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Some Spectral Approximations of One-Dimensional
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Abstract

We propose some spectral type collocation methods well suited for the approxi-
mation of fourth-order systems. Our model problem is the biharmonic equation, in
one dimensional and in two dimensions when the boundary conditions are periodic on
one direction. It is proved that the standard Gauss-Lobatto nodes are not the best
choice for the collocation points. Then, we propose a new set of nodes related to some
generalized Gauss type quadrature formulas. We provide a complete anlaysis of these
formulas including some new issues about the asymptotic behaviour of the weights and
we apply these results to the analysis of the collocation method.
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L. Introduction.

Spectral methods are well suited for the approximation of the solution of elliptic or parabolic
type equations. They are known to be very efficient for second-order problems and their
approximation properties are consistant with the infinite order observed through numerical
experiments. We refer to the recent book [CHQZ] for a review of most of the current results.
However, and quite surprisingly, they have not been much considered for the discretization of
fourth-order systems. The regularity of the solution of such problems is not in question, since it
is generally higher than for second-order ones. On the other hand, the spaces of discrete functions
seem specially appropriate to approximate the solution of high order equations, since they consist
either of truncated trigonometric series or of high degree polynomials that are both indefinitely
differentiable. Hence, they are contained in Sobolev spaces of any order, which is not the case with

finite element spaces. Conforming discretizations can thus be worked out easily. In addition, it can

. be noted that approximating a linear fourth-order equation with constant coefficients via a

| Galerkin method using spaces of high degree polynomials with respect to each variable gives

optimal results. Only a few collocation methods have been implemented up to now for this kind of
problems [0][He], and no numerical analysis has been provided for them (we refer to the review
paper [BM3] for a survey of the strategies). We do think that the corner stone of collocation
techniques is the choice of the collocation nodes, i.e., the finite set of points in which the equation

will be exactly satisfied. In spectral methods, as first suggested by D. GOTTLIEB [Go], these are

, always built from the nodes of a Gauss type quadrature formula, for two reasons. First, the

Lagrange interpolation operator associated with these nodes has very good approximation
properties. Second, the quadrature formula allows for writing a variational formulation of the
discrete problem; then, the Strang lemma provides an estimate to compare its solution with the
| exact one. In parallel, if a problem is stated in a variational formulation and not in a strong form,

using this quadraturé formula leads to consistant discretizations.

For second-order problems, two possibilities arise : choosing the collocation set from the
| nodes of a Gauss formula or from a Gauss-Lobatto formula. The difference relies on the fact that
fthis set contains some points of the boundary of the domain in the second case and not in the first

‘one. Due to the Dirichlet boundary conditions, the second choice turns out to be more efficient and,
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in two dimensions, only Gauss-Lobatto points lead to an optimal approximation error.

In order to discretize fourth-order equations, the question is not so easy to solve since two
boundary conditioné, one on the function and one on its normal derivative, must be enforced at each
boundary node. That is why we propose to use a generalized Gauss type quadrature formula, which
approximates the integral of a function on a real interval by a sum of its values at some interior
hodes plus its values at the extremities of the interval plus the values of its derivative at the
extremities, each of them being multiplied by an appropriate weight. Note that the nodes of the
Gauss formula are the zeros of a fixed orthogonal polynomial, those of the Gauss-Lobatto formula
are the extrema of this polynomial, i.e., the zeros of its first derivative; by similar arguments, it
turns out that the nodes of the generalized formutas must be chosen as the zeros of the successive
derivatives of this polynomial. We shall thoroughly study these quadrature formulas, both from

theoretical and numerical points of view.,
i
Our aim is of course to discretize fourth-order problems by collocation techniques involving ‘
the nodes of the generalized Gauss type formula. We first consider the simple case of a J
fourth-order equation on a finite real interval, when the solution must vanish at the extremities
of the interval, together with its derivative. On this test problem, we compare two discrete |
problems: in both of them, the exact solution is approximated by a polynomial of the same degree {
which satisfies the boundary conditions, but the equation is enfbrced at the interior nodes of either |
a Gauss-Lobatto formula or an appropriate generalized Gauss type formula. Finally, we consider ‘
the equation of the bilaplacian on a rectangle, when the boundary conditions are periodic in one ;
direction and homogeneous in the other one. We discretize this equation by a collocation method |

|

using the nodes of the generalized formula in the nonperiodic direction, and we provide a complete ‘
numerical analysis of this method. Our theoretical justifications are all given in the generalized;
framework of weighted Sobolev spaces [BM2]}, which allows for a simultaneous treatment of the“
Legendre and Chebyshev collocation techniques (we refer to [CHQZ] for a comparison between ;
them). Our intention is to extend our method to fourth-order problems in a rectangle, provided‘j

!

with inhomogeneous Dirichlet conditions, in a forthcoming paper . 1
|
An outline of the paper is as follows. Section || is devoted to the analysis of the generalized;

quadrature formula. A variational formulation of the monodimensional fourth-order problem for!
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the bilaplacian in weighted Sobolev spaces is studied in Section [11. In Section 1Y, we compare two
collocation techniques for approximating this problem. Finally, in Section V, we extend the method
to the two-dimensibnal equation with mixed periodic-nonperiodic boundary conditions. The paper
contains three appendices: the first one gives general approximation properties of high-degree
polynomials in the weighted Sobolev spaces of order 2; the second one states the approximation
properties of the Lagrange interpolation operator at the nodes of the generalized Gauss type

formula; the third one contains several tables of nodes and weights of the quadrature formulas.



1l. The generalized quadrature formula.

In all that folTows, we denote by A the open interval ]-1,1[. For any integer n > 0, P _(A) is
the space of the restrictions to A of all polynomials of degree < n.

For any real number o« > -1, we define the weight g, on A by
(I.1) VEeA, oJt)=(1-tH)"
With this weight, we associate the following scalar product, which is defined on the space of all
functions, the square of which is integrable with respect to the measure p,(2) dZ ,
(11.2) (04D, = 1 0(8) w(®) 0, (0) dt
We recall that a family of orthogonal polynomials with respect to the scalar product (.,.), is the

family of Jacobi polynomials ( J: ) e Where d: has degree n and satisfies the condition
F(nioe+ 1)
n! Mo+ t)

(" denotes the classical Euler's gamma-~function). A number of properties of these polynomials are

(11.3)  JX(1) = (1)

well-known (see [DR, §1.13] or [Ho}) : among them, we have
22 M(nsoce 1)?
™ (2n+20c+ 1) Nl T(n+20¢+1)

(1L.4) Vv (mn)eN, |1, JR0) J% Q) o (8) dt = 6

where §__ stands for the Kronecker's symbol; the family ( J; ), ., Satisfies the induction formula
(11.5)  (ne1)(ns20ci 1) J7 = (2ne20c+ D)o 1) § Iy = (neo)(nsoce 1) Iy
JS(C): 1 et \J?(C):(O(+])C

We shall also need the following result (see [BM2, Lemma1V.2]), which is validfor n > 2

n+20+ 1 n4+o

o
net

(11.6)  [uX©)dt = Yl

2n1 204 1 neoc+ 1 n+2X
where ] J:(c) dt, denotes the primitive function of d: which is orthogonal to 1 for the scalar

product(.p)u.

Moreover, each polynomial J: . h € N, is an eigenfunction of the operator A defined by
(L7) Ay ==-0_ (0g, V)
indeed, it satisfies the following ordinary differential equation
(11.8) (04,190 ) +n(n+20+1) o, J =0

From this equation, we observe a property which is the corner stone of our analysis : the family of
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polynomials ( \J:‘ )na , is orthogonal with respect to the scalar product .,.) hence, for any

«+l ?

n> 1, the polynomials J:‘ and \J:‘f: coincide up to a multiplicative constant. More precisely,

using (11.8) and (11.3) to compute J:'( 1), we have for anyn > 1

11.9)  J¥ = .n%sul_ g

Now, let N be a fixed integer. In all that follows, we denote by C;‘ , 1 <j<N,the zéros of the
polynomial \J; (we drop out the index N for sake of simplicity); it is well-known that these zeros
are distinct, so we may assume that : §§ <y <. < Yy . With each zero t}" , 1 <j <N, we
associate a characteristic polynomial Q;.‘ , 1.e. the only polynomial in PN_1(/\) which is equal o 1
in c;‘ and vanishes in ., 1 <1< N, i#j. For any function ¢ defined on A and any pair (p_, 0,)
of real numbers, the notation ®(+ 1) p, in a summation denotes the sum ®(-1) o_ +®(+1) o, .

We are interested in quadrature formulas to approximate the integral ]_11 (L) 0,(8) dt,
where ® is a function defined on A and is assumed to be smooth; moreover, we want these formulas
to be precise, i.e. to be exact on polynomials of the highest possible degree. Two formulas are
well-known :

1) the Gauss formula

.[-11 P(T) 0, (L) dT = ZJN: \ (p(cjﬂ) g;:,G ;

the nodes are the zeros of J,‘j ; for a suitable choice of positive weights Q;"G , the formula is exact
2) the Gauss-Lobatto formula
1 N o+ o
[L0@) o 0y dt = T Pt ot s @(a ) of%

(with the sommation convention described above); here, the nodes are the zeros of (1-%2) Inoy

i.e. by (11.9) the zeros of J,‘}” and the bounds +t of the interval; for a suitable choice of positive

weights 0" , 1 < j <N, and o} °" , the formula is exact on Py, ((A).
We propose the following generalized quadrature formulas, depeﬁding on a nhonnegative
integer m :
1 N -1
(.10) [, @) o) dt = Ty, @™ of™ + Ly oo (d/dth (e ) o8]
(with the same sommation convention). Here, the interior nodes are the zeros of the polynomial

Jn'™ . Clearly, with a suitable choice of the weights, the Gauss formula is obtained for m = 0 and
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the Gauss—Lobatto formula is obtained for m = 1.

Next, we define the weights in order to make the formula as accurate as possible.

Lemma {l.1: For any real number o > -1 and for any integer m > 0, there exists a unique
(N+2m)-uple of weights o™, 1 <j<N,and of'T', 0 <k <m-1,in R" x R*" such that the

quadrature formula (11.10) isexacton Py o (A).

Proof : The quadrature formula (11.10) is exact on P\, ,(A) if and only if it is exact on a basis
Of Pyrom-1(A), i the vector (o™, ., o8™ L 0g7y + s Oy 4 ) i @s0lution (N, , ., Ny, g,
o Umo s ) of the linear system

T @™ Iy (M /de e ) g, = [ e o0 dt L 0 <n < Ne2m-t
This is a system of N+2m equations with N+2m unknowns, hence it has a (unique) solution if and
only if the only solution of the same system with a zero right—hand member is zero. Therefore, let
Ny A s Ugy o o Uy 4 ) DE @ SOTUtioN Of
(A1) V@ ePy, 0 (A), L] @™ n o g (d0/dc*) (1) by, = 0
First, choosing® = (1-t2)™ Q™ in (11.11), we obtain X; = 0, 1 <1 < N. Next, for £ decreasing
from m-1 to 0, we choose successively ® = (1-t3)* (1+8) J§*™ and® = (1-£%)" (1-¥) U§*™ in

(11.11), so that we deduce u, _ = uy,, = 0. That ends the proof.

In all that follows, we assume that the weights g;"“‘ , 1P <j<N,andoy , O<k<m-1,are
chosen such that the formula (11.10) isexact on Py .. ,(A). We derive the
Proposition tl.1 : For any real number « > -1 and for any integer m > O, the quadrature

formula (11.10) isexacton P,y o0 ((A).

Proof : Let ¢ be a polynomial in P,y ., (A). By the Euclidean algorithm, we can find a
potynomial Q in Py_ (A) and a polynomial R in Py, ,(A) such that
RSN L
Next, we compute
(1) 0 (@) de = [, (1-LH™ IR ™(X) QT 0,(8) . + [, R(T) 0, (L) dt
x+m

Since Jy

(...

is orthogonal to any polynomial of degree < N-1 with respect to the scalar product

wam 1+ WE obtain



i

L@ o d = [ R o () &
so that, by Lemma ll.t,
[1 o) o () o, = ZL R(E™™) o™ + T (AR (2 1) oy
= T D™ of™ 4 T g (e /drk) (2 1) of T

Remark 1.1 : Of course, the property of Proposition 11.1 is satisfied by the Gauss formula
(m = 0) and by the Gauss-Lobatto formula (m = 1). The idea of building quadrature formulas
involving some values of the derivatives of the function is not new (see [DR, § 2.7][St][T]). Note
that these formulas are essentially of Gauss type since the choice of the N free nodes on R that
generate the quadrature formula is optimal: any other choice leads to a method which is not exact
for all polynomials of P,y ., ,(A). However formulas of type (11.10), the nodes of which are
zeros of Jacobi polynomials, are specially interesting since they can be used to introduce and

justify new spectral collocation methods, as it will appear later.

