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Indirect Addressing and Load Balancing for Faster 
Solution to Mandelbrot Set on SIMD Architectures 

Sherry1 Tomboulian * 
MasPar Computer Corporation 

2840 San Tomas Exprswy, Suite 140, Santa Clara, CA 95051 
Abstract 

SIMD computers with local indirect addressing allow programs to have queues and 
buffers, making certain kinds of problems much more efficient. In particular we examine 
a class of problems characteriaed by computations on data points where the computation 
is identical, but the convergence rate is data dependent. Normally, in this situation, the 
algorithm time is governed by the maximum number of iterations required by each point. 
Using indirect addressing allows a processor to proceed to the next data point when it is 
done, reducing the overall number of iterations required to approach the mean convergence 
rate when a sufficiently large problem set is solved. Load balancing techniques can be 
applied for additional performance improvement. Simulations of this technique applied to 
solving Mandelbrot Sets indicate significant performance gains. 

'This research wad supported by the National Aeronautics and Space Adminiatration under NASA Contract 
No. NAS1-18605 while the author was in residence at the Inrtitute for Computer Applfcations in Science and 
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 
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1 Introduction 

The parallelism of SIMD architecturea provides significant improvement in computation speed 
for many applications. However, one is limited by the synchronous nature of such an engine, 
which requires that all processors perform the same task at the same time. In SIMD architec- 
tures that provide hardware for local indirect addressing, some of the sequential restrictions can 
be alleviated, making such architectures appear more closely aligned to the MIMD paradigm. 
This paper examines a powerful use of local indirect addressing for performing computations 
with data-dependent convergence rates - some points converge in a few iterations while others 
require numerous iterations. Load Balancing techniques, typically considered a strictly MIMD 
technique, are brought into play. In particular, we examine the solution to the Mandelbrot Set 
using this method. Simulation results show significant speed improvements with modest code 
investment. The basic scheme can be generalized to a class of problem. 

We assume a SIMD machine model with local indirect addressing, henceforth called SIM- 
LAD [8]. SIMD implies that all processors do the same thing at the same time, and that 
each processor has an area of local memory. It is often assumed that a pure SIMD model also 
restricts the processors to performing their actions on the same areas of their local memory. 
While this was true of some architectures such as the MPP [l], the ICL-DAP [7] , and the 
Connection Machine 1(6], it is not a requirement. Now the Connection Machine 2 and designs 
of other new SIMD architectures, such as the BLITZEN [2] are including SIMLAD, suggesting 
a trend in this direction. 

In the SIMLAD model, as in the “standard” SIMD model, each processor has its own local 
memory. However, the address specified by an instruction can be part of each processors local 
state. For instance, in the MF’P, when an instruction is issued each processor does the same 
thing to the same area of its local memory - e.g. all processors add 1 to location 9. It would 
not be possible for one processor to add to location 9 and another to location 11. In our model 
each processor has an address register. Using SIMLAD, the previous example could be “Add 
1 to the location specified by the address register”, where one processor has a 9 in its register, 
another an 11. This does not violate the SIMD philosophy. All processors perform the same 
action at the same time, but they are not restricted to performing it on the same area of their 
local memories. 

The use of Indirect addressing is a very powerful tool, especially when dealing with archi- 
tectures such as the CM-2, where the local memory is no longer confined to a few thousand 
bits, as in the MPP, but is 64K bits. As yet, however, this feature has not been widely exploited 
in SIMD architectures. Here we explore one facet of this for a particular class of problems. 

2 The General Problem 

I 

There are many problems involving the same computation on different data points which have 
different convergence rates. This is prevalent in the solution of differential equations, particu- 
larly techniques using mesh refinement. Perhaps the simplest problem for illustrating different 
convergence rates is the solution of the Mandelbrot set which is described in detail later. 

2 



ORIGINAL PAGE Is 
OF POOR QUALln 

Suppose that each processor is responsible for one datum. The required computation will 
occur in each processor, and as each processor reaches it’s termination condition, it will disable 
itself. Obviously, completion of the entire task is dependent on the number of iterations required 
by the last processor that finishes. For example, we might aay: 

enable a l l  processor; 
for 111 t o  maxiterations 

fora l l  enabled processors 
perform the  computation; 
if convergence reached disable  processor; 

If the average number of iterations required before convergence is much smaller than the 
maximum number, then many processors will be idling waiting for the last few to finish. If 
there is only one datum per processor, not much that can be done to hasten this process, But, 
if each processor is responsible for the same computation on multiple data items, then the 
situation is quite different. 

It is reasonable to assume that using some of the new SIMD computers each processor could 
be responsible for upwards of 1000 data elements. In the classic SIMD mode of computation 
the code would be identical to the fragment given above and would iterate through the data 
elements. In the pseudo-code below, the notation Vector x[lOOO] means that each processor 
holds a local variable X, which contains 1000 elements. If there are 20,000 processors, there 
would be 20,000 x 1,000, or 20,000,000 data elements in total. 

