Volterra parameters of the full order model then it will also match the step response for
k=0,1,c00,q+1,

In addition to Volterra parameters we are concerned with a covariance sequence for the bilinear systea.
Desai (17} anl Frazho {18] utilize a covariance sequence which includes both gsecond moments of the sutput and
higher moments between the output and input processes in their bilinear stochastic realization theories. We also
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use this type of sequence, in particular the sequence of concern is
Ry(0) & Ey(idy* (k) = axc”
R (1) & gyCeel)y* (k) = caxc’
R (0,0) & EyCksD)Iy(k) @ u(i)]” = covgxc”
R,(2) & Ey(e2)y" (k) = caZxc”
R,0,1) & Ey(ke2) [y(k) ® uCir1)]” = cNOaxc’
R,(1,0) £ By(ke2) [y(k) * u(k))* = canOxc’

R,(0,0,0) 3 Ey(e+2)[y(k) ® u(k) * u(k+1)]* « oNONOxXC"

. . .
. . .
. . .

where the subscript indicates the total number of occurrences of A and N, and the integers in parenthesis
represent the powers of A from left to right. A typical element of the sequence is then

Rj'l*'. *"-’11(1_"13'1"..'11)

1*-1
+1j_l+...+1l)ly(k)*u(kﬂl)*u(kﬂﬂzﬂl)*...'u(k+j-2ﬂj_l+...+1l)l.

1 1 1
- ca dnga .0 xe" . (8)

6 Ey(ke)-141,

As with the Volterra parameters we shall define the set of qth order covariance parameters, lq , as those

covariances 1in which the matrices A and N occur & total of q times, that is the set of second order covariance
parameters is

R, & { aalxc”, onOaxc® , canOxc' . evOnOxc® ) .

These sets of covariance parameters completely characterize the stochastic bilinear system. It s worth noting
that 1f a reduced order model matches the first q sets of covariance parsmeters of the full order model 1t will
also match exactly the mean square value of the output and all output and input correlations up to q steps 1in

time. ) ‘ “

Consider now a reduced-order bilinear model -
Xa(k+l) = AR"R(“) + NR[xR(k) ® u(k)} + BRu(k)
YR(k) - CRxR(k) 9)

where KR(.) is an nr!l vector, n_ < n. yR(.) i3 an ny!l vector, and AR' NR' BR' CR are matsices of appropriate

r
dimensions. In addition, we assume that the state covariance xR of the reduced model driven by zero =ean
Guassian white noise is the unique positive definite solution to

* » L ]
Xg = ApXgpAg + (N OXo)Np + BpBp - (10

We now define a particular type of reduced order aodel for discrete bilinear systems.

Definition: The reduced order model (9), with state covariance X satisfying (10) is a g-Volterra COVariance

R

Equivalent Realization (q~Volterra COVER) of the bilinear syztem (5) whenever

v 1=0,1,...,9"1

-V,
Ri i

and

= R,, 120,1,....q-1
Rni 1

h order Volterra and covariance parameters of the reduced order model,

t
vhere VR and Ry denote the sets of 1

renpectl&ely. t

An algorithm which constructs the q-Volterra COVERs of a full order model is our main objective. One such
algorithm is presented next.
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4. A Model Reduction Algorithm

Suppose that a full order model (5) and a state covariance satisfying (6) sre given. The q‘h observabilit:
matrix ([3).{4},(16]) of this model {is

% Q,_,A
Q Q1N
A . A A . - _
0,‘- . 1 Q=C.Q - i s d%1,400,9-1 . Q0
Qq-l Qi-l"nu

The matrix partitions Qi have dimension (n“#l)i'-l

"y'“x' 1=0,1,...,9-1. We observe that the asatrices qu an
*
quc . contala the same information as the sets \!q and Rq, respectively. Using the full order model we construc

tl.e following matrices
A »
D = 12
a = %%% (
1/2) T (Nle/2

As a consequence of the quadratic form and using the Liapunov equation (6) 1t immediately follows that the rang
spaces of these matrices are

