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Application of Optimal Control Theory to the Design of
the NASA/JPL 70-Meter Antenna Axis Servos

L. S. Alvarez and J. Nickerson

Ground Antennaand Facilities EngineeringSection

The application of Linear Quadratic Gaussian {LQG) techniques to the design of the

70-m axis servos is described. Linear quadratic optimal control and Kalman filter theory

are reviewed, and model development and verification are discussed. Families of optimal
controller and Kalman filter gain vectors were generated by varying weight parameters.

Performance specifications were used to select final gain vectors.

I. Introduction

This article presents the design of the position control algo-
rithm for NASA's Deep Space Network antennas. The antennas

are of an elevation over azimuth design and have two sets of

transducers for measuring axis position. A 20-bit encoder is

geared to the bull gear of each axis and measures angular dis-

placements to approximately a third of a millidegree. Another
position-sensing device is an autocoUimator. The autocollima-

tor measures the misalignment between an intermediate ref-

erence structure beneath the main paraboloid and a small
reference antenna that is structurally isolated from the 70-m

antenna. A control algorithm must be designed for both

encoder feedback (known as the computer-mode control algo-

rithm) and autocollimator feedback (known as the precision-

mode control algorithm).

A state feedback controller with a constant gain estimator

is used to close both the computer- and precision-mode control
loops. The controller is based on a fifth-order state model

with an added sixth state which integrates position error. A
Kalman filter estimates state variables by using encoder feed-

back during both the computer and precision modes of opera-

tion. In the computer-mode algorithm, gains are applied to the
integral error and position error (both formed from the posi-

tion estimate and commanded position) and also applied to

the remaining estimated states. In the precision-mode algo-

rithm, control gains are similarly applied with the exception
that now the estimated position error is replaced by the hard-

ware-filtered autocollimator error and the integral error is

numerically calculated based on this same error signal. The

present implementation of the algorithm allows for different

gains to be used for the computer and precision modes.

The objective is to design control and filter gains that mini-

mize control effort while meeting performance characteristics,

thereby reducing control system excitation of the lightly

damped structure. This provides motivation to apply optimal
control design techniques to determine controller gains.

Presented in this article are a brief review of optimal control

theory and the step-by-step design process. The design process

includes system model generation and the calculation of opti-
mal controller and Kalman filter gains. The design methodology

utilizes the Loop Transfer Recovery (LTR) method to calcu-
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late the filter gains, and then both these and the state feedback

gains are combined to form a Linear Quadratic Gaussian (LQG)
controller. Most of the design procedure follows that reported

in [ 1], but the estimator design is novel. Test results based on
linear and nonlinear simulations are presented.

II. Theory

The LQG design method is applied to arrive at optimal lin-

ear output feedback control systems for the 70-m axis servos.
The solution of the LQG problem is a combination of the Lin-

ear Quadratic Regulator (LQR) and Kalman filter problems.

Both the optimal properties of LQG designs and the system-
atic nature of the design process served as motivation for its

application. The design is separated into two problems: (1) de-

signing a target closed-loop feedback control system using

optimal control theory (specifically, an LQR control design is

developed and then adapted for tracking), and (2) designing
a Kalman filter to estimate inaccessible states.

A. The LQR Optimal Control Technique

The plant can be linearly modeled by a set of first-order
differential equations of the form

/_(t) = Ax(t) + Bu(t) ; x(0) = xo

y(t) = Cx(t)

(i)

where x is an n X 1 state column vector; u is an m × 1 input

column vector; y is an m X 1 output column vector; and A, B,

and C are coefficient matrices of appropriate dimensions. The
control for a state variable feedback controller takes the form

u(t) = -Kx(t) (2)

where K is a feedback gain vector, not necessarily producing

an optimum controller. Substituting Eq. (2) into Eq. (1) yields

i(t) = Ax(t) - BKx(t) = (A - BK) x(t) (3)

The plant dynamics are thus modified by the feedback gain
vector K.

State feedback is attractive because the closed-loop eigen-

values of the system are arbitrarily specified by the proper
selection of the feedback vector K. Numerical procedures exist
that calculate K for a desired set of eigenvalues [2]. Although

a designer can iterate a pole selection until the closed-loop sys-
tem meets performance criteria, there are no guarantees that

the design is optimal.