Since the nodes of formula (I11.10) are the zeros of a Jacobi polynomial, they can be computed
by the same algorithms as for the Gauss formula [DR, § 2.7] : for instance, the zeros c}" ,
1 < j <N, are the eigenvalues of a tridiagonal symmetric matrix of order N. Details about this
method and tables giving the values of these nodes for different values of the parameters o, m and
N can be found in Appendix C.

We end this section by giving some properties of the weights gJ‘.’""‘ , 1<j<N,and o7 ,
0 <k <m-1. Our purpose is double : theoretical (for instance, the positivity of some of these

weights will be very useful in several proofs) and numerical (since we need them in a number of

practical computations).

We begin with the "internal" weights g;""‘ , 1 <j <N. Let us recall ([DR, § 2.7} or [Sz,
formula (3.4.7)]) that the Gauss weights are given by

-1

) JRH?
(I12) o =(Zhg — >
Joy @) o (0) dt

Due to the Christoffel-Darboux formula [Ho, 12.1][Sz, Thm 3.2.2], this is equivalent to
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22T F(Nvoc+ 1) F(N+ox+2) 1
(N+ 1) T(N+20c+2) Iy, 1€65) Iy (85)

(11.13) g;-°= -

22V F(Nyo) T(Nvocs 1) 1
NIT(N+20c+ 1) In-1 (G5 Iy (@)

o+m,0
j 1

The following lemma shows how to compute the weights g;"m from p 1 <j<N.
Lemma I[.2 : For any real number o > -1 and for any integer m > 1, the weights g;"m,
1 <j <N, satisfy
(”14) Q;(,mn(]_(c;um)2)—m Q?+m,0
1

Proof : For any ® in Py _,(A), let us compute the integral J_, (1-t)™ o(1) 0,(%) dt both by
formula (11.10) and by the Gauss formula associated with the weight Cusm - We obtain

1 N N
[, (=ED™ @) o (0 dt = T, (1= ™H™ @™ of™ = T/ @™ of*™.

Choosing ® = Q;“"‘, we prove (11.14).

Remark [[.2 : Formula (l1.14) shows that the weights g;"m , 1 < j <N, retain some properties
of the Gauss weights : indeed, for 1 < j < N, we have

(1.18)  of™>0

(11.16) QNfiTj:Q;‘m

Next, we consider the "boundary” weights o'}’ , 0 <k < m-1. Let us first compare 0y 4 and

o
Lemma 1.3 : For any real number « > -1 and for any integer m > t, the weights O:?
0 <k<m-1, satisfy

AL17) ol = (-1 o™

Proof : Let ® be any polynomial in P,y ., (A). Using (11.10) to compute 1_11 P(T) 0,(T) dt =
[1,2(-T) 0, (T) dr, we have
T ™ o™y I (/e (=1) o™ + Ty Le (B /dcf) (4 1) o
= DL BT ) o T (- DX (R /de (e 1) gf
¢ Ty (=R (R rdgty (- 1) g



whence, by (11.16),
Z 0o (de/deh(=1) o™ 4 Tl (de/det) (4 1) o
= T (=R (/a1 of™ 4 T Ty (- DR (/b (- 1) T
For £ decreasing from m-1 to 0, we choose P(t) = (1-¢)™ (1 +o)Y, which gives (11.17).

The following lemma precises the sign of 93:;"

Lemma |1.4: For any real number o > -1 and for any integer m > 1, the weights og'y
satisfy

(11.18) oM =y >0

)

Proof : Applying the formula (11.10) to the function® = 1 gives

Lo wdn =T om0l
so that, by Lemmas I1.2 and 1.3,

208™ =2 08" = 1, (1D ™o, (W At - L), (1-(E™MP)™ g
We have proved that gg‘:’_" = gg:[“ is equal to the half of the quadrature error of the Gauss formula
with N points for the weight o, , applied to the function (l—cz)'m Recall the general result
giving the quadrature error for the Gauss formula [CM, Th. 2.5] : for any function ® in CMA),
thereexists £, -1 < ¥ < 1, such that

[1 @) 00 dt - T),, () 0 & (@ 7de®)(®) N5 5 0 7 (2N1KRE
where ky denotes the coefficient of tNin Jy - Hence, to obtain (11.18), it suffices to prove that the
2N- th derivative of (1-52)™™ is nonnegative on A. Noting that

(-t ™™= (X, 2™
we see that this function and its 2N-th derivative are even and that all the coefficients of their

series expansions are nonnegative. Consequently, they are > O on A,

It is already known [BM2, Lemma V.3] that, for the Gauss-Lobatto formula, the weights Qg:l

are given by

(1.19) ot mol! = [1,ur'(X) (140) o (0) e 7 205+ (1)

which yields by (11.3) and (11.6) (see [BM2, LemmaV.3])
NI

(11.20)  o%' = %! = 2% (o 1) Mo 42) ——
Po.- = G ' 2 Tize®)



-10-

The next lemmas show how to compute the weights g7’ , 0 <k <m-1.

m
+

Lemma |15 : For any real number o > -1 and for any integer m > 1, the weights 0,7,
1 <k<gm-1, satisfy
, +1,m-1
(1.21)  2(m=1) 0, %", = - o'y T
and

(1.22) 2k op™ + k(k+ 1) iy, == opr ™! L1 <kgm-2

Proof : Let us choose P = (!—cz) Y, where ¥ is an even polynomial in p2N+2m-3(/\)' We compute
(1 o) o (0) dt = J_11 W(L) o, (L) dt by using (I1.10) once for « and m, once for o+ 1 and
m-1. We obtain
T (=E@E™D W™ o™ v 7o [d1-82) w)/de )2 1) o7
= T W™y ettt B (dwrarky (1) gt !
Using (11.14), (11.17) and the fact that ¥ is even, we derive
0T IdC1=2D) W)tk 1) oM = T e (/e (i 1) gt !
But it turns out that, for k > 2,
[dCC1-T2) W) /dtX ]+ 1) = = 2k (d"wrde (4 1) - k(k=1) & 2wrde 2+ 1)
and that ((1-22) w)'(+1) isequal to - 2 ¥(+1). Hence, we have
S 2W(e 1) ™ = T 2k (d wrdtt 1) 4 k(k-1) AP /de R )] 0T
= oo (g (1) gpt bt
For £ decreasing from m-2 to O, we choose () = (1-t®?, which yields (11.21) and (11.22).

Remark [1.3: It follows from formulas (11.21) and (11.22) that the vector of weights QE‘"T ,
1 <k <m-1, can be computed from the vector of weights g:fl'm" ,0<k <m-2, bysolvinga

linear system. The matrix of this system is upper triangular and bidiagonal.

Remark 1.4 : Due to formulas (11.17), (11.18), (11.21) and (11.22), we observe that, for
O0<k<gm~t,
(11.23)  of™ = (- ofT >0

hence the only negative weights are the g,7" for odd values of k.
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The computation of the weights 003 involves a quite technical result. Let us set, for any

o > -1andany integersN > 0Oandm > 1,
(11.24) Xy —'J p (Mg, /dE™E) 0, () dt

Of course, this quantity is equal to O when N is odd. But we are interested first in even values of N.

Lemma 1.6 : For any real number o« > -1 and for any integer m > 1, for any nonnegative even
integer N , the quantity Xy™ is given by
Moe 1) T(N+ocem+1)  (N/2+m=1)1  [(N/2+xx+m+1/2)

(11.25)  x%m - p2wm
N (m=1)1 T (N+2oc+m+1) (N/2)! F(N/2+x+3/2)

Proof : From formula (11.6), we induce
Niocem (N+vocrm)(Nvocem=1) « .
+
N+2ocam N*+m-! (N+20cem)(N+20c+m—1) N-2+m

First, derivating this equation (m-1) times, we have at once

N+m-(2N020(+2m—1)

N+oc+m (N+oc+m)(N+oc+m=~1)
XM @ (2N+200+2m 1) e x5! ’ .

X
N+2ot+m N ' (N+2oc+m)(N+20c+m=-1) -2

On the other hand, using the same formulawith m = 1, we obtain

(N+ot+ 1)(N+ox) ...(ox+2) «,1

xo(,l ’
N (N+20+ 1)(N+2c) ..(2oc¢2) 0

1

(M(N+ox+2) /T (x+2)) (T2 +2) /T (N+20¢+2)) (o +1) J ; 0,(0) &t
which implies by (11.4)

X:’1 =22V (o 1) F(Nvoe 1 2) /T(N+ 20+ 2)
Finally, using (11.9), we note that
Xo™ = 1_11 (d™I5/de ™)) 0, (5) dt = (20c+m + 1)(20+m+2) ... (20¢+2m) J 1 0,(8) /2™
= 22 ™ (M (o 1)2/7 (2004 2)) (M(20¢42m ¢ 1) /T (204m + 1))
The formula [(2s) = (1/v2T1) 2°72 1 (s) [(s+1/2) then implies
XE™ @ 228%™ (Mo 1) /T (0 +3/2)) (F(ocem+ DI (ocem+1/2) /0 (2ccem+ 1))
The induction formula on Xg™ , together with the values of X;" and Xg'™ , allows us to prove
(11.25). Indeed, to make the computation readable, let us set
YE /M = (M(Nw20cem+ 1) /T (Nvocem+ 1)) Xg™ 7 224 Mo 1)
&)

The sequence ( Y m>1.K30 satisfies
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[ Y™ = (ake2ee2m-D YT T m> 2,k 0,
l YQ":I . K>0, and Yg"":Z"‘"l'(o<+m+1/2)/l'(o<+3/2) , m>1

Then, it is easy to'check (but not so easy to find) the formula, valid for anym > 1 andK > 0,
yem _ om-1 (Kem-1)1 F(Kixim+1/2)
« Ki(m=-1)1 T (Kix+3/2)

which yields (11.25).

An immediate consequence is the
Corollary 1.1 : For any real number o > -1 , for any nonnegative even integer N , the
sequence (Xy'™ ), Isgiven by
(11.26) l Xg™ = (N4 2ocem s 1) (N+2m-2)(N+20¢+3) Xﬁ”"“" /8 (+1)(m=1) , m>2,

I X;" =22 Mo 1) TN+ +2) 7 T(N+20¢+2)

We also need the
Lemma ll.7 : For any real number o > -1 and for any integer k > 1, for any nonnegative even
integer N , the polynomial Jy satisfies
(11.27) (dUZ/de (4 1) = ((N+ 1=k)(N+200+k) 7204 k)) (A OR/dg ) (e 1)

Proof : Formula (11.8) gives
(1-5%) Ut = 2(e 1) Tdp' + N(N+ 20+ 1) Jg = 0
Then, it can easily be proven by induction
(1-82) (d*'grdet ) - 200cvk) TdhIR/de®) + (N 1=k (N1 2000k) (8 opzde!) = 0

whence the result.

Formula (11.27) leads us to define, for any o« > -1 and any integer N > 0, the sequence
(N s o bY
(11.28) [ AF= (N 1-K)(N 2o k) Ny 7 200hk) k> T,
| 2=t
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Lemma |1.8 : For any real number o > -1 and for any integer m > 2, the weights Qg:;" are

given by

1) if N iseven,

(1.29)  o§T =yl =2 =TI N T

where the sequence ( Z*™ ), isdefined by
Zm _ (N+2m-2)(N+20+3)

- o+ I m-1 ' 2
(11.30) 4 (oc+1)(m=1) '

, M 2>

7% = 22 U (o 1) T(ox+2) NU/T(N+20+3)
2) if N jsodd,
(L31) Q5™ =ogl =T - T O™ kT o7
where the sequence ( T*™ )5 IS defined by

wm (N+2m-=-3)(N+2x +4)

- Tu+1,m-1 2
(11.32) 4 (ocs 1)(m-1) '

, M2

700 2 22 mo 1) T(oc+2) NE/ZM(N+20¢+3)

Proof : First note that, due to Lemma I1.7, we have
A = (d™ R, Zde™ 1) 7 (dM, /AT ()

1) When N is even, applying formula (11.10) to the potynomial ® = d™Jy, ./dc™ gives at once
XE™ 2 2 ("R /de™ 1) of ™ v 2 Ty (™R, /e () o T

The result follows by setting 2™ = Xg™/2(d™Jy, ,/dt™)(+ 1) and using Corollary 11.1 and (11.9).

