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ABSTRACT 

Three-dimensional linear secondary instability theory is extended 

for compressible and high Mach number boundary-layer flows. The 

effect of small but finite amplitude compressible Tollmien-Schlichting 

wave on the growth of three-dimensional perturbations is investigated. 

The focus is on principal parametric resonance responsible for the strong 

growth of subharmonics in low disturbance environment. The effect of 

increasing Mach number on the onset, growth, shape of eigenfunctions 

of the subharmonics is assessed, and the resulting vortical structure is 

ex am in ed . 
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1. INTRODUCTION 

Transition to turbulence is a complex phenomenon that has recieved considerable 

attention in the last decade. Our knowledge of the process by which laminar 

incompressible flows undergoes transition and reaches a turbulent state has increased 

exponentially in recent years. On the other hand, high speed counterpart research in 

this area is severely lagging behind. Until very recently, renewed interest in high speed 

flight prompted more activities in transition research for compressible and high Mach 

number Bows. 

While instability and transition in comperessible flows is our main concern in this 

paper, the relevance of the incompressible stability theory to transition mechanisms 

wiU be briefly reviewed. The road to transition in Blasius-type flow involves several 

stages. First, an initial stage of linear instability of small disturbances, called primary 

instability, is well described by the Orr-Summerfeld equation. This is followed by a 

second stage where apparant nonlinearity is revealed by the amplification of three 

dimensionality and the unusually high growth rate of these disturbances. At this stage, 

the disturbances are still weak and the nonlinear distortion to the mean flow is neglig- 

able. Finally, a strong and shorter nonlinear stage takes place with high and intense 

fluctuations that leads to the inevitable fully turbulent regime. 

t Senior Research Scientist 



Recent progress in the early nonlinear stage where strong three dimensionality 

takes place has identified a major link in the transition process between the linear and 

fully nonlinear stages. It showed that there is a well defined transition from laminar 

two-dimensional (2D) to laminar three-dimensional (3D) waves through a secondary 

instability mechanism. This mechanism has been harmonically clarified by numerous 

experiments [l-91, small disturbance theories [lo-141, as well as by numerical simula- 

tions [15-201. Exellent reviews on the subject of secondary instability mechanisms for 

incompressible flows has been provided by Herbert [21] and Bayly et al. [22]. 

Our current understanding of the 3D phenomenon leading to transition in 

incompressible boundary-layer flows indicates two major types of breakdown. In both, 

a 3D lambda-shaped vortex structure appears with streamwise as well as spanwise 

periodicity. In the first type, the lambda vortices are aligned in the streamwise direc- 

tion with the same period as the primary wave and with a spanwise periodicity of the 

same order. This type is called fundamental breakdown or peak-valley splitting, and is 

refered to as K-type breakdown. The second type of breakdown is known by the 

appearance of staggered lambda vortices with a streamwise period twice that of the pri- 

mary wave. This is called subharmonic breakdown. Incompressible experiments indi- 

cate that the subharmonic breakdown occurs when the amplitude of the primary wave 

is low or moderate, while the fundamental type occurs for high primary amplitudes. 

However, numerical simulations show that the appearace of one type of breakdown or 

the other depends largely on the spectrum of the background disturbances [23,24]. 

For incompressible flows, Herbert [ 13,141 formulated a linear secondary instability 

theory for 3D waves in the presence of a finite amplitude 2D wave. His theory can 

predict the increasingly 3D behavior with large growth rates that occur in both the fun- 

damental and subharmonic types of breakdown. Craik [lo] established a resonant triad 

model that comprised of a 2D wave and two oblique waves which can predict an insta- 

bility of the subharmonic type. Craik’s mechanism, known as C-type, is though to 
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dominate at low amplitude of the primary 2D wave, while Herbert’s subharmonic 

mechanism, known as H-type, reflects the situation at moderate amplitude of the pri- 

mary wave. For 3D incompressible boundary layers on swept wings, El-Hady [25] 

established a resonant triad model that comprised of different 3D instability modes, 

that may include stationary crossflow, traveling crossflow, vertical vorticity, and 

Tollmien-Schlishting modes. El-Hady’s model can predict a large amplification of a 

superharmonic or a subharmonic wave depending on the initial spectrum of the ampli- 

tude and phases of the triad components. 

