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Abstract 

This paper describes a heuristic approach to incremental and 
reactive scheduling. Incremental scheduling is the process of 
modifying an existing schedule if the initial schedule does not 
meet its stated initial goals. Modifications made to a schedule 
during incremental scheduling typically consist of adding one or 
more activities by re-scheduling existing activities. Reactive 
scheduling is performed when changes need to be made to an 
existing schedule due to uncertain or dynamic environments such 
as changes in available resources or the occurrence of targets of 
opportunity. Only minor changes are made during both incremental 
and reactive scheduling because a goal of re-scheduling 
procedures is to minimally impact the schedule. 

A scheduling system generates a schedule in three phases. An 
initial batch scheduling phase, an incremental scheduling phase 
and a reactive scheduling phase. During the first phase, no 
rescheduling is attempted. All user requests are submitted to the 
scheduler and an initial schedule is created. During the second 
phase, non-computationally complex strategies must be used since 
the number of possible schedules that can be generated increases 
exponentially with the number of requests. Since simple 
strategies must be used for initial schedule creation, any 
schedule can potentially be greatly improved through the use of 
an incremental scheduling phase. 

Reactive scheduling occurs in near real-time in response to the 
occurrence of targets of opportunity. Consequently, a reactive 
scheduler must be able to generate schedules within acceptable 
time limits. Manual reactive scheduling is an inefficient 
strategy, and automated exhaustive search techniques are 
infeasible because of time limits. 

This paper describes the heuristic search techniques employed by 
the Request Oriented Scheduling Engine (ROSE), a prototype 
generic scheduler (3) . Specifically, we describe heuristics that 
efficiently approximate the cost of reaching a goal from a given 
state and effective mechanisms for controlling search. 
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Introduction 

Scheduling the Tracking and Data Relay Satellite System’s (TDRSS) 
communications‘ events and user preferences present the NASA- 
GSFC’s Network Control Center/s personnel with a very complex 
scheduling problem. The schedulers must deal with limited TDRSS 
resources, such as antennas, ground equipment and communications 
bandwidth. In addition to these resource constraints, the 
scheduling requirements also have user constraints, such as TDRS 
visibility of user spacecraft, as well as temporal and dynamic 
(request placement with respect to other . scheduled requests) 
constraints. 

A sample request is shown in Figure 1 where a user of the Upper 
Atmospheric Research Satellite (UARS) requests the NCC to 
schedule a house-keeping activity for UARS 19 times, once every 
80 minutes, and each request must start within a 40 minute time 
window. In addition, each request must use a single access 
antenna from TDRS-East for a period of 15 minutes and it should 
be scheduled when UARS is in view of TDRS-East. 

The scheduling of these requests is premised by the fact that any 
instances of this generic request should be scheduled only if 
alternate request instances in a generic request which performs 
UARS house-keeping using TDRS-West, have not been scheduled. The 
NCC personnel receive and process several hundreds of requests 
with more complex requirements from several users on a weekly 
basis. During the space station era users will generate thousands 
of such requests. 

The Request Oriented Scheduling Engine (ROSE) is a generic 
scheduling software prototype which has successfully demonstrated 
the scheduling of user requests in the scheduling of scientific 
instrument operations for the Space Station distributed 
scheduling environment, and the scheduling of user requests in 
the NCC environment. The rest of this paper provides a brief 
description of the ROSE scheduler, incremental and reactive 
scheduling processes and the implementation of a hybrid search 
algorithm to speed automated rescheduling activities. 

THE PROBLEM 

With thousands of requests to schedule, the initial batch 
scheduling approach does not usually meet the user’s scheduling 
goals. Also the initial schedule is sub-optimal due to the 
necessity to use simple heuristics. ROSE provides tools to allow 
the user to do re-scheduling by deleting or moving scheduled 
requests, adding unscheduled requests, or relaxing requests’ 
constraints manually. 
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When re-scheduling involves a large number of requests, in order 
to find a location for an unscheduled request, extensive search 
of the attributes (i.e., constraints, resources requirements, 
etc.) of scheduled requests must be performed. This step is 
required in order to identify appropriate heuristics to improve 
the search. Also, if the schedule is to be generated in near 
real-time, the search algorithm must be efficient and fast enough 
for the resulting schedule to be of any use. Therefore, an 
automated incremental and reactive scheduling capability is 
needed in ROSE. 

