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A simple computational procedure is synthesized to process changes in the microwave-

antenna pathlength-error measure when there are changes in the antenna structure model.

The procedure employs structural modification reanalysis methods combined with new

extensions of correlation analysis to provide the revised rms pathlength error. Mainframe

finite-element-method processing of the structure model is required only fi)r the initial

unmodij_ed structure, and elementa_ postprocessor computations develop and deal with

the effects of the changes. Several illustrative computational examples are included. The

procedure adapts readily to processing spectra of changes for parameter studies or sensi-

tivity analyses.

I. Introduction

The capability to readily process changes or sequences of

changes in antenna finite-element-method (F.E.M.) structure

models is useful for design, parameter studies, or design sensi-

tivity analyses. Otherwise these tasks entail major computa-

tional effort via ab initio processing. F.E.M. analysis of anten-

na structures is time-consuming and demanding of mainframe

computer resources. It is necessary to solve simultaneous linear

load-displacement equations of orders in the thousands. Pro-

cessing the structural stiffness matrix and the vectors of exter-

nal loading cases provides the displacements of the F.E.M.

nodes. A change in any structural element property or bound-

ary restraint changes the stiffness matrix and therefore nor-

mally requires repetition of the lengthy equation-solving

operation. This article discusses short-cut approaches that can

readily avoid reformulating and repeating the stiffness matrix

equation solution for special cases of changing the initial struc-

ture. Following this it will be shown how to synthesize the

antenna performance pathlength error measure with only a

trivial amount of additional computation. The procedures used

here are postprocessor applications that are independent of

and require no coding or algorithm changes in the F.E.M. soft-

ware used to process the initial model. The only interaction

with the F.E.M. software is in the desirability of convenient

access to the output results.

The approaches considered here that condense the analysis

of modified structures depend upon linearity of the load-

displacement formulation. Linearity implies that superposition

of displacements is also valid when loadings are superimposed.

The final response (displacements, member stresses, and forces)

is obtained as the sum of the response of the initial system to

the known external loadings and the response to particular

unit "indicator" loading vectors [1] that are appropriately
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scaled to ensure compatibility in the modified system. The

scaling methods are derived from the method of "consistent

deformations" [2] or extensions under the topic of "struc-

tural modification reanalysis" [3-6].

Although linearity permits superposition of linear response
quantities from several loading cases, the antenna surface

accuracy is more appropriately expressed in terms of the mean

square least squares best-fitting pathlength error, or equiva-
lently, the square root (rms) of this quantity. It will be shown

here that it is not necessary to recompute the displacements at

all the nodes of the antenna surface F.Ek¢I. model by superpo-

sition and then to repeat the least-squares method computa-

tions to obtain the best-fitting surface for this new set of dis-

placements. That procedure, which is too lengthy to perform
for any reasonably sized model except by a computer of sub-

stantial capacity, can be replaced by simple postprocessor

hand or desk-type calculator analysis. The simplified calcula-

tions use the already available mean square pathlength errors
for the several loading cases and the correlation coefficients

for these loadings to perform the necessary calculations in a
few steps.

II. Analysis for Structure Modifications

A. Method of Consistent Deformations

This method will be used for the situation in which the

reflector backup tipping structure is analyzed independently

of the supporting alidade or pedestal. The tipping structure
F.E.M. model has the reflector supported on the elevation axis

bearings. However, as is customary, the boundary restraint

that would be in the thrust direction of the bearings is omitted.

That is, the support provides no restriction of the reflector

motion in the direction of the axis (elevation axis) through the

bearings. Consequently it is desirable to correct the reflector
analysis for the actual restraint of the alidade in this direction.

The consistent deformation condition is that the final reflector

and alidade displacements along the axis of the bearings must
agree.

The definitions below, in which all terms are derived from

separate reflector and mount analyses, are used to solve this

problem:

eR = extension of the reflector from bearing to bearing
due to the action of the external loading

eM = extension of the mount from bearing to bearing due

to the reactions from the loading on the reflector
plus any other loading applied directly to the mount
that is also associated with the same reflector load-

ing case

fR = extensional compliance of reflector for equal and

opposite forces applied at each bearing point along

the axis of bearings; that is, this compliance is the

extension produced by an indicator loading across
the bearings

fM = compliance of the mount for an equilibrating indi-
cator loading

These defined quantities are shown conceptually in Fig. 1.