In contrast to this progress for incompressible flows, only the initial stage of 

compressible linear stability is well developed for high speed flows. The link between 

linear regime and observed transition at high speeds is yet to be identified. What 

makes it a difficult task is that experimental knowledge of stability features in the linear 

as well as nonlinear ranges are extremely poor for compressible flows and do not allow 

a physical input to model transition mechanisms. However, incompressible mechan- 

isms of secondary instability can serve as a guide until we have better feedback from 

clean compressible stability experiments. 

For compressible and high-speed boundary-layer flows, the stability problem is 

more complex. Here, it is necessary to account for the rate of heat transfer between 

the fluid and the surface. A thermal boundary layer with mean density variations 

develops in addition to the velocity boundary layer and it plays an important role in the 

determination of the stability of the flow. Compressibility is known to have a stabiliz- 

ing effect on the primary wave due to a change in the nature of the instability as mach 

number increases. For incompressible and low Mach number flows, the instability is 

dominated by viscosity, while it is inviscidely dominated at high Mach numbers. A 

comprehensive review of the linear compressible stability theory of boundary layers has 

been provided by Mack [ 2 6 ] .  We mention here some general results of the theory that 

are of particular importance to the transition process. In contrast to incompressible 
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flows, where a 2D disturbance (y=V) is mostly unstable, an oblique disturbance (called 

first mode) with y of about 40°-600 is the most unstable at low Mach numbers. As 

Mach number increases, multiple eigenvalues of amplified and damped modes result as 

solution to the compressible stability equations. The leading unstable mode (called 

second mode) and higher ones are most unstable as 2D waves. 

High speed stability experiments have been carried out on flat plates [27-291, and 

cones [30-321, but they were directly concerned with the first (linear) stage of transi- 

tion. Some of these experiments were more successful than other in verifying the 

compressible stability theory, but none was designed to study the breakdown of the 

laminar boundary layer or the structure of the flow field near transition. The need is 

certainly urgent for this type of stability experiments to identify the link between the 

linear stage and observed transition at high speed. Recently, Erlebacker and Hussaini 

[33], by using a direct simulation of parallel compressible boundary layer at Mach 4.5, 

generated numerically a vortical structure qualitatively similar to the K-type breakdown 

for incompressible flows. They observed a secondary instability triggered by the 

interaction between a finite amplitude 2D wave with a 3D (first mode) disturbance. 

This instability at Mach 4.5 was found to be weaker than those found in incompressible 

flow. 

In this paper, we extend the linear secondary three-dimensional instability theory 

and apply it to compressible and high speed flows. We investigate the effect of small 

but finite amplitude 2D or oblique compressible TS wave on the growth of 3D pertur- 

bations in compressible boundary layers. The focus here is on the growth of secondary 

subharmonics due to its importance in low disturbance environment. We study how 

the subharmonic instability mechanism will sustain as Mach number increases. Some 

early results of this work were described by the author elsewher [34]. In section 2 the 

analysis is developed. Section 3 discusses the numerical procedures. Results and dis- 

cussions are given in section 4. Then we end with concluding remarks. 
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2. ANALYSIS 

The flow field is described by the laminar compressible 3D Navier-Stokes and 

energy equations. Lengths, velocities, and time are made dimensionless using a refer- 

ence length L = ( V , X / ~ , ) ~ ’ ~ ,  the freestream velocity U ,  and L / U ,  respectively. Here x 

is the distance from the leading edge of the flat plate and v ,  is the kinematic viscosity 

coefficient evaluated at the freestream. The pressure is made dimensionless using 

pm U 2 .  The temperature, density, specific heats, viscosity, and thermal conductivity of 

air (treated as perfect gas) are made dimensionless using their corresponding frees- 

tream values. In terms of these dimensionless quantities and in a vectorial form, the 

governing equations read 

*+v .(pV) = 0 
at 

p + v  a( V) . ( p W )  = - v p + - v  1 .T 
a t  R 

p(,t+v.ve) ae = (9-1)M: [$+V.Vp+-QI+-V 1 1 . ( p V W  
R R p,  

with the state equation 

In the above equations T is the dimensionless viscous stress tensor, and @ is the 

dimensionless dissipation function. They are defined as 

c = p[V V+(V V)T]+hV .VI ( 5 )  

cg = 2 : v  v ( 6 )  