The LQR optimal control problem to be presented is a spe-

cific example of a deterministic dynamic optimization prob-
lem. For a linear system, a quadratic performance index is

used as a performance criterion. Given the system description

in Eq. (1), the quadratic performance index J is of the form:

aa

J = £ [xT(t) qx(t) + puT(t) Ru(t)] dt
(4)

where Q is a positive semi-definite matrix, R is a positive defi-
nite matrix, and p is a positive non-zero scalar. The first term

penalizes transient deviation of the state from the origin. The
second term penalizes the amount of control effort used to

control the states. Parameters Q, R, and p are weighting terms

that adjust the penalties for transient deviation and control
effort. The optimization problem is then to find the control

u(t), 0 _< t < oo, that minimizes the performance index J sub-

ject to the following dynamic constraints:

(1) the plant is controllable or can be stabilized

(2) the final time is t = oo

(3) (A, QI/2) is observable

The solution for the standard LQR problem is given in [2-4] ;

therefore, only the results are summarized below. The optimal

steady-state solution yields the control law

u(t) = -_(t) (5)

with the feedback gain matrix K defined as

K = R-1BTp (6)

where P is a symmetric positive semi-definite solution to the

Riccati equation in matrix form

ATp+PA+Q-PBR -tBTP = 0 (7)

Numerical procedures are used to solve the algebraic Riccati

equation and calculate K knowing the system and weighting

matrices [2]. The LQR optimal design for state feedback con-
trol guarantees that the closed-loop system described by

Eq. (3) is stable and that the LQR control law (Eq. 5) gen-
erates the minimum possible value of the quadratic cost objec-

tive J given by Eq. (4). In addition to the nominal closed-loop

stability guarantee of analog LQR designs are its properties
of robustness. An LQR-based system guarantees an infinite

upward gain margin and a gain reduction of at least 1/2, or

-6 dB, and a phase margin of at least -+60 degrees. If the final

implementation of this controller is in time-discretized (digi-

tal) form, then stability is degraded slightly from the continu-
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ous case because of finite sampling time. This degradation

should be investigated and quantified. A complete discussion

of the discrete LQR problem may be found in [2] or [5]. It is

stressed that all robustness and performance guarantees for

continuous and discrete time LQR designs do not necessarily

hold in observer/Kalman-filter-based feedback controllers. This

fact may constitute a good argument to use state feedback

when the physical states are accessible and do not cost an

inordinate amount to sense.

B. The Kalman Filter

Implementation of state feedback requires knowledge of

the entire state vector. When states are unmeasured they must

be estimated. A closed-loop estimator is based on a plant

model and the weighted difference between the estimated and

actual output. Figure 1 describes state feedback implementa-

tion using an estimator. Typical e_rors in the estimated state

vector may arise from modeling errors and from uncompen-

sated deterministic and stochastic disturbances. These errors

are corrected by feedback of the output estimation error with

a feedback gain factor. In order to arrive at optimal estimation

(or state reconstruction), the choice of this feedback gain can

be based on the solution of the classical Kalman filter prob-

lem. Such an estimator, or filter, generates unbiased and mini-

mum variance estimates of the plant state variables based upon

past sensor measurements and applied controls.

Two of the many good references for optimal estimation

theory (both in discrete and continuous time) and its applica-

tion in optimal control problems are [4] and [5]. The fol-

lowing summarizes the solution to a simplified classical Kal-

man filter problem. The problem is based on the following

stochastic plant dynamics:

i(t) = Ax(t) + Bu(t) + Nt_(t)

y(t) = CxU) + O(t)
(8)

where _(t) and O(t) are assumed to be Gaussian, zero mean,

additive white process and sensor noise, with constant inten-

sity matrices --- and O characterized as follows:

covariance [_(t); _(r)] = E{/_(t) _T(r) } = --6(t - r)

.-' = xT _> 0

covariance [O(t);0(r)] = E{0(t)0T(r)} = ®6(t-r)

(9)

where E (.} is the expectation operator. It is also assumed that

O(t) is independent of _(t). The filter is driven by the control,

u(t), and by the noisy measurement vector, y(t), and gener-

ates a real-time state estimate and output estimate based on

the following filter equations:

_(t) : A_(t) + Bu(t) + Lly(t) - C_(t)] • _(0) = /f{ x(O) )

(lo)

where L is the optimal feedback gain vector. The choice of L

that yields the optimal solution to the formulated estimation

problem is

L = Z cTo -1 (l 1)

where the so-called error covariance matrix Y_ is calculated

from the following filter algebraic Riccati equation (FARE)

in matrix form:

O = AN+2;AT+LXLr-zcTo-I CZ (12)

A unique, steady-state, positive semi-definite solution

matrix Z to Eq. (12) exists if the following conditions are

met:

(1) [A,N] is stabilizable

(2) [A,C] is detectable

Numerical solution methods to the FARE are given in 141 .