- 4 » o N .
Dq - Oq(AXA +(NOXIN )oq oq[ A (NOX 31 oq . (12

- /
R(D) = R a T ox! 8 L REY - w2 ox! (1
and it is obvious that R(Bq) is conctained in R(Dq).
We now compute & full rank factorization of I)q
-
D = PAP (1

q
where rank(d ) = r ¢ = n . By virtue of the full rank factorization the columns of P form a basis for the rang
space of Dq . Introducing P*. the Moore-Penrose inverse of P, then it is well known that Pe" is an orthogonu

projector onto the range of D ([19]). We now partition P into blocks whose row dimensions are coapatible wit
the partitions of oq (11)

PA
P i
0 Nl
8 By
P = ¢ ’Pl - * . =], 000,91 (1
P N
q-1 n
| p U
i
and detine new matrices
N
A 3
Pl ?
A : A : A =alcF
PA- . ‘PN - . .j-l....,nu.l-‘-[l’APN <es Py )] , P |G‘ (1
. i . 1 n
A N “
P i |
-1 P
4 g-1 |

The matrix G is (nu+l)q-lnyt(nu*l)r and 1t must be determined such that

— » - )
D= PX¥ , A= diag(/\)nu” . )

where X {s a block diagona) matrix with nuvl blocks. Given these constructions we now state our main result.

Theorem 1: Given a discrete bilinear system {A,N,B,C,X} and a matrix G in (17) such that (18) {s sattsfied tl
the reduced order model IAR,NR.BR.CR.XR] of order n, defined by
! 2

A _+— a4 _+ 4
[ARNR]-PP,BR Poqa,c =Py . Xg* A,

R~ "0 ™ r R

where r, P, A are from the full rank decomposition of D (15), PO is from the partition of P (l6), and
satisfles (18), 1s a q-Volterra COVER. q

Proo_f_: First we will show that P {s the qch observability matrix of the reduced order model (19). Using
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decompoeitions (15), (18) and the range space descriptions (14) we find that ¥ 1s in the range space of P so that
(19) leads to

Pl A N JoP
which implies that the partitions of P have the required structure (1])

Pi-1fr
P, N
1-1"r,

Py =Cp . Py = . R U D

Pi-1Mr
n
u

To show that the reduced order mode] satisfies the bilinear Liapunov equation we first substituce (19) into (10)
which lesds to

* [
R
A= PR Pt 4 P’oqaa oqp’ .
Using (12), (13), (15), (18), and by pre and post multiply by P and P., respectively, we have
* . [
] + LR I . ] + LI I + LR I I |
(o] PP O OP P + PP O (N NOP P +PPOBBOP P ,
qxoq ° '-'IAxA q q( ox) q q q
Now using the projection property of pet we find that
* * TR
Oq(x = AXA + (NOX)N + BB )oq

which {84 known to be satisfied (6). To show that the model (19) matches Volterra parameters we again use the
projection property

+
o 8 =ppfon=os
qg R - ¢ "%

R R
and the matching of covariance parameters follows directly from (12),(15)
~ * L]
X0 = PA?P =0 X0 . ]
9 R°ag qq

OQur remaining task is to determine the unknown matrix G in (17) in order to satisfy (18). This is the topic
of the next section.