ROSE - A Generic Scheduling Software System 

The ROSE software prototype has been developed to provide NASA 
customers in the Space Station distributed scheduling environment 
with an automated mechanism for communicating their scheduling 
requirements to NASA-Goddard Space Flight Center (NASA-GSFC) and 
receiving their scheduled requests. In ROSE, the feasibility of 
communicating user requests from remote locations (where 
appropriate) to a scheduler is being explored. The scheduling 
requirements are communicated to a NASA scheduler in a Flexible 
Envelope Request Notation (FERN). This notation enables a user to 
specify his/her requests with preferential constraints. ROSE/FERN 
is described in more detail in [ 3 ] .  

ROSE is a generic scheduler currently running on the Symbolics 
computer workstation with the Genera 7.0 operating system and the 
Common LISP language on the Symbolics computer workstation at the 
NASA-GSFC in code 520. Figure 2 depicts the ROSE user interface. 
The interface consists of several windows. The user executes many 
of the ROSE commands by activating the menu items in the Commands 
window. The NCC scheduling network window shows three users (GRO, 
STS and UARS) in this example with the NCC as the scheduler. 
Generic requests from the users to the schedulers are monitored 
and presented in a scrollable window, titled "Real-Time Message 
Monitoring". 

Figure 2 also shows a day's schedule in the window titled 
"Timeline of Scheduled Requests". Scheduled requests are 
displayed as unshaded rectangular boxes along a timeline. The 
names of the user or campaign are displayed to the left of the 
corresponding scheduled requests. More information about each 
scheduled requests can be displayed, and the parameters of the 
request can be modified through the interface. Below the requests 
in Figure 2 in shaded rectangles is a sample of TDRS's visibility 
constraint. The first row of shaded rectangles displays the time 
windows when UARS is in view of the TDRS-West antenna, while the 
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n e x t  row d e p i c t s  when t h e  same s p a c e c r a f t  i s  i n  v iew o f  T D R S - E a s t  
a n t e n n a .  T h e  bo t tom r i g h t  c o r n e r  window d i s p l a y s  a l i s t  o f  
u n s c h e d u l e d  r e q u e s t s .  The window i s  s c r o l l a b l e ,  and  t h e  u s e r  has 
t h e  o p t i o n  t o  s c r o l l  t h e  window f o r  a l i s t  of o t h e r  u n s c h e d u l e d  
r e q u e s t s .  T h e  u s e r  c a n  a l s o  mouse each r e q u e s t  t o  o b t a i n  a 
d e t a i l e d  i n f o r m a t i o n  a b o u t  t h e  r e q u e s t .  ROSE has many f e a t u r e s  
t h a t  e n a b l e  t h e  u s e r  t o  d i s p l a y  i n f o r m a t i o n  a b o u t  s c h e d u l e s ,  
r e q u e s t s  and  r e s o u r c e  u s a g e .  

Message Class: 1 
Request Priority: 3.4 

Schedule as soon as possible 
Schedule request 19 t imes every 0:80:00. Window-size= 0:40:00 

Resource Envelope Phases: 

Duration: 15 minutes 
SA-EAST 1 

Temporal Constraints: 

EXCLUDING UARS-ENG-TDW2[II 
DURING *UARS-UA'J-TDE* 

I S t a r t  Time: 00:80:00 End Time: 00:00:00 

FIGURE 1. A Sample User's Generic Request 
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Re-Scheduling Strategies to Meet Scheduling Goals 

ROSE is a generic scheduler, and it has been developed so that 
the user can generate schedules with different scheduling goals. 
When the initial schedule does not meet its goal, the scheduling 
software, (i.e. ROSE) may take one or more of the following 
conflict resolution strategies. 

- Relax the requirements of unscheduled requests 

- Overbook certain resources 

- Relax the requirements of scheduled requests or 
de-allocate certain resources 

- Acquire additional resources from another scheduler in 
a distributed scheduling architecture 

- Implement an Incremental Scheduling strategy 

- Implement a Reactive Scheduling strategy which 
i n c o r p o r a t e s  one o r  more of  t h e  c o u r s e s  of  a c t i o n  above 

In this paper, we only describe the incremental and reactive 
scheduling strategies for re-scheduling. 

Scheduling Goals 

A user‘s scheduling goals can take several forms, for instance: 

- Create a schedule within the time limit of T hours. 

- Schedule all requests above priority N 

- Reserve X% of resource R during time T1 . . . . .  T2 
- Schedule as many requests as possible 

With the scheduling goal ( s )  identified, the ROSE software 
generates a plan as to which actions to take and in what order, 
and attempts to generate a schedule that meets the user’s 
goal (s) . For example, if the user’s goal is to schedule as many 
requests as possible, the plan may include a step to relax the 
resource requirements of all requests. Figure 3 depicts a process 
flow chart used in ROSE for incremental scheduling. ROSE applies 
each strategy in the plan to the initial schedule until either 
the user’s goals are met or the plan is exhausted. 
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FIGURE 3. A Frocess Flow Chart f o r  an Incremental Scheduling Strategy 
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Reactive Scheduling 

When an unexpected occurrence of some events triggers the need 
for replanning, ROSE provides the capabilities to apply the 
opportunistic scheduling procedure diagrammed in Figure 4. Re- 
scheduling is performed by adding, moving or deleting requests 
until the effects of the impacts are eliminated. 