The estimation error dynamics are obtained by subtracting

Eq. (10) from Eq. (8) to yield

_(t) = (A - LC)_'(t) + L_(t) (13)

Thus, the error dynamics can be shown to be dependent on

the selection of L. The optimality of the Kahnan filter can be

interpreted as follows: if the measurements started at t = -0%

then the state estimation vector has zero mean, i.e.,

E(_'(t)} = E(x(t)-_(t)) = 0 (14)

and the optimal error covariance matrix is Y., i.e.,

£ = k' {'ff(t)'_T(t)) (15)
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such that any other gain L will yield state estimation errors

with larger variances. Given the stabilizability and detectability

assumptions of the stochastic plant dynamics, the Kalman fil-

ter, viewed as a dynamic feedback system described by the

state equations of Eq. (10), is guaranteed to be stable. Thus

the eigenvalues of (A - LC) are strictly in the left-half s-plane.

III. Modeling

The LQG tracking controller designs for the 70-m axis

servos are based on simplified fourth-order rate loop models.

Figure 2 presents the linear model for the rate loops of the

70-m Az-E1 antenna. Shown is the computer mode of opera-

tion. Since the physical hardware designs for the Az and E1

axis rate loops differ very slightly, only the Az rate loop model

and controller design are presented. A high-order theoretical

model was simplified by eliminating fast dynamics and normal-

izing to yield the transfer function:

Y(s)
c; (s) = ._

U(s)

83.5 (s + 80) (s + 4.4)

(s + 61.25) (s + 2.39) [(s + 8.75) 2 + (11.36) 2 ]

(16)

to measure the swept sinusoidal frequency response of the azi-

muth rate loop at DSS-14. Figures 3 and 4 present the mea-

sured gain and phase responses, respectively. These responses

were compared with the simplified theoretical model. The

accuracy of the approximation is illustrated by superimposing

measured data upon the frequency response of the theoretical

transfer function (Eq. 16), shown in Figs. 5 and 6.

The design of the LQR and Kalman filter require a state-

space representation of the plant model. The plant transfer

function, Eq. (16), was transferred into a diagonal canonical

set of state-space equations of the form of Eq. (1) to yield

_(t) =

[612°°:1-8.747 11.360 x(t)

-11.360 -8.747 0

0 0 -2.393J

0.72391

+ -01982 /

0.9802tu(t)

1.1421]

y(t) =

[0.7239 9.226 0 1.1421]x(t)

(17)

where U(s) i_ the input rate in degrees per second and Y(s) is

output rate in degrees per second. The simplified model in

Eq. (16) represents a rigid antenna model.

Verification of the simple rate loop model of Eq. (16) was

accomplished by using an HP 3562A dynamic signal analyzer

where u is input rate and y is output rate. The state equations

were then augmented to include states for position and inte-

gral of position. The augmented matrices are formed by using

the output vector C to form the integration of rate or position

state and then adding the integration of position to form an

integral of position state. The result for azimuth is

i(t) =

"0 1 0 0 0 0

0 0 0.7239 9.226 0 1.1421

0 0 -61.25 0 0 0

0 0 0 -8.747 11.360 0

0 0 0 -11.360 -8.747 0

0 0 0 0 0 -2.393

x(t) +

0

0

0.7239

-0.1982

0.9802

1.1421

u(t)

y(t) = [0 1 0 0 0 0l x(t)

(18)
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Augmenting increased the dimension of A from 4 × 4 to 6 × 6,

the dimension of B from 4 X 1 to 6 × 1, and the dimension of

C from 1 × 4 to 1 × 6. The diagonal canonical form of the

state equations was used to reduce computation and to ensure

reasonable matrix numerical conditioning. Equation (18)

describes a regulator, and will be used in the LQR design
process.

IV. Linear Quadratic Regulator Design

The ultimate goal is to design an optimal tracking controller

for the 70-m Az axis servo. However, the solution to a linear

quadratic deterministic reference input tracking problem
requires knowledge of the future values of the command

input. For tracking systems in which the reference input is

generated by an exogenous source, this uncertainty must be

suitably translated to a stochastic optimization problem [4].

A different approach, taken in this article, was to proceed

with an LQR design for the dynamic system of Eq. (18) and

then adapt it to track command inputs. A visualization of this

so-called LQ servo is presented in Fig. 7, in which the position

state becomes the position error and the integral of position
becomes the integral of position error. It is noted that the

properties of the resultant LQR do not directly reflect the

command-following properties of the LQ servo, which will
ultimately dictate the choice of the final controller.