The bearing points are shown as "A" and "B,"R A and R e are
the corresponding reaction forces, and the indicator loading

forces are denoted as "Ps'" Here the displacement quantities

are arbitrarily shown as if point A is fixed and point B moves
to B', but actually the quantities required are the differences

in displacements (extensions) between the final positions of

A and B. All quantities are assumed positive as shown and can
be in any set of consistent dimensional units.

From superposition, the final extension of the reflector will

be the original extension plus a scale factor R times the exten-
sion for the reflector model indicator load. The final extension

of the mount will be the original plus the same scale factor
times the effect for the mount model indicator load. These

final extensions must be equal. That is,

or

(eM - eR)
R =

(1)

(2)

The application is illustrated in the following examples:

Example 1. The following data are available from a 34-m

antenna design:

Tipping-Structure-Only Model Alidade-Only Model

eR = -0.71761 eM = -0.09420

fR = 0.54791 fM = -0.76280

Thus from Eq. (2)

R = (-0.09420 + 0.71761) = 0.47563
(0.54791 + 0.76280)
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The final extensions are:

for the reflector -0.71761 + (0.47563X0.54791) = -0.4570

for the alidade -0.09420 - (0.47563)(0.76280) = -0.4570

Analysis of the composite model of reflector combined
with alidade found the final extension to be -0.4628. The

difference between this and the number computed above is
attributed to roundoff and minor differences in the composite

model and the stand-alone individual models.

Example 2. This is an example of satisfying more than one

compatibility condition for reflector-mount analysis. Figure 2
shows the schematic of a half-structure subreflector model and

its supporting mount in which all details not pertinent to this

example have been omitted.

For the subreflector model, the external loading is in the

positive z-coordinate direction (vertical), and the primary

support in this direction is at node 10, but, similar to Exam-
ple 1, there is no restraint at the node for motion in the x
direction. Node 512 is in line vertically with node 10 and has

no external restraints.

The mount attaches to the subreflector at nodes 10 and

512. It contains one bar between these nodes (parallel to the z

axis). Node 10 is unrestrained and the restraints on node 512
allow motion in the z direction. The assumptions are (a) node

512 of the mount has no stiffness except in the z direction,

and (b) displacements of the subreflector in the z direction do
not produce other subreflector forces or reactions. With these

assumptions there are two redundancies in the reflector and

mount system and these provide the associated compatibility
conditions. Similar to Example 1, one condition is that the

displacements of subreflector and mount at node 10 in the x
direction must be the same. The second condition is that the

z-direction extensions between nodes 10 and 512 in both

models must be the same.

The indicator loadings that are applied to each model are

shown in the figure as Px and Pz. They are applied in oppo-
site senses for the two models since they are required to be

consistent with internal equilibrium in the composite system.

The following additional definitions are used:

UR = vector containing the x displacement of subreflector
node 1.0 as its first component and the extension
between nodes 10 and 512 as the second

U M = mount displacement vector with the same compo-
nents as for the subreflector vector above

R = vector of scale factors to be found; these apply to

the indicator loads

F R = subreflector compliance matrix for the indicator
loadings; row indices correspond with U R and col-

umn indices correspond with the indicator loads

F M = mount compliance matrix with indices as for F R

The compliance matrix components are taken to be positive in

the case of increasing the node 10 x-displacement component

and lengthening the distance between nodes 10 and 512.

With these definitions the matrix compatibility equation

becomes

UR+FRR = UM +FMR (3)

Rearranging Eq. (3), the following equation is obtained:

(U R - UM) = (F M - FR)R (4)

which can be solved for R.

Specific input data from the subreflector and mount analy-

ses and the computed value of R are given in Table 1. Using
either the left side or the right side of Eq. (3), the updated

extensions can be computed from the value of R just found.