5. Parameterization of q-Volterra COVERs

To obtain a characterization of the matrix G we first examine the structure of the matrices B 4nd P. We
observe that Ba can be partitioned as ¢

) a
B | 971 a 20)
q =
14 aq

and that the partitioned form of the constraint (18) leads to the three relations

L] -— -_ — — p—
L I A AR L 1)
The rirst relation is satisfied by virtue of the constuction of of P (17). It {is easily seen that E; 1s

contained in the range space of F so that the second relation {s consistent and G* may be expressed as ({19})

¢* - T‘(F"d‘q (1 - F'HY) (22)

where Y is an unknown matrix with dimension (nu+l)r~(nu+l)q-lny. Substituting for G in the last relation we find

that Y must satisfy the Hermitian, quadratic, matrix equatf{on

» * *
YKY +LY+YL+M=0 (21
A—'.l *
. — -

,M2dF N'rd -4 =v , (24

q q qq )
By inspectinn we sec that the matrix K {8 nonnegative defin{te, and chat the columns of the nsatrix L are
contajred {in the range space of K. Based on these observalions we now state a theorem which {s motivated by a
result of Crone [20].

cda-rorta-rn-x", L - F’F)TIF?q
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Theorem 2: Let K be an mxm nonnegative definite matrix with rank t, L an mxn matrix vhose columns sre containe
in the range space of K and M an nxn Herwitian matrix. Then the matrix equation

Yy sy ey Leneo N ¢15
has e solution 1f and only if
LI LI .
LXL=-M>0 and rank(LXL-M)=g €t =» rank(K) . (26;
When these conditions hold Y is s solution 1f and only {f it has the form
Y - K’/z(vzllzu' - K+/2L) + (l - K’/lelz)y (27

wvhere Kl/z is the unique nonnegative definite square root of K and K*lz is the Moore-Penrose inverse of Kllz. ™
matrix V {s an mxs matrix, I is sxs and U is nxs and they must satisfy

" . . 3PS
VVel, 6 R(V)is contained tn R(K) , UUe]I ,E>0, Uy «LKL-M,
Y is an arbitrary mxn matrix,

Proof: It is well known that {f K = W 1s & full rank singular value decomposition (SVD), then
k12 o oual/2yt , oo udt Nt

and it follows that X, Kl/z, l(’/2 all have the same range space which is spanned by the columns of W, an ax
column wunitary wmatrix. By the hypothesis that the columns of L are in the range space of K, equation (25) &
satisfied if and only {if

kM2 o k) M e k) e LKL -

*®
which {s conaistent {f and only {f L K‘L-M > 0. All matrix factors of this relation are

Kl/2 l/ZU'

Y s kM2 ez
« "

where UIU {s the full rank SVD of L K*L-M and V is any coluan unitary matrix of appropriate dimension, m«s. T

find a solution Y we must solve the following linear equation

M2 V22 42

Y = VI K''L . 28
This equation is consistent if and only {f V is contained in the range space of K. Since V is column unitary :h

range space of V may he any m dimensional space with rank s, solutions of (28) exsisc {f and only {

*
rank(L K.L-H) =g <t = rank(K). Given that equation (28) is consistent then Y is a solution 1f and only {f
has the following form

voe ket 2t L2y b - kM ARV E

where ¥ s an arbitrary mxn matrix.
*
The results of this theorem show that the matrix L K'L-M 1a the key to solutions of the quadratic matr{

equation (23). Substicuecing for X, L, M from equations (24), and using the rules for the Moore-Penrose inverse o
a matrix product ([21]), we find that

E ]
LKL - M = T - E;s’ TV - (72 - PV - F’s))")/\—”zr’iq X "9

From this equation we find an {nteresting result on the Moore-Penrose inverse of a quadratic form w<hich we stat
without proof.

L]
Fact: The Moore-Penrose lnverse of the quadratic form FAF (s

L ]
— — ’ ——— —
FREY* e T2 - (T2 - a2 - Pt ‘30
where X 1s a positive definite matrix and F ts any matrix which {s multiplication compatible.
Using this result and equation (21) in (29) we find that
oy - -
k'L - -3 TS N

which {s guaranteed to he nonnegati{ve definfte ({22])). Thus the first part of the constraint (26) of theoren
wil)l always de satlsfled.