Also, 9 is the ratio of specific heats, M, is the freestream Mach number, 

R = p ,  U ,  L / p ,  is Reynolds number, P,=c,p/k is Prandtl number, and h are the first 

and second coeffients of viscosity respectively, I is a unit tensor, and T denotes a tran- 

spose. 
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2.1. The Basic Flow 

We consider a basic flow which is assumed to be a solution of the equations of 

motion. This flow consists of a 2D compressible locally parallel boundary layer modu- 

lated by a small but finite amplitude compressible TS or oblique wave, here called pri- 

mary disturbance. The basic flow takes the form 

where 

- j  ai& 
A A ( x )  = A o e  

and cc denotes complex conjugate. We shall consider the variation of the primary 

amplitude A ( x )  in Eq (8) to be weak. This variation will be neglected, and A is 

assumed to be locally constant. Also, we shall neglect tems O ( A 2 )  in the analysis, and 

assume that the 2D compressible flow is modulated only by a periodic component of 

the linear stability problem. Justification of these assumptions will be considered later. 

In Eq (7), qo stands for boundary-layer flow quantities u0, po,  eo, po, and po, while q1  

stands for the eigensolutions of the primary disturbance, they are ul, v l ,  p l ,  el ,pl, and 

pL1. These quantities represent velocities, pressure, temperature, density, and viscosity 

respectively. The eigensolutions are normalized such that the amplitude A of the pri- 

mary disturbance measure directly the maximum root mean square value of the distur- 

bance velocity in the flow direction, that is 

For a spatial stability analysis, a is taken as the complex wavenumber for the primary 

disturbance defined as a=a,+ia;, and o is the real frequency. 

In the analysis, the x-axis is always identified with the direction of the primary 

wave vector and the y-axis is defined normal to it. With that in mind, a 2D or oblique 

TS wave used to modulate the 2D compressible boundary layer will always be 
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considered a 2D primary wave with respect to the secondary instability. While our 

focus in this study is on 2D basic state, this setup is designed for a future investigation 

of 3D basic state. 

The eigensolutions of the primary wave are governed by a six order-system of 

equations that are given in Ref. [35-371. The primary density disturbance is related to 

the temperature and pressure disturbances through the state equation 

while the primary viscosity disturbance is assumed to be linearly related to the tem- 

perature disturbance as 

2.2. The Secondary Instability 

To study the linear 3D instability of the basic flow given by (7), we superpose a 

small unsteady disturbance on each velocity, thermodynamic and transport quantity of 

the basic flow, that is 

where q2 is a secondary disturbance quantity that stands for disturbance velocities 

u 2 ,  v 2 ,  w 2 ,  pressure p 2 ,  temperature 02, density p2, and viscosity p2. In a linear analysis, 

the secondary disturbance q2  is assumed small compared to the primary disturbance q l ,  

such that the primary will influence the modulation of the secondary but not vise 

versa. 

The basic flow given by (7) should include, in principle, all Fourier components of 

the primary wave, leading to very complicated interactions. This probably will hide the 

essential features of the instability mechanism. By taking a single Fourier component 

in this analysis, we basically neglect the nonlinear distortion of the eigensolutions q 1  at 
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finite amplitude of the primary wave. This has been justified in the incompressible 

secondary instability theory [21] on the basis that the 3D secondary instability occurs at 

small amplitudes of the primary wave where the nonlinear distortion is weak. It was 

also noticed that the vortical nature of the 3D secondary instability is not affected by 

the nonlinearity. These justifications are still valid for the compressible version of the 

secondary instability theory, if we accept the notion that compressibility will probably 

retard and attenuate any nonlinear distortion. 