The result is compared below with that obtained by a compo-

site model analysis of subreflector and mount:

Computed here Composite model

x-displacement 0.07103 0.07118

z-extension -0.02822 -0.02831

B. Parallel Element Method of Structural

Modification Reanalysis

This method [6-8] uses superposition and compatibility to

provide great simplicity in processing spectra of changes in

properties for elemental members of the F.E.M. model. It is
particularly simple in both concept and application when

applied to the analysis [8] or design [9, 10] of predominately

one-dimensional-type rod members used in antenna structures.
The method invokes only elementary postprocessor computa-

tions that, except for the requirement that the F.E.M. analysis

process additional self-equilibrating indicator loads [1] in the
usual way, are independent of the F.E.M. software.

The method can be applied for rod, beam, plate, or other
elements of the F.E.M. mode|, but here the application will be

restricted to the rod-type elemental member. The concept is

that for each particular "parent" member of the structure to
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be changed, there is conceptually a "parallel" member attached

to the structure in the same way as the parent. The area of the

parallel member, positive for additions and negative for reduc-

tions, is the change in area of the parent. An independent
indicator loading consisting of a pair of unit indicator loads

(directed towards each other) is applied at the terminal nodes

of each parent member in the original structure. The follow-

ing is a summary of the algorithms in the notation of and

abstracted from [8].

1. Notation.

U I = the displacement matrix of the initial unmodified
structure; the order is re(degrees of freedom) by k
(number of external loading columns)

the displacement matrix to be found for the modi-
fied structure

the change in displacements, which is equal to the

displacements for the forces of the parallel members

acting as loads on the initial structure

U s = the displacement matrix of the initial structure for

the indicator loadings; the order is m × b (number
of parent member changes)

R = a matrix of scale factors of magnitudes to be found

for the indicator loadings; the order is b X k

eM = the matrix of final extensions of parent and parallel
members in the modified structure; the order is
bXk

e1 = the matrix of initial extensions of the parent mem-
bers; the order is b X k

es = the matrix of extensions of the parent members for
the indicator loadings; the order is b X b

e0 = a diagonal matrix of extensions of the parallel mem-
bers when isolated from the structure and loaded by

tensile indicator load pairs; the order is b X b

UM =

UD =

2. Algorithms. It is evident that the displacement of the

modified structure is equal to the displacements for the initial

structure plus the changes. That is,

UM = U1 + U D (5)

Since the change in displacements is equal to the displacements

caused by the indicator loads multiplied by their scale factors,

Eq. (5) is rewritten as

U M = U l + U sR (6)

Similarly for the extensions,

eM = e1 +esR (7)

Nevertheless, the extension for the isolated parallel members

when subjected to the scaled values of the indicator loadings

must be the same for compatibility of parent and parallel
member extensions, that is,

e M = eoR (8)

Combining Eqs. (7) and (8) leads to the following expression
that can be solved for R,

(e 0 - es ) R = eI (9)

Once R has been determined, Eqs. (6) and (7) will provide the
displacements and extensions of the modified structure.

Computation of the terms needed to formulate Eq. (9) is

particularly simple for rod members of the structure. From
Hooke's Law the extension of a rod in terms of its internal

stress resultant force P, length L, area A, and Young's Modulus
E is

PL
e = -- (10)AE

Therefore all that is needed from the finite-element program

to compute the extension terms are the output vectors of ini-
tial and indicator loading internal forces for the various exter-

nal and indicator loadings. This allows Eq. (10) to be used as a

simpler alternative to computing the extensions directly from
the displacements of the terminal nodes. The extension of a

typical isolated parallel member for an indicator loading of
magnitude M (if not of unit magnitude) is

ML

e o - AD (1 1)

in which A D is the area of the parallel member (equal to the
change in area of parent member).

It is simple to show that if Eqs. (10) and (11) are used in

Eq. (9), and both sides of Eq. (9) are premultiplied by the in-
verse of a diagonal matrix containing the AE/L terms, the

following equation provides an alternative way to solve for R:

(A* - Ps)R = PI (12)

in which A* is a diagonal matrix containing the MA/A o term
appropriate to each row and PS and PI are the matrices of

370



internal forces of the parent members for the indicator load-

ings and for the external loadings.