2) When N is odd, we must apply formula (I1.10) to the polynomial ® = ¢ d™Jy,,./dt™. We obtain
[t @™, /dE™E) 0, (6) dt = 2 (g, /dt™(+ 1) 0g T

D B (C a2 it TER DI Y UiV Vs i bIE ) I - A

N+m
or equivalently

os™ = [ € (dMIF,/dE™I() 0y (T) dL/2(d™Iy, /M (1)
BB NG Cal N S Vb N
[t remains to compute
I (IR 0,(0) & 1 @UE ™) oy, (R)/200+ 1) d
= (1720 1) [, (@™ Nm/dcm”)(t)om(t)dc
= ((N+20csm+ 1)/74Cce 1)) 1, (@9 7dE™(E) 0, ((8) ot
= ((N+20cem+1)/4(00+ 1)) Xty ™
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Setting now T*™ = (N+2x +m +1) X;‘f:'"’ /8 (oc+1) (d™Jy . 7dc™)(+1) and applying once more

N+m

Corollary I1.1 and (11.9), we obtain the resuit.

Remark 11.5 : Of course, applying formula (11.10) to the function ® = 1, one could think to

compute the weights o' by
Mot 1)?

N
—_ (/)X o
r(20+2) Zj-19;

(11.33)  og™ =g T = 2"

But, due to the round-off errors, this formula is not so precise as (11.29) and (11.31) for large
values of N. As a matter of fact, computing gg:;" by using the recursive formulas (11.28), (11.30)

and (11.32) is also cheaper and easier,

Remark 11.6 : The computation of the weights from the preceeding formulas seems a little bit
complicated. However, we intend to work with low values of m ! Tables giving these weights for
different values of the parameters o«, m and N can be found in Appendix C.

We explicit here the weights when m is equal to 2, since we will use the corresponding

formula in the sequel : the weights p;’"z , 1 £J<N,aregivenby

2045

(11.34) 0?12_ 2 FT(Nvox+2) T(N+ox+3) __ 21 : : :

NI F(N+20+5) (1= IRITE ) I (@)
the weights ngf and p‘;‘jf are given respectively by

Mo+ 1) M(ox+3 N!
(1135)  oo? = gu2 = gewez [0t D) Tler®)
’ ' ox+3 FrM(N+2x+5)
and {(x+2) N2 4 (+2)(20¢+5) N + (x+3)(20¢+3)}
(11.136) %% =~ p%2 =222 r(x+2) M +3) N
| e e M(N+20+5)

Thanks to the Stirling's formula, it is an easy matter to note that, when N goes to o, the g5’y tend
to 0 as N"2"*%) and the 01y ,0O<k<m-1,tendto0as N-2(2+)

Let us consider the special (and simpler) case o = 0. Then, the weight 0, isequal to 1 and the
Jacobi polynomials simply coincide with the Legendre polynomials. The weights 98,'12: and Q?:: are
given by
8

2
3(N+1)(N+2)(N+3)(N+4) (2N? + 10N + 9)

(11.37) ogf o ggl'f =

and
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8
(N+ 1(N+2)(N+3)(N+4)

(11.38)  p{?m-0)?=

Remark 1.7 : There exists another standard formula to approximate ]_1, (%) 0,(¥) dt, namely

the (left) Gauss—Radau formula
N

[Lo@ o ) dn = Z), 2@ o v (1) o2,
which is not of type (I1.10). However, both the Gauss-Radau formula and formula (l1.10) are
special cases of a last formula that we now introduce.

Let us denote by ( d:'b )n“N the family of Jacobi polynomials which are orthogonal with
respect to the measure (1+%)%(1 —C)° dt, where d:'a has degree n. For a fixed integer N, we denote

by c}"’o , 1 <j <N, the zeros of \J:j'o . Then, for any integers m > 0 and p > O, there exists a

unique vector of weights g;“m'p L1 <j<N,andg, ™, 0<k<m-1,and 0en’,0<e<p-1,in
R" x R™*P such that the quadrature formula
1139) [ [ 2@) 0, (L) dt = T}, (g™ gpm

| ¢ I, (derdeh(=1) of ™ 2o @@/t 1) ol

is exact on Py, o ((A). Clearly, the formulas (11.10) coincide with formulas (11.39) in the

case m = p, while the (left) Gauss-Radau formula is obtainedfor moa 1, p = 0.
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111, VYariational formulation of the Dirichlet problem for the
bilaplaci

We are interested in the approximation of the following model problem : Find a function u
defined on A such that
[ V=1 inA ;
ann | uwenao
| vzh=o
where f is a given distribution on A. It is well-known that, for any f in H™2(A), this problem has

a unique (variational) solution in Hg(/\). However, we need here a more general formulation.

To that aim, for each parameter o« > -1, we introduce a family of Sobolev spaces associated
with the measure p, (%) dt, where the weight g, has been defined in (11.1). First, we introduce the
space
(11.2) Lz(/\) ={v:A -> R measurable ;[_‘, v3(T) 0,(L)dl < +o0}
it is a Hilbert space for the scalar product
13) ), = [ u@) v@ o) dt
and we identify it with its dual space; the corresponding norm is noted ||.{l, . A . Then, for any
integer k > 1, we introduce the Sobolev space
(11.4) B A = {ve LZA) sdivrdete LAA), 0 <8 <k}
this space is provided with the norm
(N1S)  vllen = ULy Zeoo @v/aeh? o,(8) dt]'
and with the semi-norm
(11.6)  Ivhoa =1 @v/dth? o, (2) )"

For any real number s > 0 which is not an integer, the space H:(/\) is defined by interpolation
betgveen HL’](/\) and Hi’]”(/\), where [s] is the integral part of s, and ‘its norm is denoted by
Ill, 4 A - For any nonnegative integer k, we denote by H;o(/\) the closure in Ht(/\) of the space
D(A) of all functions of class ™ having a compact support in A ; we call H;k(/\) its dual space,
which is spanned by the derivatives of order k of all functions of L:(/\), and we still use the

notation (.,.), for the duality pairing between this space and H;,O(A)‘
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A detailed study of the properties of such spaces can be found in [Gr][BM2], we just recall
some of them that we need later ; assuming that « satisfies -1 <o < 1, we have
1) for any k > 0, the mapping : v - vp, is an isomorphism from H:,o(/\) onto H'_‘“'o(/\);
2) for any integer k > 1, the trace mapping: v - (v(z1), v'(21), ..., (d"vzdt (e 1) ) is
linear continuous from HX(A) onto R, and its kernel is exactly the space HE o(A);

3) for any integer k > 1, the semi-norm I'Ik,«,/\ isanorm on H:o(/\), equivalent to[|. [l , A -

Next, we consider the bilinear form a, , defined on H:(/\) x H:o(/\) by
7)) auy) =[] u(e) (vo ) (x) o
Clearly, for any f in H;z(/\), problem (I11.1) is equivalent to the following variational one: Find
u in H2 J(A) such that
(111.8) Y veH2 (A), aluv)=(fyv),

In order to study this problem, we need some properties of the form a, .

The following lemma provides two extensions of the Hardy's inequality that will be useful in
the sequel.
Lemma lll.1: For any real number 8, every function ¢ in D(N) satisfies
(11.9) [, 02(0) gy(T) dt > (1-28) [, 0(X) g, (X) o

and

(1.10) |1, 02(0) €2 0y(®) dt > (1-28) [, 02(1) 6% (1)

Proof : The inequality (111.9) follows from
o< [ [0@) 0p(t) + (1-28) 9(%) T ()] 0_g(8) o
< 1) 102 0y(T) + (1-28)% 02(X) T2 gy ,(8) + (1-28)(9)) (L) T (L)1
< J1 0 H®) 0y0) dt 4+ (1-28) 15 02(0) 0g,(8) [(1-28)87 - (1-8%) + 26%(B-1)] &
< J!) 02t) og(t) dt - (1-28) [, 93(X) p_p(X) o
Similarly, we also have
0< 1) [0(0) T op(®) + (L) 0y (T)T2 0_y(0)
< [N 03 £ (1) 1 02(R) 0y_p(8) + (97)' (XD T og 4 (RI]
< [ 0@ eyt de + [ 030D 0 p(8) [1 - (1-8%) + 28%(B-1)] it

< [ 00 €2 0y dt - (1-28) [, 9%(8) €2 0y p(T)
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Proposition [il.1: Let o« satisfy -1 <o < 1. The form a,  is continuous on
H2(A) x HZ ((A) endelliptic on HZ o(A).

*,

Proof : The continuity of a, is an immediate consequence of the inequality

la (U <l lly o A 1CV0 D) Mo _ap SHUlly g A VO lls o n
since the mapping : v - vp, is continuous from Hz,o(/\) onto Hf«,o(/\)-

To study the ellipticity, we first note that, for angy u in H:,o(/\)' settingw = up, , we have

a (uu) =a_(ww) and fully, A <cliwlly A
Hence, it is sufficient to prove the ellipticity of a, for & > 0. Next, we compute for any «,
-l < <1,

a () = [, ud(@) o () dt + 2 1 w@u@) oyt dt v [ v @ue) e2(t) ot

=11 W) o () dt - ] u@) eur) de
SN e e a - [ w@u@ oM ar

whence
e auw= [l v o &) do - 21 u@) o) dt + (172) [, u¥@) oMV (@) dt.
We need
(11.12)  0u(8) moy_p(t) (<200 [1 + (1-20) L?]
1.13)  oMVAT) = 0,_o(8) (~40)(1-) [3 + 6(3-2) &% + (1-20)(3-200) T*)
We must study separately twocases: o« > 1/2and0 < x < 1/2.
1) Inthecase o > 1/2, we have

(1/2) {1, u¥@) o™(x) dat

= —20c(1-00) [, UB(E) o, _q(X) [3 + 6(3-20) t2 4 (1-20)(3-200) L) dlt
> -20(1-00) [, UP(8) 0,_4(¥) [3 + 6(3-200) £2] ekt

Using (111.9) and (111.10) for B = «-2, together with a density argument, we derive

(1/2) |1, vty oVt o .

> - [20(1-0)/(5-20)] [, w(X) 0, ,(%) [3 + 6(3-200) 2]

That yields
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8,(uw) > [1, urd(T) 0, (1) dt + [200/(5-2001 [, wA(L) 0, (L)
12052200 + 2(5-200(1-200 TF - 3(1-00) - 6(1-00)(3-200) £2] o,
> 1w 0,00 dt + [20/(5-200] |1, u (D) 0, (T
[(7-00) - 2(4-30c+20%) 2] d;
Noting that, forany L in Aando > 1/2,
(7-00) - 2(4-30+20%) €2 > (7-00) = 2(4-3cx+20%) @ - (1-5¢s 4oc?)
=-(1-0)(1-40) >0
we finally obtain
a,(u,u) > |U|§,«,A
Since |.|2'“'A is equivalent to the norm "~”2,«,/\ on Hz,o(/\)' that gives the result.
2) Inthe case 0 < & < 1/2, using again (111.9) and (111,10) for B = x-2 and a density argument
yields
a (uw) > 1w o () dt + 4o(5-20) [1, uB(R) 0, 4(6) [1 + (1-200) £2] dt,
“20(1-00) [ UB(E) 0, 4(8) [3 + 6(3-200) tF + (1-2)(3-200) L]t
that is to say
a (U > [ urB(T) 0 (8) dt + 20 [ 5 UA(E) 0, _4(T)
[(7-00) = 2(4-3oc+202) €2 = (1-00)(1-200)(3-200) £] oL
We note that, for any { in Aando < 1/2,
(7-00) = 2(4-3oc+20%) £? = (1=0)(1-200)(3-200) L*
> = (1-0)(1-400) = (1-0)(1-20)(3-200) = = 4(1-0)(1-3otre’)
which proves the ellipticity for « > (3-+/5)/2.
In the case & < (3-+/5)/2, we fix a constant X, 0 < X\ < 1, and we use (111.9) for B =
then for 8 = -2 , again with a density argument, to estimate the first term. We obtain
8, (u,u) > (1)) [ ur(R) 0, (8) dt + W(1-200(5-200) ||, u(5) g, _y(8) i
~ 8o 1-0)(1=3ocr o) [, uA(T) p,_o(T) dT
|nqmrmmm%
N = 8oc(1-00)(1-3ece?)/(1-200)(5-20)
we just have to check that, if « satisfies 0 < « < (3-+/5)/2, the right-hand member of the
previous line is < 1. This last condition is equivalent to
8o(1-0)(1-3ot+0?) < (1-200)(5-20)

i.e. to the positiveness of the polynomial
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P(x) = 8 - 320 + 360¢% - 200 + 5
Computing P"(x) = 24(40% - 8o + 3) = 24(1-200)(3-20), we see that, when « goes from O to
1/2, P' increases from -20 to -8 and P decreases from 5 to 1/2, hence it is > 1/2. That ends the

proof.

Remark IIl.1: In the particular case o = -1/2 of the Chebyshev weight, the properties of a,

have been proved in [M, Lemma V.1] by a slightly different argument.