Equation (12) is substituted into Eqs.(l-6), the basic flow is subtracted, and the 

resulting equations are linearized with respect to the secondary disturbance q2.  We end 

up with five coupled partial differential equations for the secondary 3D instability. The 

coefficients of these stability equations are functions of the basic flow and its deriva- 

tives, they are independent of the coordinate z ,  and periodic in x and t .  Hence, the Z -  

variation can be separated, and Floquet theory of differential equations with periodic 

coefficients can be applied to give a solution to these equations in the form 

wher p is a real spanwise wavenumber of the secondary disturbance. It is a measure of 

the angle of divergence of the secondary disturbance propagation direction from the 

primary wave vector. y=y,+iyj and o=o,+ioj are two complex characteristic exponents, 

and $ ( x , y , t )  is a periodic function of ( x - o r l a )  , the same as the period of the basic 

flow. We express $ ( x , y , t )  in terms of Fourier series to obtain the following expression 

for q 2 ( ~ , ~ , z , t )  

with 

where the overbar denotes complex conjugate. 
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Equation (14) represent a general Floquet form for the eigenmodes of a periodic 

basic flow. The subharmonic and fundamental modes are special cases of this form. 

The solution of the resulting eigenvalue problem will determine only two of the four 

real exponents y r ,  yi, 0, and csi in Eq( 14). The other two values must be given. For 

the purpose of our study of the spatial instability of subharmonic modes, we let y r  

represent the growth rate of the secondary disturbance, o,=O ( no temporal growth), 

0;s- w/2  for a pure subharmonic mode, and let yi  represent the shift in the streamwise 

wavenumber of the secondary wave with respect to the primary one. 

In the numerical treatment, the lowest possible truncation of Fourier series for 

subharmonic modes is used ( n I I), and no attempt was made to study the effect of 

that on the solution. Using Eqs.(l4) and (15), the governing equations for the 3D 

subharmonic instability can be written in the form 

( a  D 2 + 6  D + c ) +  = A ( d  D 2 + e  D + f ) &  + A2(g D + h ) + + . .  

where 

D = d l d y ,  and a ,  6, c ,  d ,  e ,  f ,  g, and h are 5x5 matrices that are dependent upon the basic 

flow. The nonzero elements of these matrices are given in Appendix A ( except that 

for gand h ) .  

In Eq.(16) the density secondary disturbance p2 is substituted for the pressure 

secondary disturbance p 2  by using the state equation 

while the temperature secondary disturbance e2 is substituted for the viscosity secon- 

dary disturbance p2 by using Taylor’s expansion of the total viscosity to yield 
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We recall that in the construction of the basic flow, the effect of the finite primary 

amplitude A on the basic flow was neglected. On the other hand, its effect on the 

secondary instability was taken into account. Because of that, terms of O ( A 2 )  and 

higher might appear beside terms O ( A )  as a forcing function at the right hand side of 

Eq.( 16). These higher order terms are unique for the compressible secondary instabil- 

ity equations in contrast to that for incompressible flow where only terms O ( A )  appear. 

They arise because instabilities due to density as well as viscosity are taken into con- 

sideration in the compressible stability analysis. One might argue that these terms 

should be neglected in consistency with the expansions (7) and ( l l ) ,  or because the 

whole analysis of the secondary instability is based on a small finite amplitude A .  For 

that reason, an evaluation of the effect of terms O ( A 2 )  on the secondary instability is 

considered in section 4 for the range of the primary amplitudes and Mach numbers 

used in the calculations. 

The system of Eqs.( 16) govern the secondary 3D spatial subharmonic instability of 

compressible 2D flows. They are five coupled ordinary differential equations for 

u2, v,, w 2 ,  p2 and e,. When supplemented with homogeneous boundary conditions, they 

constitute an eigenvalue problem 

for a given boundary layer velocity and temperature profiles u o ( y )  and e o ( y )  respectively. 