The internal forces PM for the modified structure are com-

puted analogously to Eq. (5) as

PM = PI + PD (13)

where PD is the change in force equal to [ 10]

PS = (PS + Is)R (14)

in which lS is a quasi-identity matrix with one unity element
in each row corresponding to the rows of R and is null else-

where.

represented by rods in the model and the area parameter of
the rods is to be varied. The computations are to be performed

according to the procedures lust given for the effect on two

particular external loadings. The loadings are 1.0-g loads in

the z- and in the y-coordinate directions.

The data, solution, and a sample check of computed forces

and deflections derived from an F.E.M. analysis of the modi-

fied model are shown in Table 2. The small differences between

the check results are attributed to round-off error and limited

numbers of significant figures in the data transferred from the

initial F.EM. analysis. In [8] may be found a discussion of

how the change in the loading due to changes in the weights of
the modified members could be accounted for if necessary.

3. Comments.

(1) If there is no parent member in the initial structure at
a particular row, in Eq. (12) that row can be replaced

by the formulation in terms of the extension as given

in Eq. (9). A o becomes the area of the member added.

(2) If it is desired to remove a member, A o should be the
negative of the parent member area.

(3) PS is the negative of an identity matrix if the set of
parent members is statically determinate. If any row of
the matrix is null except for a negative unity on the

diagonal, the associated parent member is essential to

stability and cannot be removed.

(4) Examination of the PS matrix can provide an indica-
tion of the redundancy of the parent members. The

stronger the off-diagonal coupling, the more redundant.

(5) It is simple to process spectra of parent member
changes because the formulations of Eq. (9) or Eq. (12)
remain almost intact. The only terms that change are

those that depend upon changes of A D. It may be

appropriate to substitute an arbitrarily small number

for A o that is several orders of magnitude smaller than
the area of the parent if there is to be no modifica-

tion for a particular parent member in one of these
variations.

Example 3. Figure 3 is a sketch of the half-model of a 70-m
antenna subreflector. The reflecting surface is modeled by

plate elements and is stiffened by additional plates in the
radial and circumferential directions. Supplementary truss
structure behind and above the plates provides a backup and

the means for attachment to the external supporting struc-

ture. The support system has been modified for illustrative

purposes in this example and the vertical (z-axis direction)
support system has been replaced by the three spring supports

shown at points A, B, and C of the figure. The springs are

III. Correlation Analysis for RF Pathlength
Performance of Modified Structures

A. Pathlength Error Vector Computation

The microwave antenna pathlength error computations that

employ the deflections provided by the F.E.M. analysis are
summarized here for ready reference. The linear relationship

between the components of the pathlength error vector of the
reflector with the Cartesian coordinate deflection components

at the surface nodes was derived in [11]. This provided both

the matrix relating pathlength error to deflection and the for-

mulation of the least-squares procedure used to best-fit the
deflected surface to an alternative surface that minimized the

mean-square pathlength error. This formulation was extended

in [12] which provided a single linear transformation matrix

to express directly the relationship between the best-fitting

pathlength error vector and the deflections. This transforma-
tion implicitly incorporated the least-squares fitting param-

eters and provided a one-to-one transformation from the

triad of deflections at each node to the best-fit pathlength

error of that node. This relationship is in the form

p = GU (15)

in which 0 is the pathlength error vector, G is an invariant
matrix essentially containing functions of the direction

cosines of the ideal reflecting surface, and U contains the

three-component deflection vector at each node.

Since the deflection vector for a combined loading can be

assembled as the superposition of a linear combination of the

displacement vectors for a set of independent loadings, a

pivotal consequence is that the pathlength error vector can be
assembled from the independent pathlength errors in the

identical way. To be specific, if C is a vector of constants,

Uj a matrix containing vectors of deflections for a set of indi-
vidual loadings, pj a matrix containing the corresponding best-
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fit pathlength error vectors, and U and p are the corresponding

composite deflection and best-fitting pathlength errors, then
when the deflection can be superimposed as

U = UjC

it also follows that

An additional favorable consequence is that superposition

relationships similar to Eq. (17) also apply to other linear per-
formance measures such as the least-squares best-fitting param-
eters, the boresight pointing errors, and subreflector offsets.

