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The electrostatic plasma response to a small pulsed antenna in a 

magnetic field is analyzed. The ringing of the plasma at three dis- 

crete frequencies--the upper-hybrid frequency and two resonance cone 

branch frequencies--is evidenced, and the amplitudes of these frequency 

responses is determined as a function of the characteristic plamsa fre- 

quencies, the angle of observation with respect to the magnetic field, 

and the pulse length. Applications to plasma diagnostics are dis- 

cussed. It is show that the upper hybrid response and the response at 

either of the resonance 

to determine the plasma 

angle . 

cone branch frequencies is adequate information 

density, and the magnetic field magnitude and 
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I. INTROUDCTION 

The problem of the radiated wave fields excited by small sources 

in magnetized plasmas has been of considerable interest in recent years 

because of the highly directional resonance cone nature of the waves 

under certain conditions [1,21. In addition to being an interesting 

physical phenomena, resonance cones have been used as a diagnostic for 

density and temperature and form the channels along which power flows 

in certain radio frequency plasma heating experiments [3-51. Most of 

the work on this subject has concentrated on continuous source plasma 

antennas. 

The case of pulsed antennas is also of interest for a couple of 

reasons. 

ous source, and this may be of importance in possible applications to 

plasma diagnostics, such as that of space plasmas observed on satel- 

lites and space vehicles. Second, for the continuous source case 

observation can only be made along the resonance cone angle, which is a 

function of the density and magnetic field, so that the angles must be 

swept to find the resonance cones in diagnostic applications. 

it may be of advantage to place the transmitting and receiving probes 

along a fixed direction. 

First, the pulsed source can use less power than the continu- 

However, 

A n  experiment has been performed on the wave response of a small 

pulsed antenna [ 6 ] .  It was found that the response was a ringing at 
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three characteristic frequencies for any given angle 8 of observation: 

the upper-hybrid frequency and two frequencies which correspond to the 

frequencies that would create the upper and middle branch of the reso- 

nance cones at a cone angle 8. 

It is the purpose of this paper to develop the theory of the 

electrostatic response to a small pulsed antenna, which is done in 

Section 11. The possible applications to diagnostics is discussed in 

Section 111, and the results summarized in Section IV. 
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11. PULSE RESPONSE THEORY 

We would l i ke  t o  solve the electrostat ic  Poisson's equations for 

a pulsed source. 

a Gaussian t i m e  dependence centered about t = 0: 

We will assume a cold plasma and a point source with 

where K is the plasma dielectr ic  tensor and T is the pulse length. We 

Fourier analyze these equations i n  space and Laplace transform in time 

t o  obtain 

where 
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The integral  over t can be converted into the standard form for the 

conjugate error function ( e r f c )  [71. For the magnetic f i e ld  in  the 

z direction: 

where 

and KH is the Hall term. 

form for  s -* - i w .  Choosing k = (k,,O,k,), we can evaluate the inverse 

integral  over k by well-known integral  forms from Gradstein and Rhyzik 

[ 81 (see also Ref. [l] 1 ,  or by rescaling of variables k, and k,: 

These components reduce t o  the well-known 
+ 
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Here 8 is defined to be the angle between the magnetic field and the 

observation point (the group velocity angle). The inverse Laplace 

transform is then 

where we have factored the denominator in Eq. (81, and 

The first two frequencies are the middle and upper branch resonance 

cone frequencies, and the upper-hybrid frequency. (Ion contribu- 

tions are omitted.) These frequencies are plotted versus w2 /w2 for 

various 8 in Fig. 1. The conjugate error function erfc contains the 

pulse length dependence. 

Pe uh 

To evaluate the integral in Eq. (91, we pick the branch cuts and 

the Laplace integration contour as shown in Fig. 2. Now the quantity 
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2 erfc y 

argument and asymptotic form 

is a monotonically decreasing function of y with the small 

Thus it is well behaved and contributes no singularities to the inte- 

gral in Eq. (9). 

the integral along the branch cuts. 

circle around the branch points are zero, while the sign change across 

each branch cut cause the integrals on each side of the branch cuts to 

be identical and additive. 

Hence we may use asymptotic techniques to evaluate 

The integral over CO and the 

Thus we may parameterize each integration 

path along the branch cuts by s = -+iwr - x, where x is real: 

3 

At asymptotic times such that e-wit e< 1 for each w, only the values of 

x such that x e< q will contribute significantly to the integral. 

This condition is satisfied for all three values of wi if t >> l/wl(e). 

Then by expanding to lowest order in x 
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where 

Here w(y) is the w error function. (See Ref. 7, Chapter 7.) Also, 

The form of the solution in Eq. (15) clearly shows Ai(-Wi) = Ai(ui). * 
the ringing of the plasma at the two resonance cone frequencies w1 and 

w2 and the upper-hybrid frequency wuh, as observed by Simmonutti 161. 