Reactive scheduling is used to modify a schedule already in use. 
Therefore, conflict resolution strategies which are valid in 
incremental scheduling may not be applicable for reactive 
scheduling. For -example,. if a week’s schedule already in use 
requires reactive scheduling at mid-week (i.e. Wednesday), then 
any requests prior to Wednesday cannot be moved. In other words, 
anything in the past cannot be moved, and no requests can be 
scheduled prior to Wednesday. In incremental scheduling, the 
scheduling system focusses its attention on re-scheduling 
existing requests in order to accommodate additional requests. In 
reactive scheduling, however, the scheduler must consider 
alternative strategies, such as relaxing the requirements of 
requests in order to minimally impact the schedule. Still, the 
goal in reactive scheduling is to minimally impact the rest of 
the schedule. 
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FIGURE 4. A Process Flow Chart for a Reactive Scheduling Strategy 

Heuristics for Efficient Re-Scheduling 

In the field of Artificial Intelligence, several researchers have 
focussed on developing efficient search techniques for complex 
mathematically intractable problems. Simon (1962) proposed the 
"Hierarchical" approach during search by planning at different 
levels of abstraction. In 1975, Sacerdoti proposed the "Least 
Commitment" approach which suggests delaying any decision making 
as much as possible until most of the facts are known and thereby 
reducing the amount of backtracking. In 1979, Hayes-Roth proposed 
the "Opportunistic Reasoning" approach by focussing search in 
highly constrained areas or areas of highest certainty. 
Dependency directed backtracking is another popular approach 
employed in searching to reduce the search space of states, Mark 
S. Fox (7) research efforts on constraint-directed reasoning 
provides several approaches to reducing the amount of search 
required in planning. This paper applies a hybrid approach by 
combining the generate and test problem solving method and the A* 
algorithm to search the problem space for a solution to a re- 
scheduling problem. 
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Implementation of a Heuristic for Efficient Re-Scheduling 

We have implemented a hybrid algorithm similar to the A* (Best- 
first search) algorithm to provide effective search during the 
re-scheduling process. 

Figure 5 shows a directed graph of the search space for re- 
scheduling in the ROSE scheduling software system. The problem 
space is developed from the steps involved in re-scheduling in 
ROSE as described earlier for Figure 2. 

Our algorithm searches a directed graph in which each node 
represents a state in the problem space. It is used to find a 
minimal-cost overall path or any other path as quickly as 
possible. In ROSE, the initial state is the initial batch 
schedule and a request to be scheduled; a goal state is reached 
when the unscheduled request is scheduled, and no existing 
request violates any of its resource requirements or temporal or 
dynamic constraints. The intermediate states consists of the 
possible states between the initial state and a goal state. 

To accomplish the objective of going from the initial state to 
the goal state in Figure 5, we employ the generate and test 
problem solving strategy to generate the rules to guide possible 
moves. These rules are described in the steps below: 

Step 1. Start at level 0 and select an unscheduled request. 

Step 2. Generate a set of start times and assign ratings to 
how good the possible locations where the request can be 
scheduled are. Good locations are those where the minimum 
number of constraints are violated and the minimum number 
and amount of resources are required. 

Step 3. Schedule this request in a location where it is 
constrained the least, either by a resource 
or a dynamic constraint. Break ties by selecting the 
location with the earliest time along the timeline. A 
location with a missing resource is preferred over 
another location with a violated dynamic constraint. 
A temporal constraint must not be violated. This step 
will usually invalidate the current schedule. 

Step 4. Create a window around all the requests overlapped by the 
current request, and identify any such requests as 
possible candidates to be moved. The local goal is to 
move one or more requests and re-schedule them elsewhere 
to make the schedule within this window valid. 
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FIGURE 5. A SEARCH SPACE FOR RE-SCHEDULING IN ROSE 
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Step 5. Move an overlapped request within the window. Go to 
Step 2. Avoid generating any loops by not moving a 
request more than once. 

Step 6. Determine the goodness of a schedule by tallying and 
evaluating the amount and number of overused resources 
and the number of dynamic constraints violated by the 
unscheduled requests 

Step 7. Terminate the search at a pre-set time corresponding to 
the time it takes to reach a certain number of branching 
and/or depth factor, or until a solution is reached. 

Step 8. Display the llbestll solution and ask the user if he/she 
wishes to continue. 