B. Mean Square Pathlength Error via Correlation
Analysis

It is customary to consider a weighted mean-square path-
length error where the weights for microwave antennas depend

upon an illumination factor and also the local area tributary to

each node. However, if the weights are appropriately normal-
ized so that they sum to unity, the weighting factors can be

omitted for brevity in the following discussions without loss of

generality. Then the mean-square pathlength error SS is the
inner product

SS =ptp (]8)

and the root-mean-square error is

rms = (SS) 1/2 (19)

When the pathlength error vector is found by superposition
according to Eq. (17) then elementary matrix algebra will

show that the mean square can be expressed as

SS = CtCVC (20)

in which CV is the covariance matrix with elements given by

t
CV(i,]) = PiPJ (21)

The covariance matrix can be computed from the triple
product of a diagonal matrix RM of rms values of the best-fit

pathlength errors for the independent loadings and a correla-
tion matrix CR as

CV = RM CR RM (22)

In Eq. (22) the diagonal elements of matrix RM are rrnsl, rms2,
.... rrnsn, where n is the number of loads that are superim-

posed. The coefficient of the ith row and ]th column of the
correlation matrix is defined as

(16) CR(i,/) = P[ PJ
(rms_rmQ (23)

It can be observed that the correlation matrix is symmetrical
and has unity on the diagonal. The correlation matrix can be

(17) produced most conveniently as a by-product in the initial

F.E.M. analysis [13] or alternatively by an independent post-
processor.

In summary, postprocessor pathlength error computations

for a linear combination of loadings are accomplished by
applying Eqs. (22), (20), and (19), in that order.

Example 4. The rms pathlength error for the external load-

ing will be computed for the antenna of Example 1. The fol-

lowing data are available from the tipping-structure-only
analysis:

RMS Correlation coefficient

External loading 0.01090
-0.4331

Indicator loading 0.005705

Therefore,

RM=

CR=

and

1.000001
C = \0.47563 /

Then, from Eq. (22)

CV =

from Eq. (20)

0.01090 0.00000 l
0.00000 0.005705

1.0000 -0.4331 ]

J-0.4331 1.0000

(R found from Ex. 1)

0.0001188 ---0.0000269]

-0.0000269 0.0000325 J

SS = 1.0056E-04
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from Eq. (19) SS M = Ct CV M C (25)

rms = 0.0100 (c.f. 0.0099 from composite model analy-
sis of reflector and mount)

Example 5. This is a supplement to Example 2. The path-

length error for the external loading as modified by the inter-
action with the mount will be computed here. The data and
solution are shown in Table 3. The rms value of 0.0066 shown

as the solution in the table was also obtained from the F.E.M.

analysis of the composite reflector and mount. Actually there

is agreement to within unity in the next (not shown) decimal

figure.

If correlation analysis had not been used here, the conven-

tional approach to predicting the rms number would be to

take the root sum square (rss) of each of the three indepen-
dent values times the applicable constant (C vector). That
result would have led to the value of 0.0123. This inaccuracy

is because the rss method is based upon an identity correlation
matrix, which is far from the case here.

C. Pathlength Error Syntheses for Multiple

Modified External Loadings

Up to this point the computation of pathlength error via

correlation analysis for a modified structure treated the effect
of modification for only one external loading condition. Fre-

quently, however, the external loading of interest is a com-

bination of two [12] (in the case of gravity loading on an

antenna) or more (with the addition of other environmental
cases) loadings. Consequently the previous formulation will be

extended to include the cases of multiple external loadings for
a modified antenna structure.

From superposition, similar to Eq. (17), the pathlength
error vector for the external loading on the modified structure

can be expressed as

PM = PGM C (24)

in which PM is the pathlength error vector for the modified
structure when subjected to the combined external loading,

PGM is a matrix of the pathlength error vectors for the indi-
vidual external loading cases of the modified structure, and C
is a vector of combining coefficient factors for the external

loading vectors.