An immediate consequence of Proposition 111, 1 is the
Theorem II1.1: Llet «x satisfy -1 < < 1. For any f in H;z(/\), problem (111.1) has a
unique solution u in Hf,o(/\)- Moreover, it satisfies

1.14)  Nullyun < e lfly 2

We are also in a position to propose a first approximation of problem (l11.1). Let N be a
given integer. The discrete problem is the following one : Find a polynomial uy in
: 2
PRIAY NHL o(A) such that
(11.18) Vv € Py(A) NHZ LAY, aluy . vy) = (1,9,

[heorem 11.2 : Let o satisfy -1 <o < 1. Forany f in H;z(/\),problem (111.15) has a
unique solution uy in Py(A) NV HZ ((A). This solution converges to u when N tends to +co.
Moreover, if the solution u of problem (111.1) belongs to H:(/\) for a real number a > 1, the
following error estimate is satisfied

A1.16)  Jlu=uyll, o o <N flull, o A

Proof : Proposition 1.1 implies at once that problem (l11.15) is well-posed; due to (111.8), it
also yields that, for any wy in Py(A) N H:o(/\).

"uN_WNug,u,A <ca(uy=wy , Uy-wy) = c g (u-wy , uy-wy) < ¢ flu=wyll, A lluy=wyll 4 A
whence

A7) Nlu-uyllep <© inf lu-wyllz 4 A
Wy € Py(A) NHZ (A)

o,
Choosing wy = nﬁjgu, where “3,'3 is defined in Appendix A, we deduce (111.16) from Theorem A.6.
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The convergence is then derived by a standard density argument.

Remark 11,2 : By an interpolation argument, one can easily prove that, whenever the data f is

in the space Hi(/\) for a real number p > 0, the solution u of (111.1) belongs to Hi"‘(/\).
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V. T llocati thods T the Dirichlet bl : {

The aim of this section is to analyse and compare two different collocation methods to
approximate problem (l11.1). The advantage of these methods is that the corresponding mass
matrix is diagonal, which is of importance for some algorithmic reasons : the explicit resolution of
time-dependent problems or the design of simple preconditioners for instance. It is well-known
that, if one wants a spectral collocation algorithm to be accurate, the collocation points must be
chosen as the nodes of a quadrature formula. Hence, these methods are related to the quadrature
formula (11.10) with respectivelym = 1 andm = 2.

Let us introduce some notation. For any integer m > O, we consider the bilinear form
(..) o m defined on C™(A) x C™'(A) by
(V1) (o), = Z?a o (L™ w(k*™ of ™ + T (dCow) /de (1) o

Now, we present the discrete problems. For a function f continuous on A, they are the

following ones : Find a polynomial uy in Py s(A) such that

| uV@e™ =™ i
v, | uwn=o
l ul:1) =0 ,

where m is equal either to 1 or 2. in both problems, the number of equations is equal to the

dimension of Py (A).

We begin by studying problem (IV.2)2 , which will turn out to be the easier one. We have
the
Proposition 1Y,1 i Let o satisfy -1 <& < 1. Problem (IV.2)2 is equivalent to the
following variational one : Find uy in Py,3(A) N Hz,o(/\) such that
(IV.3) ¥ vy € Py, 3(A) NHZo(A), 3, (uy, vy) 8 (1,0,

o+ 2
j ’
a basisof P s(A) N H:‘:'o(/\), we see that (1Y.2), is equivalent to find uy in Py s(A) N Hz,o(/\)

Proof : By multiplying the first equation in (1¥.2), by the (1 -tH2q 1 < j <N, which form




such that
2 (1v)
V VN e PN’J(A) n HK,O(A)’ (uN 1] VN)K,z = (f’vN)u,Z
Next, since the quadrature formula (11.10) for m = 2 is exact on P,y ;(A), we observe that

(U:IN) ,VN)u,z is equal to (uﬂw » V) 5 integrating by parts gives'the result.

As in Section 111, we obtain the
Theorem 1Y.1: Let « satisfy -1 < < 1. Forany f in C°(A), problem (1v.2), has a

unique solution uy in Py 5(A) N HZ,o(/\)-

We want now to estimate the error between uand uy .
Iheorem 1Y.2: Let « satisfy -1 <o < 1. If the solution u of problem (l11.1) belongs to
Hi(A) for areal number a > 1, and if the data  is such that the function (1-t23%2 ¢ belongs
to a space Hﬂ(/\) for a real number o > 1/2, the following error estimate between the solutions
of problems (111.1) and (IV.2), is satisfied

V. 4) lu=tyllp g n <€ CNZ7 Hully oo+ NYZRRO-EDY2 10 2

Proof : Using Proposition I11.1 together with (111.8) and (1Y.3) gives, for any w) in
Pr,3(A) N HZ (A,
HUN—WNIISM,A <ca (Ug-Wy , Uy=Wy) = €3, (U-Wy , Uy=Wy) = (Fuy=w ), + (Fu=wy)e,
whence
(1v.5) flu-uyll, A <c C inf lu-wyll, o A
, 2 ,
wy € Py, 3(A) NHL o(A)
(V) = (f.vy)
sup , N7« N
Vy € Py,3(A) NHZ G(A) Ivallz
We choose wy = uﬁjgu; then, we deduce the result from Theorem A.6 and Lemma B.2 of the

+ «,2 )

appendices.

Remark 1Y.1 : The smoothness assumption we make on f is very weak, since we do not require

that f is continuous on A, but only on A.
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Now, we study problem (IV.2)1 . Here, we must define the following bilinear form on
CYA) x C°(A)
(IV.6)  agy(uw)= W™y,
This form no longer coincides with the a,(.,.) on Py, 3(A) N HZ ((A). Nevertheless, we have
Proposition 1Y.2: Let o satisfy -1 <o« < 1. Problem (1V.2), is equivalent to the
following variational one : Find uy in Py 3(A) N H:'o(/\) such that
(UV.7) ¥ vy €Pu 3 (A) NMHZ A, ay(uy,v) = (Tve)y

o+ 1

Proof : We obtain (1V.7) simply by multiplying the first equation in (1¥.2), by the (1-52)? Q;

, 1 < j <N, which also form a basis of P, 5(A) N H:,o(/\)-

Studying the form a, \ requires the following lemma.
Lemma IY.2 : For any real number &« > -1, the rfollowing inequalities hold

-1 o 2 (3 3 o 2
(v.8) e IV, llown € Onoy  INaddes S CIN 1o on

Proof : Let us introduce the following notation : given two quantities X(N) and y(N) depending on
N, M(N) ~ u(N) means that there exists a positive constant ¢ independent of N such that

¢ PAN) < U(N) < e N(N). Using the induction formula (11.5) with n = N+2, we compute
(‘J:;J 'J;¢3)u,1 =

(2N+20+ 5)(N+ o+ 3) (8 Uy_y 5 Insp)ey = (N#O+2) (N4 ot+3) (Ip_y s I, 1)
(N+3)(N+20+3)
but, since (Jy_y , Iy, 1)« s COINCides with (Ug_, , Jy, 1), Which is equal to O, we simply have
Nt et ~ 2w
The same formula (i1.5) applied with n = N-1 to compute , J;_, gives
: Uy 'J;.s)m-’\’ (Jy "J;+2)«,| '
whertce, by (11.6),
(In_y "J;J)«,l ~ N (Jns "J;42)u,1
Since the nodes of formula (11.10) for m = 1 are the zeros of Jy ., , we deduce
ot Nt ~ N7 00y I (2 1) e 1)

But, due to formula (11.8), we have
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2(oc+ 1) Iy (21) = n(n+20c+ 1) (1)
and, from (11.3) and the Stirling's formula, we derive that, as n goes to +oco, J7(+1) behaves as n*
up to a multiplicatiQe constant. Hence, using (11.20) and once more the Stirling's formula, we
obtain

Wy e ey ~ N1 N-2-2e e g !
On the other hand, it follows from (11.4) and the Stirling's formula that [y, (I3 (A ~ N7',

whence the lemma.

Corollary 1Y.1: For any real number o > -1, the following inequalities hold

-1 4 2 av 4 2
(1v.9) ™ NN, g an < (INus ) Inendat SENTIVN, (1o o

Proof : Derivating four times formula (11.6) with n @ N+2, we see that
o (IV) (2N+20(+5)(N F20(+3) o (1) N+o+2 « (IV)
ez = Ne2 P T YN
N+t+ot+3 * N+2x+2 *

Repeating this argument three times more, we obtain

NMRMER IV W
where X is a real coefficient, \, ~ N%, and ry is a polynomial with degree < N~2. Then, (1V.9) is

a simple consequence of (1V.8).

We can now prove the
Proposition 1Y.3: Let o satisfy -1 <o« < 1. The form a,, satisfies the following
properties of continuity
(V.10) YV ug e Py 3(A), ¥ vy € Py 3 (A NHZIA), o Cuy, vidl < cluglly o IVillo on
and of ellipticity
(VA1) VuyePy (A NHZ(A), g y(uy, u) > clluylls

Proof : Let us write any polynomials u, and v, of Pms(/\) on the form

Uy = Z::g "y end vy = Z::g AR
Since the quadrature formula (11.10) with m = 1 is exact on P,y ,(A), we derive from (I11.7)
and (1V.6)

ANe3 sNe3 o IV
a, Uy » Vi) = 3, (U, vy) =0 VT (Uy )

o
N+3 7 JN+3)1,1
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This formula, together with Proposition 111.1 and the positivity of (Jy,$"", Ux 3), , proved in
Corollary IV.1, yields the property of ellipticity (1Y.11). On the other hand, in order to prove
(1V.10), it suffices to check that for any vy in Py s(A),

~N+31v2 , x (IV) o 2
av.12) V" Uy, Ieddar <C I an
. " N+l A
Writing now vy = Zn:() 2" J, , we have

2 Nel o oany2 2
I\’N|2,e<,/\‘='zrn=o (2" "J:"o,u,/\ '

using (11.6), we compute

(N+o+2)(N+oc+3) S
(N+20(+2)(N+20x+3)  N*!
where the degree of q is < N; hence, comparing the two expansions of vy yields
(N+oc+2)(N+x+3) . y,3
(N+20x +2)(N+20¢+ 3) Y

d;{g = (2N+2+3)(2N+20¢+5)

POy

N S (2N+200+3)(2N+20¢+5)

so0 that
2 4 aNs3\2 2
IVil2 an = SN 00, g oA

This inequality, together with Corollary IV.1, implies (1¥.12), hence the proposition.

As previously, we derive that the discrete problem is well-posed.
[heorem |Y.3: Let o satisfy -1 << 1. Forany f in GO(A),probIem (IV.2)1 has a

unique solution uy in Py 3(A) N H:,o(/\)-

The error between u and uy, is given in the
[heorem Y. 4: Let « satisfy -1 <o < 1. [If the solution u of problem (ll11.1) belongs to
H:(/\) for a real number ¢ > 1, and if the data { is such that the function (1-t2) f belongs to a
space Hi(/\) for a real number o > 1/2, the following error estimate between the solutions of
problems (1I1.1) and (1¥.2), is satisfied

(IV.13)  Nu-uyllyep < CN ully o p + NY2OC-ED) (], 0 )

Proof : Using Proposition 1V.3 together with (i11.8) and (1V.7) gives, for any wy in
Py, 3(A) NHZ (A),
”UN_WN";a,A <o, \(Uy-Wy , Uy=Wy) = ca, \(U-wy , ug=wy) = (fuy=wy), + (FLug-wy),

so that
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(v.14)  [lu-ugllye o <€ inf lu=wylly o A
Wy € Py,3(A) NTHZ o(A) h
sup (f’VN)u N (f’VN)«J
Vy € Py, 3(A) NHZ o(A) (T PN
We choose wy = nﬁfu; then, we deduce the result from Theorem A.6 and Lemma B.2 of the

+

)

appendices.

Remark 1Y.2 : Here again, the continuity of the data f on A is not necessary for the discrete
solution to converge to the exact one. However, the assumption of Theorem 1Y.4 is stronger that the
éssumption of Theorem 1Y.2 for the same order of accuracy : indeed, taking (%) o (1-t5®, we
know that (1-52)% f belongs to HY(A) if and only if @ is < 8 + (4+)/2, while (1-t?) f belongs
to HX(A) if andonly if p is < B + (3+cx)/2.