The LQR design depends on the selection of weighting

matrices, which requires intuition and iteration. For the 70-m

servo controller, the Q matrix is 6 × 6, p is scalar, and R is

taken to be the identity matrix. A general approach was used

for the choice of the weighting matrix coefficients. The Q

matrix is a unit diagonal with two modifications. First, eigen-

values of the A matrix which have a value greater than the

foldover frequency are given minimal weighting. The final
implementation of the controller is time-discretized with a

sampling frequency of f = 20 Hz, so the foldover frequency
computed by the formula (f/2) 2 PI is 62.8 radians/second.

The eigenvalue at -60.80 is close to the foldover frequency
and is therefore weighted lightly to minimize control effort

applied to the eigenvalue frequency. The weighting matrix Q
takes the form

The second modification to the unit diagonal structure of Q

allows the designer flexibility in selecting the optimal dynam-

ics. The element Qll is varied to provide greater weight on the
integral error state and thus minimize tracking error. In addi-

tion to iterating QI l to achieve desirable closed-loop perform-
ance and robustness, the scalar p is varied. In general, increas-
ing the value of p increases penalty on the control and results

in lower bandwidth designs, while conversely, a lower value of,o

produces higher bandwidths because penalty on control effort

is decreased. Figure 8 presents various closed-position loop

step responses corresponding to various LQ-based designs

obtained by setting QI l equal to 4 and iterating p. As the sim-

ulations indicate, the higher values of p result in closed-loop
responses exhibiting slightly larger overshoots and longer set-

tling times.

The final LQ-servo controller design chosen must achieve a

desired bandwidth, step response overshoot, and settling time,

and ensure satisfactory robustness properties. Robustness eval.
uation must take into account parameter changes in the rate

loop model that do not directly correspond to changes in the

forward gain of the position loop, which defines the classical

characteristics of gain and phase margin. The final iteration

results (based on the continuous time model) are presented
below:

QIz P kl k2 k3 k4 ks k 6

4 10 0.6325 1.3417 0.0157 0.5338 0.6613 0.5270

Closed-loop poles, rad/sec: -0.564 +0.541], -2.4159,

-8.7496 -+11.3605j,-61.25

Settling time: 5.7 sec

Percent overshoot: 25.2 percent

Figures 9, 10, and 11 show the open-loop and closed-loop fre-

quency responses and the step response using the gain vector

chosen above. The gain margin for this continuous time design

is infinite and the phase margin is 65 deg. The tracking band-
width is approximately 0.259 Hz. These values of the resultant

LQ-servo design indicate that this optimal feedback vector
yields a robust controller design.

Q

"1 0 0 0 0 O"

0 1 0 0 0 0

0 0 0.0001 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(19)

V. The Kalman Filter Design

The Kalman filter design procedure consisted of selecting

estimator dynamics and computing the filter gain vector. The

integral-of-position error is easily obtained in real time by
numerical integration, therefore a fifth-order Kalman filter was

designed using the continuous plant model of Eq. (1) (exclud-
ing the first equation). Presently, the encoder feedback to the
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estimator is assumed to be a smooth DC signal and no conve-

nient mathematical model is available to characterize any asso-

ciated noise. Thus the measurement noise intensity @ can be

utilized as a parameter in the filter design. Obviously, the dif-

ferent optimal gain vectors L will result for each choice of the

filter parameters ® and the process noise intensity matrix ._,
which are both defined by Eq. (9). In this design the Loop

Transfer Recovery (LTR) method is used to conveniently
characterize these noise statistics of the stochastic plant

model (Eq. 8).

A formal discussion of the LTR method is given in [6, 7],

where it is applied to multivariable-error-only control systems

in conjunction with LQR designs to form so-called LQG/LTR

feedforward compensators. Here, in the iteration process of
calculating and evaluating the optimal filter gains, the results
of the LTR method are used to effectively reduce the param-

eterization to one scalar variable /a. The method defines the

noise intensities to be

(20)

The design parameter is varied and the PC-based control sys-

tem package PROGRAM CC is used to solve the resulting filter
algebraic Riccati equation and compute L. The Kalman filter

performance is based on position response, estimator error

dynamics, and noise rejection ability. The LQR and filter

design are combined to form the LQG controller, and its

position response should display the same performance as dis-
cussed for the LQ serve. The error dynamics should have ade-

quate speed of response and minimal overshoot. The noise

rejection of the LQG controllers is evaluated through simu-
lations which include nonlinear plant dynamics, antenna

structural dynamics, and encoder and D/A quantization
effects. Several iterations ofg were made and the final Kalman

filter design was chosen to be the following

g Ll L2 L3 L4 Ls L6

5 0.00 0.4118 0.00005 0.00311 .0.00048 0.04912

Closed-loop filter poles, rad/sec: -0.4045,-2.5146,
-8.9027 ±11.477_,
-61.2521

VI. Simulation Results

The final implementation of the LQG controller is a time-
discretized form. The linear system matrices A and B of Eq.