Premu/tiplication of Eq. (24) by its transpose provides the

desired mean-square pathlength error SSM for the modified
structure. That is

in which CV M is the covariance matrix for the modified struc-
ture given by

CV M t (26)= PGM PGM

It can be observed that once the modified covariance ma-

trix CV M is obtained it is trivial to complete the solution by
means of Eq. (25). Consequently, the remainder of this discus-

sion will concentrate on deriving an expression for this matrix.

External loading pathlength vectors that have been modi-

fied by the parallel element method can be expressed in terms

of a matrix of unmodified pathlength error vectors PG, a ma-

trix Pl of pathlength errors for the indicator loadings, and R,
the matrix of scale factors for the indicator loadings. There-

fore, similarly to Eqs. (6) and (8), and with superposition in

the form of Eq. (I 7), the modified pathlength error is

PGM = PG + Pl R (27)

In the equation above, all the path.length vectors are the least-
squares best-fitting vectors.

Using Eq. (27) in Eq. (26) it can be shown, with some mul-

tiplication and rearrangement, that the desired covariance ma-

trix can be expressed as the sum of four matrices. To do this,
the following matrices that are all determined from F.E.M.

analysis of the unmodified structure are def'med:

RM G = the diagonal matrix of rms values for the external

loading; CR G is the associated matrix of correla-
tion coefficients

RM! = the diagonal matrix of rms values for the indica-

tor loads; CR I is the associated matrix of correla-
tion coefficients

CR G I = the matrix of correlation coefficients for the

external loadings with respect to the indicator

loading

The above definitions are used in the computation of the

following covariance matrices

CV G = RM G CR G RMG (28)

CV I = RM I CR I RM I (29)
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CVGI : RM G CRGI RM 1 (30) Computed here F.E.M. analysis

Finally, omitting the manipulations, the following expres-

sion as the sum of four matrices can be developed for CV M :

CVM = CVG+CVGIR+(CVGIR) t+R tCV IR

(31)

The modified covariance matrix is square and of order equal to

the number of external loads. The diagonal elements are the

mean-square pathlength errors for the external loads on the

modified structure and the off-diagonals are the pairwise co-

variances for these loads.

Example 6. The covariance matrix of the modified struc-

ture of Example 3 will be computed in this final example. The

data and solution are shown in Table 4. The modified covari-

ance matrix CV M shown as the solution in Table 4 can be used

as described in the preceding paragraph to furnish the rms

value for the external loadings and their correlation coeffi-

cient. These are compared below with those obtained by a full

F.E.M. analysis of the modified structure.

External z-loading rms

External y-loading rms

Correlation coefficient

0.03922 0.03917

0.00862 0.00861

0.8755 0.8753

IV. Summary

The synthesis of a readily applied procedure to compute the

performance parameters of modified antenna structures has

been presented. All the necessary computations can conveni-

ently be developed by desk calculator or personal computer

postprocessing. The input data needed consist of conventional

mainframe computer analysis output for the unmodified struc-

ture. The synthesized procedure uses short-cut structure modi-

fication reanalysis methods to avoid reprocessing the modified

finite-element-method structure model. Then, changes in the

antenna root-mean-square pathlength error performance mea-

sure are computed for the modified structure by extended

methods of correlation analysis. The complete modification

and correlation analysis synthesis readily accommodates the

processing of spectra of changes in the antenna structure for

purposes such as for parameter studies or for design sensitivity

analyses.
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Table 1. Data and solution for Example 2

Data S olu tion

U R

U M

FR=

F M =

= (0.87642)

\-0.32976 I

= ( 0.058650.0)

0.394478

-0.129000

"-0.014172

0.0

-0.129000"

0,052867

0.0

-0.007899

F M - F R =

UM - U R =

a =

"-0.40864

0.129000

0.129000"

-0.060766
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Table 2. Data and solution for Example 3

Data:

Spring

A

B

C

External loading, PI
Seff-equilibratingindicatorloading,

Ps(M = 1000)