Remark 1Y.3 : By applying a standard duality method, one could obtain an error bound in the
norm ||l . o - Precisely, under the assumptions of Theorem IV.2 or 1V.4, it would be possible to
prove the following estimate between the solution u of problem (Iil.1) and the solution uy of
problem (1v.2)

(V.18)  flu=tyllgan < ONHlully 0 + N72RJCT-EH™ 200

However, the term N'/2-2{|(1-g2)'m+1)/2 flIO'M is not improved; hence, this last estimate is not of
great interest, since this term is the worst one (indeed, the fact that (I—C2)m f belongs to Hg(/\)
implies that f is in H"™(A), hence that u belongs to Hz‘d'm(A), and the other term in (1Y.4) or

(1V.13) js N™-2-¢ Nully, 4-ma.n » Which is smaller).

Remark 1Y.4 : Several other collocation methods seem natural to approximate problem (111.1),
Let us consider two of them and prove that they are not so good as problems (1V.2), and (1V.2), .
First, an immediate analogue of these problems consists of using the Gauss points, which
gives : Find a polynomial uy in Py s(A) such that
. (V) .
TG ER (SIS Y

(V.16) | uz=o0
l u(£1) =0
Of course, setting now

(Iv)

5e(,N(U'V) = (U 'v)u,O '
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we see that this problem is equivalent to the following variational one : Find uy in
Pu,3(A) NHZ(A) such that

¥ vy € Pys(A) N HEo(A) L Bpluy  vy) = ()0
However, choosing v a (1-t%)? Jy " we observe that

® and vl a2 N,

3 y(V.¥) <cN
which shows that the constant of ellipticity of the form 5«‘N is not bounded from below
independently of N. Consequently that the approximation of u by uy, is not optimal.

Another method consists of searching uy as a polynomial of lower degree, which is achieved
in the following : Find a polynomial uy in PN*,(/\) such that

ISR EE (S I RS PR I
Va7 | utznao
l 1) =0
where m can be equal to 0, 1 or 2. This problem admits the variational formulation: Find uy in
Puy1CA) NHE ((A) such that
Y vy € Py, (A NTHY (A 7 vy F™ = v(&*™ = 0, (g, Vi) = (FV) e

But, in this case, the norm of the form : (u,v) —» ™

,v)« on the discrete spaces is no longer
bounded independently of N, which prevents the discrete problem to be well-posed (indeed, in the
simplest case x o O, denoting by k the integral part of (N-1)/2, we set

ue(8) = 8 0,y - IS B dE and vy (D) = (1-£2)((E™2-t?)
it is easy to check that

(V)

1/2
l(UN ' VN)ol >cN and "UN ”2'01/\ "VN "2'0'/\ <cN )

s0 that the norm is > ¢ N'/2).
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v, locati thod { { iodi iodic Dirichlet
problem for the bilaplacian.

We complete the analysis of the best collocation method described in Section IV (collocation
at the N nodes of the generalized Gauss quadrature formula for m = 2) by applying it to a
bidimensional Dirichlet problem for the bilaplacian, when the boundary conditions are periodic in
the first direction and homogeneous in the second one. More precisely, let (0 denote the domain
© x A, where © and A stand respectively for the intervals J-m,n[ and ]-1,1[. The generic point
in Q) is denoted by x = (x,y).
For a given distribution f on Q, the problem we want to approximate is the following one :
Find a function u definedon € such that
[ Alu=f inQ
(y.1) | u(-t,g) =uC+m,y)  and u(x,x1)=0 ,x=(x,y)€Q
| (Bu/ax)(-y) = (Bu/ax)(+,y)  and (Bu/BY)(x,21) =0 ,x=(xy) €D
The boundary conditions are periodic in the x-~direction and homogeneous Dirichlet in the

y-direction.

Example Y.1 : An example of problem (Y.1) is given by the stationary Stokes equations
governing the flow of a viscous incompressible fluid between two parallel planesym + 1, when the

body forces are parallel to the plane spanned by the x and y-directions and depends only on the two

coordinates x and y :
(v.2) [ -vAu+gradp=1 |,

[ divu=0
Here, u represents the velocity of the fluid, p is the pressure and the kinematic viscosity v is a
fixed parameter > 0. A model of this problem is obtained by reducing it to the previously defined
domdin Q) and providing it with the boundary conditions
(v.3) u(-1,y) =u(+m,y) and ulx,+1)=0 ,x=(x,y) €Q
Then, following the technigues of [BMM, Prop. [1.2], we can prove that, for any u in H'(Q),
0 > 1, there exists a unique stream function u in H“'(Q) such that

(Y.4) u=curlu inQ
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This function u is a solution of problem (Y.1) with f = curlf. Similar results can be obtained in

weighted Sobolev spaces [MM].

The analysis of problem (V.1) requires some notation. First, if X is a Banach space, for any
real number s > 0, we denote by Hi(O,X) the closure in H*(©,X) of the space of all functions of
class C* on © which are periodic with a 2n-period, and by H,*(© X') its dual space. Let o,
P € Z, stand for the Fourier coefficients of any function v in L2(®,X), we recall that the mapping:

Vs (Lpeg (140D 0212
is a norm on Hi(@,X), equivalent to that induced by H*(©,X). Then, defining the Fourier

coefficients ', 8 € Z, of any distribution f in H*(© ,X'), we see that the norm on H_%(® X') is

given by
Illyssoxy = ( Zeez (1 T [N N
Next, for each parameter o« > -1, for any real number s > 0, we introduce the space
(V.5) H2,(Q) = HYO LZA) NLAO HAA)
and provide it with the norm
(V6)  IVllyown={ Zeeg (RFITHE A + I9FI2, 00 )12
For any integer k > O, we also consider the space
(v.7) HE o) = HYO LZ(A) N L3O, HE((A))

and we denote its dual space by H;'k,(()).

Clearly, if the distribution f is given in H;?'(Q), problem (V.1) is equivalent to the
following variational one: Find u in Hi‘_o(o) such that
(v.8) vveHZ (@), [ (afuw), dx= [T, (fv), dx
Finally, taking the Fourier transform of this equation gives the equivalent formulation: Find u
in H‘f,o(o) such that, for any integer 2 ,
(VS VzeHlA), @W-2020" T, o), = (),
Let us define the bilinear form on H:’o(/\) x Hz,o(/\)

(v.10) bi(w,2) = j‘, {09 wly) 2(y) 0, (9) + 227 w'(y) (20,)'(Y) +w"(y) (z0,)"(y) } dy
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Proposition Y.1: Let o satisfy -1 <« < 1. For any integer € , the form b: satisfies the
following properties of continuity
(VA1) [ YweHZ(A), Y ze H2o(A),
l 62w 2) <o (e IWlZ p + IWIE A2 CRH 2R o + 12l A2
and of ellipticity

(V.12) Y weH2(A), biw,w)>c (Wl + Wi}, A)

Proof : Integrating by parts, we have for any w and z in Hz,o(/\)'

biw,2) B [_11 {2t w(y) 2(y) o, (y) - 222 wly) (2, )"(y) +w"(y) (z0,)"(u) }dy
s0 that

162w, 2)] < 04 [Wlg o p N2l e n *+ 227 IWllg o A N120g Ny + W1l 00 120 N 0
Using the continuity of the mapping: v —» vo, from Hz,o(/\) onto Hf«,o(/\)' we obtain (V.11).
Moreover, for z = w, we write

biw,2) a [', (24 way) o, (W) + 202 w'(y) (wo,)'(Y) + W (W) (wo)"(y) Jdy
and (V.12) follows from Proposition 11,1 and the ellipticity {[BM2, Lemma 111.4] of the form :
(w,2) > |1, W) (z0,)'(9) dyon H} (A).

[heorem V.1 : Let o satisfy -1 <& < 1. Forany f in H;?,(Q) , problem (Y.1) has a

unique solution u in HE,O(Q). Moreover, it satisfies

(V13) Nl o < clfllgz, @

Proof : Any distribution f in H;?,(Q) can be written f = f_ + f, , where f_ belongs to
H:2(0,L2(A)) and f, belongs to L%(@,H2(A)), with

Iflhz2, 00 <00 lhz2c0 020an * Ifo 2o ng2ean
Due to Proposition V.1, for any integer £, equation (V.9) has a unique solution w' satisfying

40,2 oo 2412 24-2 22 |12 22
v IWlgan + Wil g a0 < (01427 I M50n + ”?o”H;?(A) )

The function u, the Fourier coefficients of which are the w! 2 €Z, isthe ‘unique solUtion of (V.1)
in H2 _(Q) and satisfies (V.13).

o, »0

In order to approximate problem (Y.1), we fix an integer L > 1. Then, for any Banach space
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X, we consider the space SL(G,X) of trigonometric series of order < L on 9, i.e.,

(V.14)  $(OX) :{vL=Zt:_L exp(iex), 9te X )

Next, we introduce the nodes

(V.15)  x, =2km/(2L+1) , -L<k<lL

Let LN' denote the interpolation operator at the nodes x, , -L <k <L : for any function v in
€@ X), iv belongs to $,(© X) and satisfies

(V.16)  (4v)(x) =v(x) , -L<kglL

Now , let 8 denote the discretization parameter (L ,N), where L is > t and N is > 3. We define
the space of discrete solutions as
(V.17) X = $(0,Py,3(A))

The discrete problem is the followingone : Find ug in X, such that

| 8% 0D = 1x B, —L<k<L TN
(V.18) | ulx,2=0 , -LsksLl
| Guzanx e =0 | -L<ks<l

The number of equations is equal to (2L +1)(N+4), which is the dimension of X, .

To analyse this problem , we define the discrete bilinear form on C>(A) x C'(A) by
(V.19)  bly(w.2) =2%(w,2),, - 282 (w",2),, + (W
We have the
Proposition ¥.2 : Let o satisfy -1 <o < 1. Problem (V.18) is equivalent ta the following
variational one : Find ug in S (O Py s(A) N H:,o(/\)) such that, for any integer £ between -L
and L,

(V.20) ¥V z4 € Py,5(A) NHZG(A), bly(Tg ,2y) = (171 20, ,

2)g 2

Proof : Since the interpolation operator i\* is equal to the identity on $,(®,Py, 3(A)), problem
(V.18) is clearly equivalent to the following one : Find ug in (@ Py 3(A)) such that, for any
integer £ between -L and L,

| et bl v 2220 GVEE D = AIOERhH L 1<
van | dn=o

| atfon)zn) =0
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Multiplying the first equation in (V.21) by the polynomials (1-£%) @5*% , 1 < j <N, we obtain
(V.20).

We must now study the properties of the form b:,n . We need some lemmas.
Lemma Y. 1 : For any real number o« > -1, the following inequalities hold
-1
(V.22) o MG an € - N2 IR ez <C IR NG o

Proof : We follow here the same lines as in the proof of Lemma V.2 and the notation N(N) ~ y(N)

again means that the quantity A(N)/uy(N) is bounded by positive constants independent of N. Due to
the definition (1Y.1), we have
(‘J“2 ‘J;+4)«,2
=2 \J;*z(H)J;M( +1) pg:f +2( d;'z( o-l)d;‘;‘( 1)+ \J;*z'(ﬂ)dsm( +1)) @?,’f
From (11.35), (11.36) and Lemma I1.7, we deduce
Mo+ 1) Mo +3) N!
ox+3 F(N+20+5)
{[(ox+2) N? + (x+2)(20+5) N + (o +3)(20¢+3)]
- (o +1)(0+3) [(N+4)((N+20¢+5)/2(0x4 1)) + (N(N+2x+5)/2(x+3))] }

R S eg = 257 2D D

whence

N!
+ +3 +
S Neadaz = - 223 (e 1) Mo+ 3) TN+26:5) IR+ 1R, o+ 12N+ 20+ 7)

Using (11.3) and the Stirting formula, we see that - (\J,‘;“2 ,d;‘,‘m)“‘z ~N" Formula (11.4),

together with the Stirling's formula, also yields that |lJy,, ||§ oA N, whence the result.

Corollaru Y.1 : For any real number o« > -1, the following inequalities hold
(v.23) o'W "‘sz"o«/\ - (3 INedduz € <c NIy 2”3,«,/\

Prpof : Using twice formula (11.9) implies
" 2 #2
(J:l(ld J ‘J;+3)«2 ~N (‘J;H ' ‘J;+3)u2
Next, we use the induction formula (11.6) in order to replace J&*? by a combination of LJs*2 and
Jni2 . Noting that (JR*2 , Jp 3., = (i3, Un.3), s equal to O, we obtain

(JN+3 ’JN+3)a,2 -~ N2 (C\Js‘z 'J;43)u,2
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We replace LJy, 3 by a combination of J, , and Jx,2 » and observe that (J;’f"z s In2)y 2 18 equal
to 0. That gives
(‘J:;ﬁ; ! J;+3)u,2 ~ N2 (d:l“z ' J£+4)e(,2 '

so that the corollary follows from LemmaV. 1.