To shuw that the secona part of the constraint (26) will also be satisiled we note that from the range scac
description (la),
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re rank(Dq) > runk(ﬁé) 32)

and from the definition of K (24), the relations (21) sad the column dimension of F, d
t & rank(K) = rank(1 = F'F) = (a +1)r - rank(5,_)) . (33
Rohde {23] has shown that the partitioning (20) of the nonnegative definite =matrix Uq tmplies
rank(3)) o rank(5 ) + rank(d,, - Z;B';_laq) (34)
and by using (31)
o ® rank(L’k*L - w) - runk(ﬁg) - rank(—;_l) . (35)

Collecting equations (32),(33) and (34) we find that s ¢ t and therefore the second part of the constraint (26)
in theoren 2 will always be satisfied.

We have shown that solutions of (23),(24) slways exist and by theores 2 they will have the form
Yo k2l Lty . 1 - xRV T (36)

where UIU' is the full rank singular value decomposition of L‘K'L-H. V is any column unitary matrix whose range
space is contained in the range space of K and Y {s arbitrary. We observe that the sucond term of (36) is in the
nuil space of K which is also the range space of F. . It follows that when (36) (s substituted {nto the
expression for ¢* (22) that this term wil]l be annihilated by (l—F’P) which represents a projection onto the null
space of F along the range space of " . The first term of (36) i{s in the range space of X, or the null space of

F, so that under the projection (I-F’F) it remains unchanged. Therefore C. becoues

c* - r‘u’zq o k22t - 2y

or by using equation (24) and conjugate transposing

L
= a;p’ Thr - 1 - e - 0% - fenTh + (an
7 -7 1/2,,* - Lep = pteyyt/ 241
(qq aqoq_la’q) (1 - FE)R (1 -FFN'R

Equation (37) 1s an explicit expression for G which was the objective of this section. All of the freedom {n ¢
is contained in the column unitary matrix V whose range space (s constrained to be in the null space of F.

6. Application to a Robot Manipulator

Congider the two degree of freedum manipulator i)lustrated in Figure 1. The arm has its center of mass at
potnt C, and {t may be translated through or rotated about the fixed point O by the force F and torque T,
reypectively, The manipulator carries a load at the point L.

Figure 1. Two Degree of Freedom Manipulator

Treating the load as a point mass and allowing for joint stiffness and damping, the equations of motion are
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(mr M 4 b+ k- (ns s’ - il ey
(J+1loe Mal + 2Mar + (m + n)rz)i' + bo; + uoo + 2m + _\1)"5 + Maré = T

where a is the distance from C to L, M i{s the mass of the load, J {s the soment of fnertia of the joint, m 1is the
mass of the arm and [ {s ite moment of fnertis sbout C. Joint stiffness and demping are represented by k kg and

br' be. raspectively. Introducing the state vector and the control

r®

2e(rroo |l yurrt)T
then the equations of motion have the generic form
; = f(z) + g{z)u .
A bilinear mode] of the manipulator can be constructed by expanding each of the functions f(.) and g(.) 1into a

power series and {introducing s new state vector which contains higher order terms in z ([4]-[6]). Using the
first three terme of the Taylor series expansions of f(.) and g{.) and letting

:-lr;oarz;rhér;z :);6;0253521'3 ...53 ]r
then we have & 34" order bilinear mode] and after discretization it has ths form (L).

Yor purpou! of illustracion, the following numerical velues are chosen: a = | m, m = 100 kg, M = 50 kg, J
= 1 = |00 kg-w‘, and kr 6 N/m, ko = 2,95 N/m, br = 3 N-sec/m, bo = 35 N-sec/m. Figure 2 shovs the step response
of the nonlinear equations of motion and the full order bilinesr model, The bilinear model provides a (fafr
approximation to the true nonlinear system. A more accurate approximation could be ms”2 by retaining higher
order terms in the power series expansions,