The response dies away as t-'I2. The magnitude of the amplitudes %, 
A2, and A1 are plotted in Figs. 3 and 4 as a function of ( w 2  /w2 ) for 

three angles of observation 0 ,  and long and short pulse times T. 
Pe uh 
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111. PLASMA DIAGNOSTICS APPLICATION 

gY the use of transmitting and receiving probes in a plasma, one 

may measure through the use of a spectrum analyzer the three frequen- 

cies w 1 ,  w2 and w and their corresponding amplitudes Al, A2 and %. 
By comparing with the theoretical predictions given in a s .  (10) - (12) 
and (16) - (181, one may deduce information on the plasma characteris- 
tics. We w i l l  show that this ty-pe of measurement is adequate to deter- 

mine the plasma density, magnetic field strength, and magnetic field 

angle 8 relative to the transmitting-to-receiving-antenna line in a 

plasma for  which none of these is known. 

uh 

Let us define the ratios 

1 m E- 
uh 

w 

- w  
2 m, : - 
uh 

0 

w (19) 

which are obtained from the primary measurements. 

into the form 

Then put Eq. (12) 
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Divide Eqs. (10) and (11) by w& and substitute Eq. (21) into them to 

obtain the two equations 

w2 w2  

w2  
(T) (1 - x, sin2 0 = 0.2511 - (1 - 2m2)211/2 f . 
uh uh w 

(22 1 

Finally, evaluate the Mk in Eq. ( 2 0 )  through Eqs. (16) - (18) to obtain 
the two equations 

Eqs. (22) and (23) form two independent equations for the two 

unknowns ( w 2  /w2  ) and 8, and Eq. (21) gives (wge/w&) in terms of 

( w 2  /w2 ). 

of the frequencies and their amplitudes, this is sufficient information 

Pe uh 
Since all other quantities are hown through a measurement 

Pe uh 

to determine the plasma density (through (%e), magnetic magnitude 

(through 1, and magnetic field angle 8. (With multiple receiving 

antennas we could narrow the magnetic field down to a unique direc- 

, tion.) But we have two sets of measurements, either one of which is 

adequate to determine these three quantities: 
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(1) M,; 02, and their ratio m,. 

( 2 )  M ; 01, wUh and their ratio m . - - 

Thus we may use both sets of measurements in conjunction with each 

other to give two independent determinations of the plasma density and 

magnetic field angle and magnitude, and this w i l l  help improve the 

accuracy of the diagnostics. 

Our model puts two conditions on the antenna that must be satis- 

fied to ensure the validity of the results here for plasma diagnostic 

applications. First, the electrostatic approximation requires the 

transmitting antenna be of a monopole type (spherically symmetric) to 

guard against unwanted transverse wave components. Secondly, the 

antennas must be sufficiently small to be approximated by a delta func- 

tion. 

%x > 

that approximation. Both of these approximation requirements can 

easily be met for most applications. 

Since kin - 2n/L where L is the antenna size and we require 

and (w/k) << c, that means L << 2 n c / m  is the condition for 
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IV. SUMMARY AND CONCLUSIONS 

The plasma response to a pulsed plasma exhibits a discrete fre- 

quency response at the upper-hybrid frequency and the two resonance 

cone branch frequencies for the given angle of observation. 

tude of these responses was calculated as a function of the various 

plasma and response frequencies, the observation angle, and the pulse 

length. These are summarized in Eqs. (16) - (18) and Figs. 2 and 3. A 

possible application of these results is to plasma diagnostics for the 

plasma density and magnetic field magnitude and angle. The determina- 

tion of these quantities from pulse response measurements is carried 

out through Eqs. (21) - (23). 

The ampli- 

Some restrictions and limitations of the model used here were 

mentioned. 

eliminate unwanted transverse wave components and ensure an electro- 

static response. 

required to make the delta function antenna configuration valid. 

Finally, thermal effects will modify the results in two ways. 

The first is that a spherical antenna should be used to 

The second is that antenna sizes L << 2nc/y, are 

The 

first is that the cold plasma amplitudes blow up near 8 = 71/2 and thus 

are not valid there. The 

second is that other plasma frequency responses w i l l  occur, such as the 

Bernstein and cyclotron harmonic wave resonances. 

Thermal effects W i l l  limit those amplitudes. 

Investigations of 



thermal effects and finite antenna-size effects are planned for a 

future paper. 

This research was sponsored by NASA grant NAG364 and grant 

ATM-8312514 with the National Science Foundation. 
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FIGURE CAPTIONS 

Fig. 1. Integration contour for the inverse Laplace transform in 

Eq. ( 9 ) .  Branch cuts and branch points are indicated. 

Fig. 2. Plots of the two resonance cone branch frequencies for  three 

angles 0 .  

Fig. 3. Plots of the amplitudes of the upper-hybrid and resonance cone 

responses for three angles 0 and a short pulse time. 

Fig. 4. Plots of the amplitudes of the upper-hybrid and resonance 

cone responses fo r  three angles 0 and a long pulse time. 
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