Lemma ¥.2: For any real number « > -1, the following equality holds
(V.24) (=8B, (1-tDE") 0 = 2 (e 1) (N DNC2N 20 1) IS 2, 0

Proof : Using successively (11.8), (11.5) and (11.6), we write

(=572 IR = 2 (e 1) £ I (X)) = 2 (oee 1) (LU (ED)
2 (Cor 1) /(2N 200 1)) [N+ 1N+ 200+ 1) /(Nwocs 1)) I (85 + (N4ox) I 2 (8 )]
2 (Cocr 1) (Nvo) /(N1 200)) Jg !4 (E )

That gives
(-8R (1=EP)IE )y g = 4 (e 1) (N+e) /(N+ 20002 IR 2, 12 o
The quantity lld;’j;, llg’m,,\ can be computed from the Gauss-Lobatto quadrature formula:
IR 1115 o = 2 055y C+ 1) 06,
so that, due to (11.20), (11.9), (11.3) and (11.4),
In 1 e op = (N 1IN+ 2004 2)(2N+ 200+ 3)/72C0c 1)) 95, (112, A
= ((N+ 1D(Ne2)(N+ 2001 2)2(2N+ 20048) /2(0 1 (N+ex+2)2) IS, 112 0

Using this formulawith N+ 1 replaced by N-1 gives the lemma.

Lemma ¥.3: For any real number o > -1, the following equality holds for any real numbers
X and y

[ o' N (A (ot ”g,a,/\ + 2 (o ”g,u,/\ )
(v.25) | < (O=TDN IR+ UIRE) (=B IR + I )0

4 2 2 2 2
I <N O I 18 o + 02 I3 1B 0)

Proof : Thanks to (11.8), (11.6) and (I1.S), we have
(1=8 ) IRy (80 = 2 Coce 1) TF Uy (B = (Ns D(NS 200+ 2) IR (8 9)
= 2 (ot 1) ((N+o)(Nroce 1) ZIN+ 200N+ 200+ 1)) 5 Iy (E5)
+ ((N+oO(Nwocs 1N+ 2004 2) /(N +204 1)) I (55)
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= ((N+o)(N+ocs 1) /(N 200N+ 20+ 1)) (1= %) IR (&)
+ ((N+oO(N+oc+ 1)(2N+ 200+ 1) /(N+ 200+ 1)) I 4 (85)
That implies
(S IOV RTINS0 I G [P ) ONN WS TI o)
=[x + 0 (N+o)(Nwoc+ 1) Z(N+20) (N+20c+ 1)) ] (1=5 I8
4 p (Nso)(Nvoc+ 12N+ 200k 1) /(N+20c+ 1)) I 112 A
By using twice formula (11.8), we obtain at once
-2 12 a2 L) () (0 I ) (0D dE
= (N=2)(N=1)(N+20)(N+20¢+ 1) 195, 15 o A
Moting that (1-t2)Jn ", + (N=1)(N-2) Jy_, is of degree < N-2, we see that
(1) T -8D98 (0« (N=1)(N=2) JE_ ()] I8, (8) o () dt = 0
hence
[l (TR () S (0D I () 0y (8D AT = = (N=2)(N=D) 5 12, o
Finatly, setting
U* = 0 ((N+oO)(N+oc 1) /(N2 200) /(N+ 20+ 1))
we have
(CIE IO IFRTIN S0 B G I SO TONN S PSTIV i DIAVA Aol A
= (0 4 UM)Z (N=2)(N=1)(N+200) (N+ 20+ 1)
S 20" O+ U*) (N=2)(N=1)(N+200) (2N 4200+ 1) + u*2 (N+2002(2N+ 20+ 1)
= (N+20¢) { A2 (N=2)(N=1)(N+20¢+ 1) = 2 Ag* (N=2)(N=1)N
U2 IND 4 2(7ocs 6)N? 4 2(oc+ 1)(100= 1IN + 2(20¢+ 1)(20¢=1)(ox+1)] )
Using the inequality 2 |xu*] < A2 + u*?, we deduce that the left-hand side is less than
¢ N* ()\2+u"2), and greater than
(N+20t) { A2 (N=2)(N=1)(20¢+ 1)
VU2 140+ 15)N2 4 21002+ 9o -2)N 1 2(200+ 1)(20¢-1)(ox+1)] }
It i‘s easy to check tHat this last polynomial can also be written
(140¢+ 1SIN(N=2) + 2(ox+ 1D[(100¢+ 13N + 4o®=1]
hence it is Targer than N(N-2) for & > 1. Noticing that both u*2/v2 and U5, 12 . A7 IV, 1 1 o A

are bounded independently of N, we obtain the two inequalities of the lemma.

The following result is proved in [BM1, Lemma 2] in the particular but not simpler case
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o = 0.

Corollary Y.2: For any real number o > -1 , the following inequalities hold for any
polynomial v in Py (A)

(v.26) o' NTICT-EHV I, A < (18D, (18D o < e C1-BDV 2,

Proof : Since v belongs to Py,_,(A), we can write
v=LZalp U
By using twice formula (11.8), we know that
(0gs2 Y )" = (n=1)n(n+ 20+ 1)(n+ 2001 2) 0, Y
Integrating twice by parts, we obtain
(V27 -2 0= 205 (M2 (n-1n(ne 200 1) (2000 2) W2 o
On the other hand, noting that the Gauss quadrature formula is exact on P2N_1(/\), we have
l ((-t3)v,(1-t2)v) , = Z:_: (V% (n-1)In(n+ 2001 1)(n+ 204 2) U2 I3 A
(v.28) | R (S NI G L NI N
[ (G B o ICARN AN D I G I 4 (AN SV SO D N
The two last terms have been computed in Lemmas Y.2 and V.3 respectively. Consequently, we

obtain the desired result by comparing (Y.27) and (Y.28).

We are now in a position to prove the
Proposition ¥.3 : Let « satisfy -1 <o < 1. For any integer £ , the form b:'N satisfies the
following properties of continuity
(V.29) VY owy € Py s(A) NHE((A), Y 2 € Py 5 (A) NHZ (A,
lb:,N(wN 0l < el Pdllellg‘u'A *llwy "g,u,/\ )72 (et Iz "g,u,/\ + iz ”g,m,/\ '
and of ellipticity
(V.30) V wy € Py, 3(A) NHZ (A),

e, 4,,-1 2 2 2 2
bn(Wy Wy 2 e CETNT llwylly o o + 8% llwyll o A + iwy 12ren )

Proof : Let wy and 2 be two polynomials of PNJ(/\) N Hz,o(/\)' We study separately each of the
three terms in b:"N(wN V2\).

1) We have

v
(wy" WS Wy 2,



-37-

so that Proposition |I1.1 yields at once
(V.31) (WW) 2y g2 < ClIWylly o n 2yl A
and '

(v.32) (Wi w2 cllwytZ A

2) We write the expansion

_ N*B ~n o _ N+3 ~n o
Wy=2.o Wy and zy=2 o U0

since the quadrature formula is exact on P, (A), we have
=Wy 2 ) + Wy 2), = - w3 gl CUERRV ) I
Then, Corollary Y. 1 yields on one hand that
(V.33) = (wy W) = - (Wi w2 cliwglion
and on the qther hand that
- (W2 = - (Wy 2y, + C WS NI o, o 15 A
Noting that, due to (11.6), the coefficient of ‘JN+2 in the expansion of wy is equal to
W3 (2N 200+ 5)(N+ox+3)/(N+20c+3), we obtain
=Wy, 2040 <CUlwylly o p 12illon + Wil ooa 2Tl g n )

Since H;(/\) is the interpolation space of index 1/2 between Lz(/\) and Hz(/\), this implies

" 172 172 172 1/2
(V.39 =Wy zy)ep <o Ulwyllonllzyllgpn + IWnllo)c a Wi llalo A 2ll s a iz llz )

3) Finally, writingw,, = (1-t2)?W, andz, = (1-t%)?2, , where W, and 2, belong to Py,_,(A), we
note that, due to (i1.14),

Wy 20)e2 = (=82 B0 000 < (18D a2 o ((1-tD25,, 20072
Applying Corollary V.2 with « replaced by «+2 and noting that |(1-5%) w,, |l w2, A (rEsp.
T =82 2l 4v2.4) cOInCide with [[(1-57)2 Wylly o p (resp. [(1-E52 2yl 4 4+ We obtain
(V.35)  (wy o 2y)gp < Cllwyllo o lzyllo on
On the other hand, Corollary ¥.2 implies
(V.36)  (wy, Wy, > oN "WN”o.x/\

Finally, the continuity property follows from (V.31), (V.34) and (¥.35). The ellipticity
property is a consequence of (V.32), (¥.33) and (V.36).

Iheorem Y.1: Let & satisfy -t <o <!. Forany f in C%Q) , problem (V.18) has a

unique solution ug in X .
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Proof : Due to Proposition ¥.3, for any integer £ between -L and L, equation (Y.20) has a unique
solution w,ﬂ inPy,3(A)N Hz,o(/\)- The function u, @ Zh_L w,ﬁ exp(ifx) is the unique solution of

problem (Y.18) inX, .

We are going to prove an error estimate between u and uy . If X is a Banach space, we
introduce the projection operator nL' from L%(©,X) onto $.(©,X) which, with any function v with
Fourier coefficients ¥, ¢ € Z, associates the trigonometric series n’v = ZL N 9texp(il x). We
recall the following result [CQ, Thm 1.1], valid for any real numbersrands, 0 <r <s: for any
function v in H3(0 X),

(V.37) llv-nfvllwe,x, <cl™? IIVIIWG’X)
A similar estimate [CQ, Thm 1.2] holds for the interpolation operator if sis > 1/2:

(V.38) V-4 vllygox <c L™ IVlygox)

We conclude with the
[heorem V.2 : Let &« satisfy -t <o <1. [f the solution u of problem (Y.1) belongs to
Hy ,(Q) for areal number o > 2 , and if the data f is such that the function (1-y®)%% g
belongs to a space H:,(Q) for a real number o > 1, the following error estimate between the
solutions of problems (¥.1) and (Y.18) is satisfied

(V.39)  lu-tgllyppn <o COZT A N ull, o g s NCLTO N2 C-g®Y 2 1) L L o)

g.x,#0N

Proof : We have

L 4nl ~Ry2 NI,
(V.40)  Jlu-u, "2,«,»,0 < ”u—nl.’u"&u,a,n v {2l (€7 lu “Ugllg o n U =Ugll5 o A )

1) Using the definition (Y.5) of the spaces H;‘,(Q), we have by (V.37)

}1/2

* » ”»
lu-rt"ully gy 00 < Nu=-1"ullyzio 1 20an * Tu=TCUll2(0 HaiAn
2.
<cl™( ”U"Hg,(e,Lg(A)) ' ”U”Hz-2(e,ua(/\))) ,
whence
2.
(V.40 fu-nfully, , o <c L™ flul

2) For any integer £, -L <2 < L, Proposition V.3, together with (V.9) and (¥.19), implies that,

a0, 0

for any polynomial w,: inPy(A)N HZ,O(/\),
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To estimate the last term, we observe that

; %
| - wyllg o p + N4~ Wyl op <N bonN(uN Wy Og-wy)
<o N [by(U'-wy , Gg-wy) - (7', Gg-wp, + @7 f ,G,ﬂ—w;)ulz] ,
(note that b:N(w; ; D;—w,ﬂ) coincides with b:(wé , Up-wp)), s0 that
dynt ~t ~2 o
, O PBEIR o+ IEB22 )2 <N (A NTWIZ o o [GE-wiIZ, )12
| v, - Wty
' v N sup e - Wz )
,[ vy € Py, 3(A) NHL o(A) itz o
|
|

+N1/2-o'”(1_ 2)3/2(f LLf)”Qu/\}”Vanu/\ ’

P v = I e = (01 v BYv) - (P v,
‘ S Pl v FT v,
(; so that, due to LemmaB.2,
} (7 ), - (LL’f' Vep <o (I _y?)3”2 (?Q‘bfft)"o,u,/\ PNV oy?)32 7t "MA
t where we have chosen 1/2 < p' < p-1/2. Choosing wN = n and applying Theorem A.6, we
i derive
a2 | CPITE A o BB )
| | <o NPT CRMBMIZ o p +IBTIZ a2 o N =42 (g o 0
| | e N2 NTE g (R D A )

The final estimate follows from (Y.40), (V.41), (¥.42) and (V.38),

Remark Y.1 : By using the same techniques as in [BMM, § 2], one can check that, if the data f
belongs to H; ,(Q) for a real number @ > 0, the solution u of problem (V.1) is in HZ*3(Q).