Vector X[10001 ; 
for h= f t o  1000 /* f o r  a l l  data elements */ 

enable a l l  processor; 
f o r  i=1 t o  maxiterations 

f o r a l l  enabled processors 
perform the  computation on datum x[h] ; 
if convergence reached disable  processor; 

In this case, computation would take time 1000 x rnaziterations because we assume that a t  
least one of the processors is computing a point that will require maxiterations for convergence. 
Hence, this solutions is governed by the maximum number of iterations. In cases where the 
mean number of iterations required for convergence is significantly less than the maximum, 
many processors will be sitting idle, wasting cycles. In the next section we will see that by 
using indirect addressing and invoking statistics and the law of large numbers, a solution 
dependent on the average number of iterations rather than the mazimum, can be obtained. 

S The Solution 

The solution is a valuable technique not currently used in SIMD programming. We are assuming 
a method where each processor is responsible for the computation for a large number of points. 
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In the above code fragment, computation is performed on each local z[i] for the same i, and 
all processors must converge on a solution before they proceed to iterate on the next point. 
This is necessary in the “classic” SIMD model, but in SIMLAD a more natural approach can 
be taken. When a processor has finished computing on element z[ i ] ,  either because it has 
converged on a solution or because it has reached the limit on the number of iterations, it 
moves on to element z[ i  + 11. It doesn’t care if its neighboring processor is still iterating on its 
local element %[;I. If there are a sufficiently large number of points in each processor, and the 
probability of convergence is random, then by using this technique all processors should finish 
at  about the same time with high probability. This time should be proportional to the average 
number of iterations required for each point times the number of points in each processor. 

In the pseudo code below for this method, the Vector data structure implies that there is 
one copy of this data structure on each processor. That is, each processor has it’s own data 
array X with 1000 elements. Each processor has a local index into this data array and a local 
counter to keep track of the number of iterations it has performed on the current point. The 
FORALL statement subselects the processors whose local data elements meet the specified 
conditions. 

Vector X [ l O O O l .  /* loca l  data */ 
I N D E X ,  
ITERS; 

/* l oca l  pointer  i n to  X array */ 
/* number of i t e r a t i o n s  for t h a t  data  point*/ 

FORALL processors 
I N D E X  <- 1; /* a l l  processors s t a r t  a t  the first */ 
ITERS <- 0; 

while (some-processors-busy) /* termination f o r  e n t i r e  program*/ 

perform computation on datum XCINDEX];  
ITERS <- ITERS + 1; 

f o r a l l  processors with INDEX<= 1000 

/* for those processors whose elements converged, o r  reached 
the  maximum allowed, proceed t o  the  next datum */ 

FORALL processors t ha t  have converged 
OR (ITERS > Maxiterations) THEN 

I N D E X  <- I N D E X  + 1; /* proceed t o  next datum*/ 
ITERS <- 0; /* r e s e t  i t e r a t i o n  count */ 

The actual implementation of this method is slightly more complicated. The different tests 
can be parameterized for better efficiency. For example, the above code checks for convergence 
and proceeds to fetch the next point on every iteration. Since a local-indirect fetch generally 
takes more cycles than a normal memory reference, it may be desirable to fetch a new point 
every tenth cycle. Likewise, it is not necessary to check for global convergence of all processors 
on every cycle. Let I, represent the global convergence interval, and I1 represent the interval 
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before loading the next data point once convergence is rtmched. We introduce a scalar integer 
counter to check the number of iterations. 

done <- FALSE; 
count <- 0 ;  
while NOT (done) 

f o r a l l  processors with INDEX<= 1000 
perform computation on datum XCINDEX]; 
IT- <- ITERS + 1; 
FORALL converged OR (ITERS > Maxiterations) THEN 

s e t  processor converged; 
i f  (count MOD I1 = 0 )  THEN /* i f  new load in t e rva l  */ 

f o ra l1  converged processors /* for those processors */ 
INDEX <- INDEX + 1; 
ITERS <- 0; 

count <- count + 1; 
i f  (count MOD I g  = 0) 

/* t h a t  a r e  done computing */ 
/* advance t o  the  next point*/ 

if (global-convergence) done = TRUE; 

This parameterized version allows one to tune the solution to the characteristics of the 
architecture and problem. 

4 Analysis 

The pure SIMD version of the algorithm takes time proportional to 
P * MazI  * Tc. 
where Max1 is the maximum number of iterations and Tc is the time for one iteration of the 
computation. 