Step 9. If the user wishes to continue, attempt to schedule 
the remaining unscheduled requests. 

After establishing the rules that guide acceptable procedures for 
rescheduling, we are ready to apply our algorithm. To apply this 
algorithm, we develop an evaluation function, ff which estimates 
the relative merit or cost of continuing a search from a given 
state after applying a rule. The evaluation function is a cost 
function which must bef designed to ?estimate the remaining length 
of a path between a node n and the goal node. It is used to set 
up the order as to which nodes to consider during a search such 
that the goal is reached with the minimum number of steps. 

Application of the A* Algorithm 

The problem space consists of nodes (shown in Figure 5), and 
these nodes fall into two categories: OPEN and CLOSED. OPEN is a 
list of nodes containing the nodes to which the heuristic 
evaluation function have been applied, but for which their 
successor nodes have not been generated. The nodes in the list 
are sorted in a priority sequence such that the highest priority 
is assigned to the node for which the value returned by the 
heuristic evaluation function is most promising. The CLOSED list 
contains the nodes with non-promising values for the evaluation 
function. 

Function f' has two components, a g component and an h' 
component. 

f' (successor node) = g(successor node) + cost to new node 
or f' (successor node) = g(successor node) + h' (successor node) 
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where 

and 

the lowest f'. 

g(successor node) = g(best node) + h, (successor node) 

a best node is defined as a node on OPEN list of nodes with 

The g component is defined as the measure of the cost of getting 
from the initial state to the current state. It is the sum of the 
costs of applying the evaluation function along the best path 
leading to the current node. Function h' returns an estimate of 
the additional cost of getting to the goal node from the current 
node. Since h, represents cost, low values for h' lead to good 
nodes. Implementing the functions described above enables the re- 
scheduling functions to search and reach the goal by manipulating 
the list of nodes in the OPEN and CLOSED lists. 

Since the only action taken at each step is to re-schedule an 
existing request, the cost of going from one node to its 
successor node (h,) is a constant. If different actions were 
taken at different nodes (for instance, relaxation and 
deletions), the h' function will not be constant. 

Another Approach to Speed Search During Re-scheduling 

The AO* or the AND/OR graph can be used to represent search 
strategies by decomposing a problem into subproblems. This allows 
for the generation of alternative solutions to the problem. The 
initial problem corresponds to the root node of the graph. At an 
AND node, all the successor nodes must be solved to obtain a 
solution for that AND node. However, at an OR node, only one of 
the children nodes must be solved. It is not necessary to 
generate a solution for more than one node. 

Applying this problem solving strategy to searching the search 
space in Figure 5, it means that in locations where more than one 
scheduled request must be moved, all the scheduled requests that 
need to be moved must be moved in parallel until the schedule in 
a local region becomes valid. This action requires more knowledge 
of multiple requests. With more knowledge of each requests moved, 
the amount of search required is reduced, and solution can be 
obtained at a smaller cost than with the A* algorithm. 

Future Work in Automated Re-Scheduling for ROSE 

In the future, we plan to explore the application of assumption- 
based or justification-based truth maintenance system concepts to 
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evaluate their effectiveness in helping to repair invalid 
schedules generated during re-scheduling. Also, due to the 
extensive amount of search required, and since we want to limit 
back-tracking while the scheduler is in search of a goal, some 
machine learning paradigms such as, learning from experience can 
speed the re-scheduling time. Also the effectiveness of the 
application of neural network algorithms in re-scheduling will be 
explored. 

I 

The effects automating other conflict resolution strategies, such 
as overbooking certain resources, acquiring additional resources 
from other schedulers in a distributed scheduling architecture 
will be employed. 

CONCLUSION 

Quoting Raj Reddy's [6], fourth and fifth rules of Artificial 
Intelligence, "Search compensates for lack of knowledge" and 
"Knowledge eliminates the need for search", these statements 
apply in many problem solving efforts, specifically when solving 
planning problems. The amount of search required in the heuristic 
described above can be reduced s,ignificantly with more knowledge 
of the constraints. With a better knowledge of the constraints, 
the AO* search heuristic can provide a faster solution and a 
shorter path search than the technique described in this paper. 
According to Mark Fox (71, scheduling is not yet a science, it is 
still an art. As a result efficient problem solving techniques 
must be explored to improve search and reduce re-scheduling time. 
This paper presents our attempt at improving the time required 
for automatic re-scheduling in the Space Station and the TDRSS 
Network Control Center environment. We employed a hybrid problem 
solving technique to reduce automated re-scheduling time. Given 
the knowledge of the problem space, the hybrid problem solving 
approach described here is efficient for re-scheduling. 
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