Remark Y.2 : By analogy to Section IV, one could think of defining the following discrete problem
u i Find ug in Xg such that

{ | A%u 0t D =10 8D L sLek<l, 1< N
) 4

(v.43) | ux, D=0 , -L<ks<l
| uzanix =0 , -L<k<l |

(where the nodes are those of the Gauss-Lobatto formula). However, it turns out that this problem

is not so accurate as (V.17). Indeed, setting

9 =%t - ((Ne 20k 2) (N o) (N oo 1) /(N=1N(N +200)) U

L
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we observe that ((1-t%)y 00, 71955 |I§’a .1 15 bounded independently of N. On the other hand,
for 1< j <N, o€ is bounded by (c/N) [Jy_ (L )], so that (1 SN INAVE N SN E
<cNZ, Noting that ¢ vanishes in 1, we have found a polynomial y = ¢ /(1 -t?)in Py_1(A) such
that

(-8 ), o < N2 (-8 w0,
Using this result with « replaced by o + 1, we obtain a polynomial w, in Py, 3(A) N HZ ((A) such
that

Wy s W)y < N2 llwyllg o p
Consequently, we have proved that the constant of ellipticity of the bilinear form associated with
problem (Y.43) is<c N2, The convergence of the solution of this problem to the sotution of

problem (Y.1) is not so good as the one we obtained in Theorem V.2.
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In this first appendix we are going to derive some results concerning the weighted Sobolev
spaces we use in the paper and then we shall analyse the best possible fit in these spaces. The

proofs we give generalize the analysis presented in [M] that focussed on the weight x o -1/2 .

A 1. Results of int lation bet { ighted Sobol
We begin by stating some properties of the dual spaces H;r(/\) of H;,o(/\)- In the following,

as is natural, we shall identify Lf(/\) with its dual space. As a consequence, the differentiation in

the space of distributions D'(A) is defined as follows :

(A1) VieD(A),V¢eDAN), <df/dg,¢>8-<f,0_I[dlgo,)/dC]>

Obviously the previous definition of the derivative coincides with the classical notion of

differentiation for regular functions.

Let us first introduce the space FE."(A) of all derivatives of order r of functions of Lf((/\).
The following theorem gives a characterization of the dual space H_ (A) of H:,o(/\)’ when Li(/\)
is identified with its dual space. It is well known in the case «« = 0 and has been first established in
thecase x = —1/2 in [M, Thm t11.4].
Theorem A.1: Let « satisfy -1 <o < 1. For any integer r, the spaces FL."(A) and

H"(A) coincide.

Proof : Let us first recall that, as a consequence of [BM2, Lemma 1Il.2], the mapping:
¢ - 0_,[d"(g0,)/dt"] is continuous from H;,o(/\> into Lz(/\). Then, let us consider an element ¢
of He o (A); it follows that for any f in LZ(A), we have

<f,0_ [d (90 )/dt ] > <clifllgon ol o n
We derive from (A.1) that F8."(A) is contained in HZ"(A).

Conversely, the range of HLIO(/\) by the one-to-one mapping: ¢ - g_u[dr(w@“)/dcr] isa
closed subspace of Li( A). Hence, any element L of the dual space H_"(A) of H.;,o(/\) defines on

that closed subspace an element L such that
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Voge H;,o(/\)' <L, g>=<L,o0_[d(po)/d"] >
Using now the Hahn-Banach theorem, we extend L to an element of the dual space of the entire
space Lz( N), which can be identified to a function f of Li( A) as previously mentioned. Using once
more (A.1) aliows to conclude that L and d"f/dt" coincide, which implies the imbedding

HT(A) € 8T (A).

For any pair of Hilbert spaces X and Y such that X is contained in Y with a continuous
imbedding and dense in Y, for any real number 8 in ]O,1[, we denote by [X,Y], the interpolation
space of index 8 between X and Y, as defined in [LM, Chap. 1]. The following result of interpolation
between the spaces H;,o(/\) is proved in [BM2, Lemma I11.3] (similar results can be found in [Gr]
in a slightly different framework).

Iheorem A.2 : Let « satisfy -1 <o < 1. For any real numbers p, q and s which satisfy
0<q<s<p anddonotbelongto N + (1+x)/2 , the following equality holds between the spaces
of interpolation

[H:o(/\)v H:,O(A)](p-s)/(p—q) = H:,o(/\)

By duality, we derive the following result.
Corollary A.1: Let o« satisfy -1 <o < 1. For any real numbers p, q and s which satisfy
0<q<s<p anddonotbelongto N + (1+x)/2 , the following equality holds between the spaces
of interpolation

(HUAY HPA N _astp-q = Ha (A)

As a consequence of [LM, Chap. 1, Prop. 2.1] we obtain
Lemma A.1: Let o satisfy -1 <x < 1. For any real number s which does not belong to
N+ (T40)/2 , the space [HZo(A), H;X(A)),,, isequal to L2(A).

From this lemma it is simple to derive as in [LM, Chap.1, Th. 6.2] the following general
interpolation result.
Theorem A.3: Let o satisfy -1 <o < 1. For any posilive real numbers p and q which do
not belongto N + (1+)/2 andfor any 8 in ]0,1{ , set s=(1-8)p-8q. I/f neither s nor -s

belongs to N + (1+x)/2 , the following equality holds between the spaces of interpolation

——
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Hao(A)  ifs>0
[HA)  irs <0

’

[H 4 (A), HIYA) ], =

Now, we want o extend this result to the entire weighted Sobolev spaces.
Iheorem A.4: Let o satisfy -1 <o < 1. For any real numbers p and q which satisfy
O0<q<p andforany 8 in ]O,1[ , the following equality holds between the spaces of
interpolation

[H2(A), HX(A)], = HE-OPe09(A)

Proof : a) We begin with the case where q is equal to O and p and 8p are integers. We first note
that the operator d®/dt” is linear continuous from Hz(/\) into Ls(/\), besides, from Theorem A.1,
it is also linear continuous from Li(/\) into H;"(/\). The principal theorem of interpolation
[LM, Chap. 1, Th. 5.1] states that d”/dtP is linear continuous from [HE(A), Li(/\)]e into
[Lz(/\), H-(A)], . From the previous theorem, this space coincides with H;ep(/\) so that we
obtain the imbedding
(A.2) [H2(A), L2(A)], c {TeL2(A) 5 Pr/deP e HIP(A) )
Using now the characterization of the space H;e"(/\) given in Theorem A.1, we derive that, for any
fin LZ(A) such that df/dt” belongs to H;?P(A), there exists an element g in LZ(A) such that
dr/de” =d%®g/de® . This means that
d®((d"-r/ar -y ) /dt® = 0
hence that (d'""®?r/dr""~%) _g is a polynomial of degree < 8p- 1, thus an element of LZ(/\). We
conclude that d''=°¢/dt. =8 y5 an element of L2(A) ; hence, from (A.2), we deduce
[HXA), LAY g < { fe LAY 5 d" /a9 ¢ LZ(A) ) = H{-PP(A)

Let us recall now that the reverse imbedding was deduced in [BM2, Lemma I11.3] from the results

of Theorem A.2, This proves the theorem in this special case.

b) The general case is derived by using the reiteration theorem [LM‘, Chap. 1, Th. 6.2] in
thre'e steps. First, for any integer p and any real number 8 in ]0,1[, denoting by m the integer
such that m-1 < (1-8)p < m < p, we have

HEP2(A) = [HPCAY, I (A T o one
= [ [Hz(/\). L:(A)h-m/p ' [Hz(/\), L:(/\)]h(m-”/l’ ]m_(l-e)p - [Hs(/\), L:(A)]e '

Next, for any positive real number p and any real number 8 in ]0,1[, denoting by s the integer
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such that s—-1 < p <5, we write
[HAA), LA ] = DIHA), LA,y THIAY, LAY, T,
= [HAA)L L2 ] _q_gpprs = HETPCA)
Finally, for any positive real numbers pandq, p < g, we derive
[HX(A), BIAY Ty = [ THR(AY, LAY T, L THECAY, L2, o s
= [HE(A)' Lz(/\)]en-q/p) = H«ihe)p‘eq(/\)

It follows from [BM2, Lemma 11.5] that, for any nonnegative real nhumber r which does not
belong to N + (1+)/2, H;,o(/\) is the space of all functions in H;(/\) which vanish in %1
together with their derivatives of order < r - (1+x)/2. Thus, the following corollary is a simple
application of [LM, Th. 13.3].

Corollary A.2 : Let o satisfy -1 <o < 1. For any real numbers p, q and r which satisfy
0 <r<q<p andsuch that r does not belong to N + (1+x)/2 andfor any 6 in ]0,1[ , the
following equality holds between the spaces of interpolation

[H2CA) M HLo(A), HIA) NHL (A ]y = HYOP*%9(A) M HE (A)

We are now in a position to study the best approximation errors in several norms.

A.2. Analysis of the best approximation in weighted norms,

We begin by analysing the best approximation of elements of H;,o(/\) by polynomials of
Pu(A) N H;,o(/\)v when r is an integer. This is the most simple situation and can be done by
induction.

Iheorem A.S: Let @ satisfy -1 <o < 1. For any nonnegative integer r , the orthogonal
projection operator ﬁg:; from H;,o(/\) onto Py (A) N H;,o(/\) is such that , for any real

number o >r endfor any ¢ in HZ(A) N H;,o(/\) , the following inequality holds
(A3Y  lo-Tgrollon <N ol ;un

Proof : For r = 0, the result is well known and has been proven in [CQ, Thms 2.1 and 2.3] for the

cases ® = O and o = -1/2 and in [BM2, Thm IV.1] for the general case. The following will be an
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induction process as we suppose that (A.3) holds for any integer N, with r replaced by r-1 and for
any real number ¢ > r-1. Then, for any function ¢ in H:(/\) N H;’O(/\), we hote that ¢' belongs
to HZ™'(A) (VHLG(A). Let us define ¢, as

(@) =[5 TRES ! () () -m(ReS! (o1 =E)/m((1-t2) D] e,
where, for any y in L (/\) m(y) stands for the integral j , w(T) dt. Itis simple to note that ¢
is a polynomial of degree < N. Besides it vanishes at +1, as well as its first (r-1) derivatives,
Using now the Poincaré-Friedrichs inequality, which is valid in the weighted Sobolev spaces as is
proven in [BM2, Corollary I11.1]}:

o = oplloun <cllo —opgll_yon

we deduce that

lo - oylon <oClo= T35 @) Iy an + IMGEES ! oD )

<cllo =Ty ) @) g on
Using now the induction hypothesis, we deduce that
1)-(a-1 -
lo = ol n <ONT gl in <eN ol n o
which complete the induction argument since |l¢ - 7!3,’:(9 . oA is defined as the minimum of

o - oy ll. . A Over all the gy in P (A) N H o(A).

Remark A.1 : It is important to note that the operator nN . " does not have optimal approximation
properties in higher norms than | . ”r,«,/\ . For instance it is proven in [CQ, §2] and in [BM2, §1V]
that there exists a function ¢ in H'(/\) such that the Lz-projection operator satisfies
o -~ Ttnoellyan >N llollp -
which legitimates the introduction of orthogonal projection operators in H;’o(/\) for any integer
> 0. One important question still remains : what are the approximation properties of the

operator nN in lower order norms? The following theorem states that it remains optimal.

Up to now, we have not explicitly used the exact formulation of the norm on Hg o(A) to
define the operator nN . - Inorder to be able to perform aduality argument, we shall write it. As a
special case of Theorem A.2, H' «0{/\) can be seen as the space of interpolation of index 1/2
between L (/\) and Hzro(/\) Consequently, there exists an unbounded self-adjoint linear
operator ©, which is positive definite and such that the domain D(©) of © in L2(A) is Heo(A)
and the domain D(©2) of ©% in L (/\) is H'"o(/\) This allows for defining a scalar product ((.,.))
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over H o(A) as follows :

(A.4) ((u,v)) = (uy), + (Ou, ov),

The corresponding orthogonal projection operator will be denoted by nN . The interest of this
new scalar product is related to the regularity property of the following operator : let g be in
Li(/\), Tqg is the solution of the problem

Vve H;,o(/\), ((Tg,v)) = (g.¥)g 4 A

Then it is simple to check that T is linear and continuous from L2(/\) into Hzro(/\) This is the
main ingredient of the duality argument to derive an estimate of ¢ - nN "¢ in the L (/\) norm. The
reader is refered for instance to the abstract duality theorem of [M, Thm A.1] for more details.
The scale of all estimates of ¢- nN "9 in the H (/\) norm, 0 < s < r, is then derived by

interpolation and we obtain the following theorem.

Theorem A.6: Let o satisfy -1 <« < 1. For any nonnegative integer r , the orthogonal
projection operator ng': from H; o(A) onto Py(A) N H;,o(/\) for the scalar product defined

in (A.4) is such that , for any real numbers o and s, 0 <s<r <o, andforany ¢ in
Ha (A) N H o(A) , the following inequality holds
(A.5) o - T T@lly o p <N llolly 0 A

Remark A.2 : Theorem A.6 is valid for any positive real value of r as can be derived from the

same arguments as in [M]. We shall not present this extension which is not used in this paper.