3. NUMERICAL PROCEDURES 

The governing equations of the mean flow (Appendix B) are numerically 

integrated by using a combination of a shooting technique and Runge-Kutta and 

Adam-Moulton integrator. The thermodynamic and transport properties of the perfect 

gas are computed at each integration step, as they vary with the temperature according 

to the relations given in Appendix B. 
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The primary instability which modulate the 2D compressible boundary layer is 

governed by six first-order set of ordinary differential equations. They ‘are numerically 

integrated as initial value problem using a freestream solution as initial condition. The 

solution of this eigenvalue problem was calculated before by Mack [35] and El-Hady 

[ 3 6,371. 

With respect to the secondary instability, the system of Eqs.( 16) may be written as 

eight first-order complex equations in the form 

D Z  1 = z ,  

DZ + 12, DE2 = c2  + 122 

D Z 3  + 1 3 ,  D r 3  = c3  +- 132 

D Z  7 = z ,  

with the boundary con dit ions, 

Z l = Z 3 = Z 4 = Z 7 = 0  a t y = O  

Z I ,  Z 3 ,  Z 4 ,  Z 7  +O as y+w 

where 

Z 1 = ~ 2 ,  Z ~ = D U ~ ,  Z 3 = ~ 2 ,  Z 4 = ~ 2 ,  

Z 5= Dw 2, Z 6= p2, Z 7= 02, Z g= D 02, (24) 

and I , ] ,  and lm2 ,m=1,2,..8 are both functions of the primary amplitude A ,  whereas 

c,,,, m=1,2,. .8 are functions of the secondary disturbance quantities Z,, m=1,2, . .8 .  In case 

of no modulation of the mean flow by a primary instability (f,,,1=f,,,2=O), then the 
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reduced system (21) will govern the stability of a primary subhaxmonic 3D wave. 

We assume that the amplitude of the primary vanishes far in the freestream at 

y 2  y e ,  e denotes the edge of the boundary layer. Then the system (21) will have con- 

stant coefficients, and can be solved analytically producing four linearly independent, 

exponentially decaying solutions to conform with the boundary condition (23). With 

the freestream solution as initial condition, Eqs (21) are integrated from y = y e  to y = O  at 

the wall, using a variable step-size algorithm [38], based on the Runge-Kutta -Fehlburg 

fifth-order formulas. The solution is orthonormalized at a preselected set of points 

using a modified Gram-Schmidt procedure. A Newton-Raphson technique is used to 

iterate on the eigenvalue to satisfy the last wall boundary condition within a specified 

accuracy of 0 ( 1 0 - ~ ) .  

4. RESULTS AND DISCUSSION 

Fundamental changes in the compressible mean flow as well as in the character of 

the primary wave is expected as Mach number increases. These changes in turn will 

influence the modulated basic flow under study and its stability characteristics. In the 

subsonic range, a primary wave with fixed frequecy will propagate faster downstream 

acquiring longer wavelength as Mach number increases, and less time will be allowed 

for the wave amplitude to grow for a given length. Although 2D primary waves are 

most unstable in this range of Mach numbers, 3D primary waves exist in a natural 

background, and might trigger a secondary instability of the basic flow similar to the 

case of the damped vertical vorticity modes in incompressible flows [25,39,40]. As 

Mach number increases, 3D primary waves become dominant. Nevertheless, we focus 

our study in this paper on the possibility of the formation of strong three dimensional- 

ity from purely compressible 2D basic flow. 
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4.1. Onset and Growth of Secondary Subharmonics 

For 2D primary waves, Fig.(l) shows a decrease in the growth rates as Mach 

number increases for a wave with nondimensional frequency F=60 defined as 

F = 1 0 6 0 / R  ( 2 5 )  

The figure shows that the first and the second neutral points as well as the streamwise 

locations where maximum growth rates occur shift to the left, they occur earlier 

upstream, as Mach number increases. 

Almost in the same region where primary 2D waves are growing, primary 3D 

subharmonics with broad band of spanwise wavelengths are subject to amplification. 

An example is given in Fig.(2) where growth rate curves are shown for a primary 3D 

subharmonic ( F = 3 0 )  at different Mach numbers and fixed spanwise wavelength. The 

growth rates of the primary 3D subharmonics like that of the primary 2D waves are so 

small to compare with the highly amplified three-dimensionality that likely to be 

observed near transition. These rates of growth are induced by viscous instability at 

this range of Mach numbers. 