= = 2 3
O'"l o o7l o A= ; (n)dr;onlh;:lr
‘ ] : : r ::; bl?‘;:cl:. éYYY
| | Y = 6 (rad) bilinear Y
BEG8H Yy
8] 8] 8] @ ARA BBEY’YW %8, Y
o1 o1 o o R R B~y B Y
R TRogB B
I A Bo,Y By
L | R B9 B
ol ol o B v B
a| 8‘ 9 9} u B Y i
! i . ‘ 8
o“ o‘] o o'l R 8 YY Qﬁ Qﬁ
T (< ‘o > R B Y A
L ; By R
o o o o R BY R R
=, oL S s R goY 8 R
o*! c'! o 9'1 . BYY R ““
' ' ) Y
; : ’ ; ] QQ ““ “ﬂ
$ RRR
(] Q Q. Q “ a
S, 9 9 ,f_’,-? ML
o < e 100 7.00 14.0 21.0 28.0 35.0 42.0

TIME

Figure 1. Step Response ot Nonlinear and Full Jrder Bi1linear Models

Applying the model reduction algorithm with q=3 (matching three sets of Volterra and covariance parameters)
a class of 3-Volterra COVERs was obtained. These reduced models have 14 states which is a greater than fifty
percent reduction in mode] order. Figure ) shows the response of & reduced model from the class of 3-Volterra
COVERs and the response of the full order mudel to a unit pulse input with a ) second duration. Figure 4 ~hovs
the response of thes msodels driven by a unit {ntensity Gaussian white noise process. In Figure ] ve se® that the
response of the full and reduced order bilinear msodels are nearly identical tor the firat 10 seconds. Similarly,
in Figure 4 the reduced order mode] mimics the full order model initially. These observations are {n accordance
with the theory which states that the response of the reduced order mode]l equals that of the full order system
for q steps {u time., However, in both cases the quality of the response of the reduced order model deteriorates
“ith time and 1t eventually goes unstable. This inscabillity is input dependent and possibly in a closed loop
setring the model behavior would be acceptable for greater pertiods in time.
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: ; - 4 X = r (m) full bilinear
1 <1 71 * Y - © (rad) foll bilinear Z Z
V o r (m) reduced bilinesr
Z = 7 (rad) reduced bilinear Y Y Y Y
8| 8| 8| 8 y 7 ;
wd m] o] e ¥ ¥

| ]
><3 :38 :>8|ru8 b é )
Y - ] -—ﬂ e ] z U
X
8 8| 8 8 1
et e ° O*oo 2.67 '5.33 8.00 10.7 13.3 1.

TIME

Figure 3. Deterministic Response of Full and Reduced Order Bilinear Models

X = r (m) full bilinear
] b= o4 b= Y = 0 (rad) full bilinear
: : : : V e r (m) reduced bilinear
o.]‘ Q.]' o‘l c? ? Z = ' (rad) reduced bdilinear Z
R R B ¥
i ' ’d
3, 8! 3| 8
51 o] .ﬂ -1 g
\ i v
g D e [ ~ g
2| 2| e8, =8
$1 o ~1 "]
= pov] g
| i
o w|7g™g
5 &1 o o X
| Y
: ! {
| ' ¥ Y
r] & 8] 8] X
J * N jo'| o |
o (o] - T T T T T LA/ § — ¥
' ' ‘ *0.00 1.33 2.67 4.00 S.33 6.67 8.00

TIME

Figure 4. Stochastic Remponse of Full and Reduced Order Bilinear Models

7. Conclusions

A sequence of sets of Volterra parameters characterizes the deterministic bilinear system, and a sequence of
sets of covartfance parameters describes the stochastic bilinear system. A model reduction technique vas developed
for discrete bilinear systems which generates a class of reduced order models which exactly match the first 4
sets of Volterrs and covariance parameters of the full order model. These models are therefore called q-Volterra
covariance equivalent realfzations, or q-Volterra CUVERs. Methods to choose specific models from within the
class to satisfy additional modelling considerstions is a topic of future research.
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