The next step is the analysis of the best approximation of elements of H_(A) N H? xo({A) by
polynomials of Py (A) N H"o(/\) when r and p are integers, p < r. Let ¢ be an element of
H? AN H"o(/\) and ¢, the polynomial of P, _,(A) such that ¢ - ¢, belongs to H"o(/\) It is
srmple to note that nN r((p mo) + ¢, is an optimal approximation of ¢, more precisely,

, o -y Co- wo) + Pl n SCNT llo-9gl;on < N Hollyon
This leads to
[heorem A.7 : Let « satisfy -1 <o < 1. For any nonnegative integers r and p <r , there
exists a projection operator no P from H(A) N HE(A) onto P (A) N HEo(A) such that
for any real number @ > r and for any ¢ in H;(A) N HE (A) , the following inequality holds
(A.6) lo - Poll g <CN Ol on
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Remark A.3 : Here again, the result can be extended to any real value of r as in [M].

Finally, we can state the

Corollary A.3: Let « satisfy -1 <o < 1. For any nonnegative integers r and p , for any
real number o >r and for any ¢ such that the function (1-t%HP g belongs to Hi(/\) , there
exists a polynomial ¢y of Py(A) such that

(A.7) HC-T2P (o-0 ) Il o n S SNTTN -T2 0 lly o o

Proof : The result is completely obvious and results from Theorem A.7 in the case wherep is < @
since g, can be chosen equal to [ﬂg;‘;p‘;(( 1-t%)P 9)]/(1-t?)P, where 0 denotes the integral part
of 0. Otherwise, we define (1-%)P g, as the orthogonal projection of ¢ onto Py, (A) N HE ((A)
for the scalar product associated with the norm : ¢ - J(1-22)° ¢ Il « A and we obtain the result by
interpolation between the two estimates

I -22)P (o-g )l o p < I -T2 gl A
and

I -22° (=0l n < HCT=EDP @=[rg:5 (-T2 @)1l o

< NPT -t®)? ol A
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This appendix deals with the approximation properties of the quadrature formula analysed
in the first section. Let us introduce the related operator b,";_, of interpolation at the internal
points, defined for any function ¢ continuous on A as follows : L:,‘_,Lp belongs to PN_1(/\) and
satisfies
(B.1) ()& oo ,1<j<N
The following estimate is well-known in the case «« = 0 [CQ, Thm 3.2], it can easily be proved for

any @ > ~1 inasimilar way: for any real number g > sup {1/2, (1+)/2} and for any function
¢ in H:(/\)
8.2) o=ty y0llgen <cN"Z N0l o

The previous inequality implies as a special case that, for any integer m > 1 and for any
smooth function ¢, the quantity ||(1-t%)™2 (- Ly 7o) llo « A tends to 0. The following lemma
gives a precise form of this result.

LemmaB.1: Let o satisfy -1 <o < 1. Forany integer m > 1 , define k as being equal to
m/2 or (m+1)/2. For any real number o > sup {1/2, (1+x)/2} andfor any ¢ such that the
function (1-t%)* ¢ belongs to HI(A) , the following inequality holds

(B.3) [ C-TH* (o-4y T g n < SN2 1=t gl o

Proof : Let g\ be any element of P\ _,(A). We use the triangular inequality
(B.4) =22 (o=t 2 o) g p < HCT=ED (o= flg o p + I (1T (o= T0) llg o 1 -
Let us recall that the quadrature formula (.,.), . isexact on P,y , ,(A). In the case 2k = m, we
deduce that

IO - Cop= 42T g o 0 = T it (-0 2T ™ (1 -(5 fem)2) % g
Inthecase 2k = m+1, we have

I -E2* Cop= U T 3 o n = 1C-ED"2 Copm 43 T3 oA
Using exactly the same techniques as for [BM1, Lemma 1], we prove that, for any @« > -1 and for
any Wy, = Z;:L, X, JoinPy_((A),
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T, (-5 w,f(c“) g“-°
B ,cx 2 n(n+20c+ 1) 1215 o A +o<NZ, 4 (=D e o
o Z 1 o< n(n+20c+ 1) JlJyy "o«/\ + O(N N(2N+2+ 1)
> TN o2 n(ne2ocs 1) IEIZ A = 1O-ED 72 gy lI2 o
This estimate, with o replaced by oc+m and yy, = 9= Ly *T'9, gives
=22  Cog= 4t T I o 4 < Z,-=, (1= ™) (p-p)) 2@ ™ o™
< T (g HE M- (LM g
Consequently, in both cases, we obtain
1122 o= 42T 0) 12 4 < I TR 2 (9-9) oy Iy (1-(E ™))™ o
If o is < O, it is an easy matter to prove that the sum on the right-hand side is bounded : indeed,
all the ( 1—(t,}“'")2)’°‘ are < 1 and all the corresponding weights are positive; since the constant
polynomial is exactly integrated by the formula, we derive
T, (=™ < T ofm < 2
If x satisfies0 s x < 1, we recall that, due to (11.14), we can write
T (=™ grm = T (1= em?) - gt m!
and the same argument as before can be used since now 1-x is > 0. In conclusion, we can state that
there exists a constant C such that
=22 (o= 4T o) 12 A < CHCT =822 (g-gy) IZoon)
The Gagliardo-Nirenberg inequality now yields to the bound
=82 (o= 12T o) 12 p < e IO =E8 %2 (=) lzgp) 101 =ED 2 Co-0) g1
Besides, since the multiplication by p_,,, is an isomorphism from L2(A) onto Lz(/\) and from
HI(A) onto H! o(A) [BM2, Lemma I11.2], we derive that
(B.5) =22 (o= 4 To) 12 p < e HO-8D* (o0l o p 1T =T Co-0) ly 2
The inequality (B.3) is now a simple consequence of (B.4), (B.5) and Corollary A.1.

We can state thé properties of the quadrature formula.
Lemma B.2: Llet o satisfy -1 <x < 1. For any integer m > 1 and for any real number
o>sup {1/2,(1+x)/2}, for any { such that the function (1-t2)™ W2 ¢ pelongs to He(A)
the following inequality holds

(B.6) sup (Fv) e = 1V em

N1/2-0 ”( 1 _c2)(m+1)/2 f“
YN € pN+2m-1(A) N H:(nlo(/\) ||VN "m,«,/\

=

g0
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Proof : Since the quadrature formula is exact on P2N*2m_,(/\), we have for any vy in
Proom.1(A) NHY o(/\) and any fy in Py _,(A)
(Vo = TV em = (=T V) = (T =10v),
Next, we note that v\ can be written (1-c ™ vN , where \"/N belongs to Py _,(A). Moreover, using
once more the fact that the multiplication by o, ,, is an isomorphism from H:,o(/\) onto Hg(/\) for
any k > 0 and that the multiplication by (1 ~t%)"™ is continuous from Hg‘(/\) into L2(A) (LM, Th.
t1.2and 11.3], we have
1Vnlloan = V5 0ay2llo o < CCT- L3Hm VN Cus2llma = vy Og ol n < € vyl an
Thus, we derive
(V) = (TV)em = (f_fN IWaem = T =0 em
¢ LICT-E)™ (=10 g p + HCT=ED™ et D=1 g o a ] 193 o 4 A
<C[II(1—C ™ (Tt g wn + HCT=ED™ W2 T=00) g e ad IVl an
Since (1-C2)™ is upbounded by (1-t2)™* "2 we obtain
(V= (VW em
<o [[I(1-g2)menr2 (=t g p + 11 -E 2y(m+1)/2 (™) o T IV o 2

and the result follows from Lemma B. 1 together with Corollary A.1.

Remark B,1 : We actually proved the stronger result
Sup , (f’vN)K - (f'vN)K,m
VN € Praom-1{A) MH, o(A) (P
where 2 isequal to (m+1)/2 if m is odd and is > (m+1)/2 if m is even. However, we do not need

< N1/2—o "( 1 _c2)(m41)/2 f”a,m,/\ ,

this improvement.

Remark B.2 : In the previous analysis, we only need the Lagrange interpolation operator. With
the generalized Gauss type formula, it seems natural to associate the Hermite interpolation
oper‘ator 3:,22 . for any function ¢ in C™" (A, 3N*2m 19 belongs to P, ;m_1(A) and éatisfies
8.6) | (:J E o™ = g™ T <iem

| (/at TR o (2 1) = (do/d) (£ 1) 0 <k <m-t
However, the approximation properties of this operator seems poor when m is larger than 1.

Indeed, in the case m = 1, the following estimate [BM2, Lemma V.9] holds for any function ¢ in
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Hi(A), 0 >sup {172, (1+x)/2},

(B.7)  No-(I5, 10 lpn <cN"2 floll, oA

But in the case m = 2, due to Corollary ¥.2, the only interpolation result we are able to prove by
using the same techniques is that, for any function ¢ in H;(A), 0 > sup {3/2, (3+x)/2},

B.8)  lo=(T5, 30 loun < N> llgll, . A



-52.-

: fix C : Nod | weight

We end this paper by giving numerical examples of the nodes and weights involved in the
generalized quadrature formula (I11.10). Let us briefly recall how they are computed (we refer to
[GK][KE] for more general techniques). First, setting for awhile J3* = Jy /[ llg o o » N € N, we

have by (11.4) and (11.5)

Jo* 08,0 ..0 Jo* 0
JI B, 0 8, .. 0 Jy* 0
(C.1) [l =10 8,0..0 +By| O ,
‘J;-f 0 .. . By O ‘J;-f J;*
with
1 /" n(ne20)
v 20+ 3 v 4 (n+ox)° - 1

Hence, the nodes c;‘ , 1 < j <N, of the Gauss formula are simply the eigenvalues of the previous
symmetric tridiagonal matrix; due to formula (11.12), the weights p;"o , 1 €] <N, areequal to
lldgllg'u',\ Xj,2 , where X;, is the first component of one of the corresponding eigenvectors with
euclidean norm equal to 1. Therefore, nodes and weights can be computed for instance by a standard
QR -algorithm (see [WR]).

The internal nodes C}”"‘

and weights p;"m , 1 < j <N, of the generalized quadrature formula
(11.10) are obtained by using exactly the same algorithm with &« replaced by oc+m, then applying
formula (11.14). As far as the boundary weights are concerned, the first pair @g,’l is calculated
from formula (11.20). Then, for m > 2, the other pairs g,‘:‘::‘ , 1 <k <m-1, are obtained by
induction on m, from the triangular linear system (11.21)(11.22); finally, the pair gg:;" is
computed from formula (11.29) or (11.31).
[}

Figures 1, 2 and 3 represent the nonnegative zeros of the polynomial d:,‘ respectively for N
=6,9and 12, as afunction of o, -1 < o < 3 (recall that we are mainly interested with values of
o between -1 and 1, and values of m equal to 0, 1 or 2, so that the range of oc+m is ]-1,3[). It can

be observed that, when & grows from -1 to 3, these zeros decrease slowly (but not linearly).
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Figures 4, S and 6 represent all the zeros of the same polynomials for several values of o,
namely for o« = -3/4, -1/2,-1/4, ..., 11/4, 3. As is well-known, for fixed values of o« and N,
these zeros are not ev:enlu distributed, but they cluster in the neighbourhood of £ 1.

Finally, Tables | to X can be used to compute ]_‘, ®(L) o, (L) dL, for &« = ~1/2,-1/4,0,
1/4 and 1/2, by a quadrature formula involving respectively 12 or 40 internal nodes; each table
gives the nodes and weights of formuta (11.10) for m = 0, 1 and 2. Note that, as foreseen, the nodes
of the formulafor @« = - 1/2 andm = 1 or 2 coincide respectively with those of the formula for «
o 1/2andm = 0 or 1. As it is well-known, in the Chebyshev case @ = -1/2, for m = O, the
internal weights are all equal to the same quotient of 1; the same is true in the case m = 1 and

moreover the boundary weights are the half of the internal weights; these properties are no longer

valid when m is equal to 2.

Example C.1 : Let us approximate the quantity d = (11/4) jj, cos (g /2) dt = 1 by using the
quadrature formula (11.10) with N = 6 internal nodes, successively for m = 0, 1 and 2. We obtain
mo0:J=09999999997386354
mol:d=09999999999989776
m=2:J=09999999999999963
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Figure 4

Thezerosof Jg , -1 < <3, € N/4,
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Figure S

Thezerosof Jg , -1 < < 3, x € N/4.
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Figure &

The zerosof Ji, , -1 < < 3, ¢ € N/4.
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