A parametrical exitation by the finite amplitude primary wave will produce strong 

growth of secondary 3D subharmonics along a broad band of spanwise wavelengths. 

Figure (3) shows an example of such strong growth rates at M,=0.8,  as function of the 

spanwise wavenumber parameter B defined as 

Calculations were performed at a downstream location corresponding to R = 850 (see 

Fig.1) for different amplitudes of the primary 2D wave. Figure (3) has basically the 

same features of the growth of subharmonics in incompressible flows, the large values 

of the growth rates, the broad band of unstable subharmonics, and the sharp cutoff at 

low spanwise wavenumbers. As the primary amplitude 'decreases, growth rates as well 

as unstable band of secondary subharmonics sharply decrease. The results given in 
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Fig.(3) are for real eigenvalues (yr> 0 and y i=O ) that prove to be the dominant secon- 

dary subharmonic mode at M , = 0 . 8 .  This mode is perfectly synchronized with the basic 

flow similar to the case of incompressible flows [38]. Some calculations for the com- 

plex eigenvalues are marked in Fig.( 3) for comparison. 

Figure (4) compares the growth rates of the dominant real mode at Mach 

numbers 0.4, 0.8, 1.2, 1.6, and 2.2. Calculations were performed at R =850 and for a pri- 

mary 2D amplitude A=.01  ( R=750 for M,=1.6 and 2.2, and A=.015 for M,=2 .2 ) .  At 

these conditions, Fig.(4) indicates that compressibility has a stabilizing effect on the 

secondary subharmonic instability with considerable decrease in the growth rates and 

reduction in the unstable band of spanwise wavenumbers. With the increase of Rey- 

nolds number and/or the primary wave amplitude, the growth rates increase for all 

Mach numbers at a fixed frequency F. 

Apart from the fact that slower growth rates of the primary wave is expected as 

Mach number increases, the onset of the primary instability also shifts to an upstream 

location, see Fig (1). Because of that, the outcome of a local compressibility contest 

(at fixed R )  might somtimes prove misleading for fixed primary wave amplitude [34]. 

An example of that effect is shown in Fig (5a) at R=850, where the growth rates of the 

dominant subharmonic mode (real mode) are compared at M,=0.4 and M , = 0 . 8  for pri- 

mary wave amplitudes A=.002  andA =.01.  At A=.01  compressibility appears to have a 

stabilizing influence at all unstable range of spanwise wavenumbers. As the amplitude 

A decreases, this stabilizing effect of compressibility starts to diminish until it is 

reversed at low enough primary amplitude such that at A=.002  it will appear that 

compressibility has a destabilizing influence on the growth rates. Figure (5b) provides 

same conclusions but at higher Reynolds number, R = 1 0 5 0 .  Moreover, it also shows 

that local compressibility effect might depend not only on the value of the primary 

wave amplitude, but also on the value of the spanwise wavenumber. 
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The overall effect of compressibility on the growth of the secondary subharmonics 

can better be evaluated when combining the influence of increasing the amplitude A of 

the primary wave, and the influence of increasing R at various Mach numbers and for 

fixed frequency F .  Figure (6a) shows the variation of the growth rates of the secon- 

dary subharmonic with R for different Mach numbers, and for a spanwise wavenumber 

parameter B=.15.  This value was chosen to average the most unstable band of span- 

wise wavenumbers in the range of Mach numbers used in the investigation. In these 

calculations, an initial amplitude A ,  =.001 was assumed for the primary wave for all 

Mach numbers (at the streamwise location where the onset of the primary instability 

sets in), and its growth was taken into account while marching downstream. Figure 

(6b) shows the variation of the amplification factors with R of the subharmonics calcu- 

lated from the streamwise location where the onset of the secondary subharmonic sets 

in. Figure (6b) shows the amplification factors decreasing from about 29 at M , = O  to 

12 at M , = . 8 .  Corresponding variations of the growth rates and the amplification factors 

for the primary wave at different Mach numbers are included in Figs (6a) and (6b) for 

comparison. 