(18) are transformed from the continuous time domain to the

discrete (sampled data) time domain via sampling described by

a zero-order hold to produce the necessary discrete time sys-

tem matrices. The computations of the discrete system matri-
ces are based on a specific (50-msec) sample interval and neg-

ligible time delay between each encoder input and the corre-

sponding rate command output. Both LQ and Kalman filter

gains designed for the continuous plant model (Eq. 18) are
used with the discrete system matrices in the controller algo-

rithm. Through simulations, the difference between the system

response of the LQG controller with both the continuous and
discrete state-space matrices has been shown to be negligible.

Readers are referred to [8] for a more in-depth review of the

implementation of the digital computer-based controller.

Simulations for the continuous linear antenna model

with the final discretized LQG controller are presented in

Figs. 12-15. Shown are the position, position estimation error,
and rate input command responses for a l O-mdeg-step input
with zero initial conditions. The position response exhibits the

same performance as that of the LQ-servo response of Fig. 11

except for a slight lag due to the digitized controller. The esti-

mation error response of Fig. 13 is due to the discretization
of the controller and exhibits a desired speed of response and

minimal error overshoot. The commanded rate of Fig. 14 is

an ideal smooth, decreasing function.

A more accurate performance evaluation is based on the
nonlinear simulation models developed in [9]. The results for

a 10-mdeg-step input are shown in Figs. 15-17, where now the

position is the output of a 20-bit encoder, the estimation error
is the difference between encoder output and estimated posi-

tion, and the commanded rate is equivalent to the output of

the D/A converter. The position response of Fig. 15 illustrates

the encoder quantizing effects and additional small time lags
(at time zero and at 2.8 sec) due to the friction associated with

the hydraulic motor and gear reducer. However, performance
characteristics are not severely degraded from those shown for

the linear system of Fig. 12. The position estimation error

response of Fig. 16 shows roughly the same dynamics of the
initial error transient as the linear case of Fig. 13. The peak

estimation error is 0.6 mdeg, which corresponds to approxi-

mately two least-significant encoder bits (0.0003433 deg/bit)
for the 20-bit encoders. Each new position quantization level

causes a step in estimation error with peak magnitude of one
encoder bit as shown. The rate command of Fig. 17 is seen to

be a decreasing function that oscillates between D/A quantiza-

tion levels. The overall performance of this selected LQG con-

troller is deemed satisfactory.

VII. Summary

The Linear Quadratic Gaussian (LOG) optimal control

method has been presented and applied to develop a new

type-II, state-feedback antenna position controller. Theory on
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the controller and state estimation techniques (specifically the

Linear Quadratic Regulator and Katman filter), which when

combined make up the LQG design, was presented. A simpli-

fied experimental transfer function model was developed and

mapped into a diagonal canonical set of state equations. The
model was then augmented to include position and integral-of-

position to form the final design plant model. Next an LQR

was designed for this system and adapted for command follow-

ing; the result is the so-called LQ servo. Finally, a new method

for choosing the Kalman filter gains using the Loop Transfer

Recovery method was presented. Performance specifications
dictated the selection of the final gain vectors. Linear and non-

linear simulation results were presented.

VIII. Potential Improvements

The final LQG controller gain selections were based on

performance specifications. However, design methods for the

dynamic plant estimator can be improved further. Investiga-

tions are needed which will determine the estimator design cri-

teria which take into account encoder quantization effects.
Given this, the systematic LQG design process can be reapplied.

Also, LQG/LTR error-only controllers as discussed in [6]

should be developed for the precision mode of operation and
be simulated against the current LQG controllers to evaluate

any performance gains. The motivation for such an effort is

that the Kalman filter (which estimates antenna rate and

higher derivatives in precision mode) will now be driven by

autocollimator measurements instead of encoder readings.

Thus, quantization errors associated with the axis encoders can
be avoided and high-resolution estimates based on the auto-

collimator signals will result. Both future position controller

and estimator design work would utilize currently known

values of the system nonlinearities, structure dynamics test

data, estimates of modeling errors, and system component/
disturbance stochastic models.
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Fig. 12. LQG step response.
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Fig. 13. LQG position estimation error.
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Fig. 15. Nonlinear position response.
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Fig. 17. Nonlinear rate command.
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