On the other hand, for the SIMLAD model, assuming that pointe are randomly distributed 
among the processors, and that there are a sufficiently large number of points per processor, 
then we can approximate the time for execution by 
P * M e a d  * Tc 
where M e a d  is the mean of the convergence rate for all points. We justify this in the following 
way. We know that the overall time is governed by the maximum time required for a single 
processor to converge. How do we know what the convergence rate of a single processor is? 
By the law of large numbers we know that for a sufficiently large random sample the mean of 
the sample will approach the mean of the distribution. Hence, for all processors the overall 
number of iterations will approach P * M e a d .  

This simplified characterization implies that the second method would always be superior, 
but omits the overhead intrinsic in the new algorithm. A more complete characterization can 
be given by: [P  * (Mean1 + 1 ~ / 2 )  * To] + Tc/2 * To 

and 
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To = Tc + TL/IL + Tc/k 
where 

0 TL is the time required to perform an indirect load 

0 TG is the time required to perform a global convergence check 

0 IL is the frequency interval necessary to perform an indirect load 

0 IG is the frequency interval necessary to perform a global convergence check. 

0 TO is the overall time required for one iteration, which includes performing the compu- 
tation and the overhead for the test. 

In this characterization the time required to finish an iteration is not simply M e a d ,  but has 
the additional time of TL/~. This comes from the fact that a value will converge, but the 
processor cannot proceed to the next value until the indirect load has occurred which only 
happens every Tt times. Once converged, a processor has to wait at most TL cycles. However, 
in the best case, the TL check occurs the very cycle that the point converges, so the processor 
does not wait at all. Hence, on average, the processor has to wait an extra TL cycles once it 
has stopped. (For IL = 1, this factor of Th/2 disappears, but writing this unique case in the 
equation is rather messy, and is not represented here. 

To is a fairly straightforward derivation. It is Tc plus the overhead for global checking and 
load. Since the the global check and Indirect load are only executed every IC and IL time 
intervals respectively, then only that fraction of the computation is included in the time for 
one iteration. 

The second term in the equation, (Ic/2) * TO, is an insignificant portion of the overall 
execution time, but is included for completeness. Similar to the the T L / ~  term, once all 
processors have finished execution they may have to wait for the global convergence check to 
come mound. Because IC tends to be small compared to the overall number of iterations, and 
the equation is an approximation, the equation is more simply characterized by: 

P * ( M e a d  + I L / ~  * (Tc + TL/IL + Tc/Ic) 
When comparing the SIMD and SIMLAD approaches, in cases where the Tc is large, the 

overhead is insignificant so the mean only haa to be slightly less than the maximum to benefit. 
For these situations the new algorithm is clearly superior. 

If the computation is relatively small, and the mean convergence time is large but still less 
than the maximum, it is still possible to realize significant improvement by having a large IF 
and IC,  which decreases the overhead. For example, if MeanV = 500 and MaxV = 1000, and 
computation is equal to overhead, then if IL = 1, so that we are testing every time, then the 
new algorithm would just break even or be even a little worse. But, if IL = 100, then the 
number of iterations increases to 550, but the overhead becomes insignificant providing better 
L n  a 40% improvement. 

As we have previously stated, these evaluations are based on the fact that the processors 
have a random distribution of the points. The section on Load Balancing will address some of 
these issues for the solution to the Mandelbrot set. 
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5 Mandelbrot Simulations 

t 

The computation of the Mandelbrot set was chosen because it illustrates the concept clearly. 
A good description of implementing the set can be found in Scientific American [4], and a more 
mathematical discussion is given by Devaney [3]. While being a good problem for pedagogical 
purposes, the computation is so small that the overhead involved in indirect addressing is larger 
than in problems of greater complexity, but benefits are still significant. The technique extends 
naturally to more complicated algorithms. 

The recursive statement used to define the set is z = z2 + c, where c is a point in the 
complex plane. We stop the recursive Computation when t > 2, indicating that it is diverging, 
or when iterations > 1O00, whichever comes first. 

We simulated this problem for a 100 processor system with 100 memory locations. Results 
were positive. Using the "standard" approach, the computation would take maziterations * 
memorysize, which in our case would be 100,OOO iterations. We found that this could be 
decreased significantly, although performance varies over different regions and granularity of 
the Mandelbrot set. 

For example, we ran the problem on the region (*l&l), and achieved completion in 82,175 
iterations, a 20%improvement. However, over this region we noted that the total average 
number of iterations needed was actually 54,529, so there was actually room for almost 50% 
improvement. Unfortunately, in the Mandelbrot set, as in most real problems, the convergence 
rate is not uniformly distributed, but rather has areas in which all points tend to converge very 
quickly or very slowly. For further improvements we turn to the technique of load-balancing. 