The strong growth of the secondary subharmonics compared to that for the pri- 

mary waves (specially in the region of interest where they are mostly unstable) justifies 

the assumption of neglecting the variation of the primary amplitude and considering it 

as locally constant. While Figs.(6a) and (6b) show that the growth rates and 

amplification factors of the secondary subharmonics decrease with increasing Mach 

number, they also indicate that the onset of the secondary instability is almost not 

affected by that increase. This may be due to the effect of the upstream shift of the 

onset location of the primary instability combined with our assumption that the initial 

primary amplitude A,  is the same at all Mach numbers. In a real experimental environ- 

ment it is expected that A,  be proportional to ~ 4 2 ,  and this might offset the stabilizing 

effect of compressibility as Mach number increases. 
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4.2. Effect of Mach Number on The Eigenfunctions 

Figure (7a) shows the variation across the boundary layer of the normalized root 

meam square values of the secondary subharmonic disturbance at different Mach 

numbers. The corresponding variations for the primary disturbances are shown in 

Fig.(7b) for comparison. These calculations were performed for F=60, A =.01, B = . 1 5 ,  

and R=850 (R=750 forM,=1.6 and 2.2,A0=.015 for M , = 2 . 2  ). As Mach number increases 

the critical layer moves away from the wall (its location is shown in Fig 7), and the 

location of the maximum amplitude of U ,  and 0, primary fluctuations, and u 2 ,  e2, and w 2  

secondary fluctuations follow. We notice that, first, the secondary v2- fluctuation is 

very small compared to the u,-fluctuation, while the primary v,-fluctuation is about 

30% of the u,-fluctuation at all Mach numbers. Second, the secondary 0,-fluctuation 

does not become that large as expected with the increase in Mach number (about .25 u 2  

at M,=1.2) compared to the primary 0,-fluctuation (about .75 u 1  at M , = 1 . 2 ) .  Third, the 

secondary w2- fluctuation which has a considerable amplitude at low Mach numbers 

(about S O  u2  at M , = O . )  diminishes as Mach number increases. This last observation 

might prove responsible for diminishing the spanwise velocity variations as Mach 

number increases, and consequently reducing the production of the streamwise vorti- 

city. 

All calculations in this section were performed with terms O ( A 2 )  in Eq(16) taken 

into account. Yet, an estimate of the effect of these terms on the growth of the real 

subharmonic mode is given in table 1 at different Mach numbers and spanwise 

wavenumber parameters. The table shows that terms O(A2) have negligable effect on 

yr within the accuracy limits used in these calculations. 
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I 

4.3. Effect of Mach Number on The Vortical Structure 

Figure (8) shows the initial 2D vorticity contours of the basic flow ( has only a 

spanwise component) in a wave-fixed coordinate system at different Mach numbers. 

The peak vorticity occures near the wall and extends to the critical layer with a slower 

rate as Mach number increases. The strength of the vorticity becomes higher with the 

increase of the amplitude of the primary wave. 

With the onset of the secondary instability, three-dimensionality is induced and 

the initial 2D vorticity is deformed producing a vortical structure. Figure (9) shows 

the spanwise vorticity contours in the x - y  plane at z=O for different Mach numbers. 

The figure was plotted over four primary wavelengthes. These vortices are inclined to 

the mean flow direction at an angle near 30" at M , = . 4  and increases to near 45" at 

M,=2.2. As Mach number increases, these vortices extend to the critical layer with less 

tilting angle into the X - z  plane. 

Figure (10) shows contours of the streamwise vorticity produced by the spanwise 

velocity variations. The figure is plotted over two spanwise wavelengthes in the z-y 

plane at x=O, for different Mach numbers. It shows counter-rotating vortices extending 

away from the wall toward the critical layer as Mach number increases. The interaction 

between the streamwise vorticity and the deformed spanwise component is the main 

drive to flow breakdown. 

5. CONCLUDING REMARKS 

The theory of linear three-dimensional secondary instability is extended to 

compressible and high spead boundary-layer flows. The effect of small but finite ampli- 

tude two-dimensional compressible Tollmien-Schlichting wave on the growth of three- 

dimensional subharmonics is investigated for a range of Mach numbers to 2.2. 