Z, 1.0-g Y, 1.0-g Load at A Load at B

-2451.0 8.6 -474.5 -262.8

-2318.0 --625.3 -262.8 -868.6

-2031.0 616.8 -262.8 131.4

Spring Relative property change,
Ao/,4

Load at C

-262.8

131.4

-868.6

A -0.98

B -O.99

C 0.20

Solution:

Spring A* (diagonal elements only, Eq. 10)

-0.I0220408M = -102.20408

-0.I0101010M = -101.01010

0.50000000M = 5000.00000

V-545.908 262.800 262.800]

A*-Ps = | 262.800 -141,501 -131.400 I

L 262.800 -131.400 5868.600_

F-24510PI = |-2318.0 -625.

[._-2031.0 616.83

F116718 19.979]
R = |233.475 41.397 I (See Eq. 12)

L -0.345 0.1373

Ch¢¢ks:

Internal force check

Computed here (Eq. 14)

External loading

Spring Z, 1.0-g Y, 1.0-g

Finite-element analysis

External Loading

Z, 1.0-g Y, 1.0-g

A -2382 -407.7 -2378 -407.1

B -2358 -418.2 -2355 -417.5

C -2071 823.9 -2068 824.6

Deflection check

Computed here (Eq. y)

External loading

Node index Z, 1.0-g Y, 1.0-g

Finite-element analysis

External loading

Z, 1.0-g Y, 1.0-g

124-2 -0.11722 -0.01454 -0.11706 -0.01451

124-3 3.12309 0.54772 3.1185 0.54688
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Table 3. Data and solution for Example 5

Data:

Loading case

rms Correlation coefficients

Indicator X Indicator Z

External 0.006647 0.9725 -0.8632

Indicator X 0.002335 -0.8297

Indicator Z 0.002845

C =

Loading factors

_1.000000)0.873342 (R(1))
3.57202 (R(2))

Solution :

.0066471

1_-0.8632

CV = 10-4 x /

r--

/

0.0 0.0 51
0.002335 0.0

0.0 0.00284

0.9725 -0.8632

1.0 -0.8297

--0.8297 1.0

0.441839 0.15094

0.15094 0.05452

-0.163240 -0.055118

rms = 0.0066

]
-0.163240]

-0.055118[

0.0809401
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Table4. DataandsolutionforExample6

Data:

Loading case rms

External Z 0.3359E-02

External Y 0.4049E-02

Indicator A 0.3590E-03

Indicator B 0.2391E-03

Indicator C 0.2499E-03

Loading Correlation

Ext. Y Ind. A Ind. B Ind. C

External Z -0.1103 0,7464 -0.5104 -0.5839

External Y -0.0494 0.1740 -0.0955

Indicator A -0.7201 -0.7499

Indicator B 0.0776

Solution:

I 0.0 l

0.3359E-02

RMG=
0.0 0.4049E-02

0.3590E-03 0.0
RM I = 0.0 0.2391E-03

0.0 0.0

CVG = 10-4× I 0.112829 -0.015500 7

[_-0.015002 0.163944-]

CVGI = 10-6× [

0.900070 -0.409921

[_-0.071807 0.168452

= x _0.153825 0.029600 7

CVM 10-2 L0.029600 0.007430_]

oo ]0.0

0.2499E-03

-0.490134 7

-0.096631_]

116.718 19.979 7

R = |233.475 41.3971 from Table 2)

k -0.345 0.137]

F lOOOO -011o37
CR G = [__0.1103 1.0000 5

7 1.oooo _07201 -074777
CR I = ]-0.7201 1.0000 0.0776|

[-0.7477 0.0776 1.0000_]

= F 0.7464 -0.5104 -0.5839 7

CRGI L-0.0494 0.1740 -0.0955_

F 0.128880 -0.061812

CV 1 = 10 -6 X 1-o.o61811 0.057169

L-o.o67o79 0.004637
-o.o67o72 1

0.004637

0.062450
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Fig. 1. Schematic for reflector-mount axis compatibility, Example 1.
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Fig. 2. Schematic for subreflecfor-mount model, Example2.
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Fig. 3. Subreflector half-structure model, Example 3.

381