6 Load Balancing 

The methodology of load balancing is traditionally not applied to SIMD architectures because 
it appears to be contrary to the synchronous single control nature of the system. However, 
we have shown here that a single control does not preclude working on different areas of the 
data. The key to the success of the method presented here is to have enough points per 
processor and the points should be representative of the whole. Under these conditions the 
overall average convergence rate at each processor is almost the same and is close to the mean 
of the convergence. 

As previously mentioned, in the Mandelbrot set the convergence rate is not uniformly dis- 
tributed. Hence the straightforward approach we used of allocating one column of the complex 
plane to  a processor is not necessarily the most effective for this method of computation. 

We tried two additional approaches for allocating points to processors. A fairly simple 
technique takes the column allocation method method and skewed each row of data randomly 
in the x direction 80 that the regions were not quite aligned with the processors. For example, for 
411 in all processor we might skew the value over 3 processors, for x[2] perhaps skew a negative 
22 processors. The skewing method has an advantage that it provides some alleviation from 

'See [5] for a general reference on Load Balancing Techniques. 
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the processors being assigned a contiguous region in the plane, but does not require expensive 
overhead computation to achieve this. Skewing in this manner is just a local computation 
baaed on the stride and skew amount. A more complicated approach involves performing a 
random permutation of the points as assigned to processors. Since random permutations are 
computationally expensive, this is the most extravagant of the methods. 

As one might suspect, in the simulations performed, not counting set-up times, the com- 
pletion rates varied relative to the complexity of the data distribution. The most permutation 
method finished first, the skewing method next, and the simple column allocation last. A 
surprising feature is that the simplest method, just assigning each processor a column in the 
plane, frequently performed well simply because the number of points per processor is fairly 
high. Even though there is some locality, the area picked still had significant variation. While 
the random permutation method usually performed the best it was not significantly better 
than the row skewing method and the overhead of the set-up time simply does not justify the 
performance gains. We advise row-skewing as a general optimization for this problem. 

With the Mandelbrot set, the variation in mean convergence rate varies significantly de- 
pending on the region and granularity picked. The table below gives some empirical results 
obtained by our simulator for different regions. The simulator had 100 processors, each respon- 
sible for 100 points. (Actual hardware implementation of the SIMLAD variety described here 
would be expected to have at least 10,000 processors each with over 1,000 points per processor.) 
For these simulation parameters, the maximum number of iterations - the number required 
by a pure SIMD model - would be 10,000 iterations. The table gives three different iteration 
values. The first iteration value is the mean number of iterations for processor completion; this 
is be the ideal minimum. The second iteration value is the number of iterations using SIMLAD 
solution method presented here, but without load balancing, just assigning each column in the 
plane to a processor. The third iteration value gives the number of iterations when using the 
simple skewed load balancing technique. We follow the iteration number by two percentages. 
The first is the percent improvement of the SIMLAD method as compared to the non-indirect 
method. The second is the efficiency of the method; that is, how close it comes to the average 
number of iterations per processors, which is the theoretical minimum. 

The table shows a variety of results from different regions in the complex plane. 

~~ 

real 

(-2.0,+0.5) 
(-l.O,+l.O) 
(-0.6,-0.5) 
(+.26,+.27) 
(-1.26,-1.24) 

Iterations needed to solve Man 
~ 

imaginary avg 
iters 

(-1.25,+1.25) 24875 
(-l.O,+l.O) 35462 
(-0.6,-0.5) 34512 
(+O.O,+.Ol) 65101 
(+.01,+.03) 83403 

new 
iters 
91079 
68185 
54456 
100000 
97643 

%impr %eff newLB 
iters 

9 27 29762 
32 52 41294 
46 63 38566 
0 65 70295 
2 85 88320 

nts each 
%impr 

70 
59 
61 
30 
12 

%eff 

84 
86 
89 
93 
94 

The method described above uses a static load balancing scheme. We allocate the points 
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, 

before computation begins and hope that we did a good job. Another alternative is dynamic 
load balancing. There are many forms that dynamic load-balancing can take, but dynamic load 
balancing involves communication, which is expensive in SIMD architectures. One approach is 
to  have processors that have finished computing all their points reach over and grab some from 
their direct local neighbors. It is not clear that the overhead involved justifies the approach - 
it is an interesting area for future study. 

7 Conclusions 

As SIMD architectures develop and become more widespread new programming paradigms will 
arise to make efficient use of them. In this paper, we presented a method for using local indirect 
addressing to achieve faster solutions for some problems with data-dependent convergence rates. 
We investigated at a simple case, the Mandelbrot set, and achieved significant success. The 
traditional MIMD technique of load balancing proved highly effective, exemplifying the greater 
freedom and power of the SIMLAD approach. The general mechanism described here is a 
powerful technique that will no doubt become widely used in data parallel programming as 
SIMLAD architectures become more available. 
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