Numerical results performed for a primary wave with frequency F=60 show that 

the local effect of compressibility on the growth of the secondary subharmonics at fixed 
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R can be misleading. This effect may appear stabilizing or destabilizing depending on 

the amplitude of the primary wave, as well as the spanwise wavelength of the secon- 

dary wave. 

However, the overall effect of increasing Mach number (including the influence of 

increasing both R and A )  is a reduction in the growth rates and the amplification fac- 

tors of the secondary subharmonics, when the initial amplitude of the primary wave is 

kept fixed at all Mach numbers. 

The maximum of the root mean square values of the secondary subharmonic 

eigenfunctions move away from the wall, following the critical layer, as Mach number 

increases. This suggests that the exchange of energy among the secondary disturbance, 

the mean flow, and/or the primary wave takes place around this location at different 

Mach numbers. 

At low Mach numbers, the secondary spanwise velocity perturbation has a consid- 

erable amplitude. This amplitude decreases with the increase in Mach number, which 

might affect the production of the streamwise vorticity resulting in slowing or delaying 

the flow breakdown. This point worth a forthcoming separate investigation. 
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APPENDIX A: Nonzero Elements of Matrices a, b, c, d, e, and f in Equ (16) 

a l l  = - R -  1 po, aZ2 = = m 2 R - ' p o ,  a33  = - R - ' p o ,  aS5 = - (RP, . ) - 'Dpo 



c 1 1  = Po[( y + i d 2 )  u 0- id 21- R - 'p [ m  2( y + i d 2 ) 2 -  p'1, 



- 20 - 

f 25 = R - lPo(im a+ y+ i a / 2 ) D u  1+ [ i (  y- i d 2 ) -  a ] v  1+ m 2D2v l-R -ID Po( im au m 2Dv 

where m = 2 ( e - 1 ) / 3  is the ratio of the second viscosity coefficient h to the first viscosity 

coefficient p, e=O corresponds to the Stokes hyp0thesis.e is taken 0.8 in this analysis. 

Also, m 1, m 2 = m + 2 ,  P o = d p d d e o , p o = d ~ d d ~ o ,  and po=d2Pdd@. 

APPENDIX B: The Compressible Mean Flow 

The 2D compressible boundary-layer equations for zero pressure gradient can be 

derived using the transformation 

and a stream function to satisfy the continuity equation, where R ,  is the freestream x- 

Reynolds number, p is the density, x is the distance along the plate and y is the normal 

to it. In the similarity coordinate q, the governing equations are 

(ppu') '+gu'= 0 

where 

and h, is the stagnation enthalpy. These equations are supplemented with the 
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boundary conditions 

u = 0, e = 0, = o atq=o 

The variation of of the viscosity p and thermal conductivity k of the perfect gas 

with temperature 8 are given by 

1.458 VX 1 0 - ~  for e ,  110.4 
= e+ 110.4 

0.6325 e 0 . 5 ~  1 0 - ~  fore, 8o k =  
I+ (245.41 e) x IO- 12/e 

k = (0.222964~10-~)8 for95 80 

where p is in gm/cm sec, k is in cal/cm sec C, and 8 is in K. 

For the variation of the enthalpy and Prandtl number with temperature, the NBS 

perfect gas tables are used. The specific heat cp is computed from the definition of 

Prandtl number using the calculated values of p and k and the tabulated values of P , .  
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Fig. 7 Variation across the boundary layer of the eigenfunctions at 
different Mach numbers and the conditions of fig.4. (a) Secondary 
subharmonic disturbance. (b) Primary wave. 



- 32 - 

1 -c- ----- y----- c 



- 33 - 

Fig. 9 Spanwise vorticity cootours of the 
3D fiow in the x - y  plane at :=O, at 
differeot Mach oumben. Same conditions 
of fig.8. 
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Fig. 10 Streamwise vortiaty contours of the 
3D flow in the z - y  plane at r = O  at 
different Mach numbers. Same conditions 
of fig.8. 
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