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Abstract

In this paper we present the numerical analysis of spectral methods when non-constant
coefficients appear in the equation, either due to the original statement of the equations
or to take into account the deformed geometry. A particular attention is devoted to the
optimality of the discretization even for low values of the discretization parameter. The
effect of some “overintegration” is also addressed, in order to possibly improve the accuracy

of the discretization.
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1. INTRODUCTION.

Spectral methods were introduced around 20 years ago by S. A. ORSZAG in order to provide a high
order accuracy for the numerical simulation of partial differential equations. The original idea was to use
truncated Fourier series to approximate the (smooth) solution when the problem was supposed to be provided
with periodic boundary conditions. In order to tackel problems with more general boundary conditions
(Dirichlet or Neumann type), the set of (algebraic) polynomials replaced the set of truncated series, but the
characterization of the unique discrete function that would provide the numerical solution was still achieved
following the original strategy. This enters in the context of the collocation method where the numerical
solution is chosen so as to satisfy the original partial differential equation at some suitably chosen collocation
points. Of course the choice of the set of collocation points is of fundamental importance for the accuracy
of the method and the first remark is to notice that the number of collocation points must be equal to the
dimension of the space of approximation. Otherwise, the problem could, in general, be overspecified.

When other authors arrived to the analysis of the problem, ([1], [2], [3], [4] among others) they realized
that the collocation method could be interpreted as a variational problem with numerical integration. In
fact, it is quite common now to realize that the spectral methods are very close to the finite element method
in its p or h — p version, where convergence is achieved by increasing the order of the polynomial degree and
not by diminishing the size of the elements. It is in this framework that the domain of application of the
spectral methods has been generalized. The plain spectral method suffers from being constrained to very
simple domains: they are limited to be slightly deformed squares (in 2-D) or cubes (in 3-D). The idea to
couple domain decomposition techniques to the spectral discretization developed rapidly in order to cope
with this initial drawback ([5], [6]). However, by starting from the strong formulation of the equations, this
can only produce the Schwarz algorithm ([6], [7]) or a strong coupling between the elements ([5]), where the
solution (in the case of second order elliptic problems) is searched as a global C! function that is piecewise
polynomial. This results in some drawbacks. First, in the Schwars algorithm, there is an increase of the
work due to the double computation over the overlapping region (recall that this one has to be large enough
in order to achieve a good convergence rate of the algorithm (7], [8]). Second there is a lack of optimality of
the approximation in the strong coupling formulation — both from the numerical analysis point of view and
from the algorithmic point of view — a consequence of an overconstraint problem due to the C! matching.

In this context, understanding of the similarity between the collocation method and a variational for-
mulation used with consistent numerical quadrature brings a lot of flexibility. Indeed, the coupling required
in the nonoverlapping decomposition of the domain is weaker (only C°) and allows for constructing an op-
timal method. This has lead to the spectral element method [9], [10], [11] and more recently to the mortar
element method [12], [13], [14). The variational method involves integrals that can be computed (with or
without numerical quadratures) separately over each subdomain. The spectral element method uses consis-
tent quadrature formulas and in this respect (but not only this one) conserves the spirit of former spectral
discretization (the other points being the use of tensorial basis and tensorial evaluations of the residuals). It
has been shown ([10], [15]) that the method can still be interpreted as a collocation method within each ele-
ment wheras a suitable equation is satisfied at the interface of each subdomain. There are still fundamental
differences between the spectral and the finite element methods that are important as regards the numerical
implementation of the method, however the general philosophy is the same. The point that we want to
address in this paper is related to one of the differences between the p or h — p version of the finite element
method and the spectral methods, more precisely to one possible drawback of the spectral method. Indeed,
as we have said, the spectral method can be interpreted in a finite element framework when a particular nu-
merical integration formula is used. Derived from the collocation method, the numerical integration formula
is constrained to be based on a certain number of points. This number is not related to the fact that some
quantity must be well (or exactely) computed, but has to be equal to the dimension of the discrete space.
Using a vocabulary that is standard in the finite element context, the points of the numerical quadrature
formula have to be unisolvent with respect to the discrete space. This is a restriction with respect to the fact
that in finite element methods, people use more general integration formulas based on accuracy considera-
tions. In this sense, there is often an overintegration in the finite element statement. The current spectral
methods use these “consistent” (with respect to the numerical discretization) quadrature rules with a priori
no lack of accuracy. As shown in the appendix, the possibility to use an overintegration in the context of
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spectral methods is however possible, but is not of importance in most interesting cases as demonstrated in
this paper.

The situations where overintegration could be of importance are those where non-constant coefficients
are involved, either because they are present in the original formulation of the equations or because they are
introduced when a deformed geometry is considered and a mapping to a domain of reference is used. Indeed,
it is in these cases that the numerical integration based on N +1 Gauss-Lobatto points is not accurate enough.
We analyze in details these two situations and point out the cases where overintegration is required. The
analysis is illustrated with many numerical experiments. This allows to strengthen our theoretical analysis
since the exact value of some constants could be of importance and are not exactely taken into account in
the theoretical analysis.

The analysis of the effect of overintegration has never been addressed in the spectral context. Previous
analysis of Legendre spectral approximations of problems with non-constant coefficients [10] or with deformed
geometries [7) could in this sense be misleeding as the results presented there were proving a spectral type
convergence (i.e. faster than any algebraic rate if the solution is analytic) but were not optimal. The basic
ingredient to get optimality is a new result of [18] and deals with the fact that the interpolation at Gauss-type
points is optimal.

The paper is organized as follows:
In section 2, we consider the case of original non-constant coefficients equations and we analyze in which
cases the overintegration may improve the accuracy of the approximation to allow for optimal results. An
appendix presents some numerical considerations on the implementation that shows that the tensor product
evaluations can still be preserved even in the case of overintegrations.
In section 3, we analyze the case where the non-constant coefficients are induced by the treatment of a de-
formed geometry. We prove that in this situation the overintegration is unnecessary to provide the optimality
of the approximation.
In sections 2 and 3 we also present some remarks related to the impact of our analysis as regard the design
of the best schemes in the case of deformed geometries.

Acknowledgements: The question of the importance of overintegration has been raised during a meeting
with I. BABUSKA. The many discussions with A. T. PATERA have been very enlightening. We thank both
of them for their help. This research has been supported in part by NSF under ASC-8806925, ONR and
DARPA under contract N00014-85-K 0208. Part of this work has been done while the first author was in
residence at ICASE, NASA Langley Research Center, Hampton, VA.




2. ANALYSIS OF SPECTRAL APPROXIMATION WITH NON CONSTANT COEFFICIENTS.
2.1 — The One Dimensional Case.

Let us consider the following problem: Find u € H}(-1,1), such that

—(P uz)a+qu=f| in (-111)' (1)

This problem is supposed to be well posed in H3(—1,1) in the sense that the bilinear form a, defined over
(H{(~-1,1))? as follows

1 1
a(u,v) = /lpu,v,dx+/lquvdz, (2)

is elliptic and continuous over (Hj(—1,1)). In fact, for sake of simplicity, we shall assume that there exists
three constants p,, ps and g3 such that

0<p1<p(z)<ps Vze(-1,1); (3)
0<g(z)<qs Vze(-1,1). (4)

In addition, the forcing function f is supposed to be at least in L3(—1,1). We want to approximate this
problem by a spectral element method. Our first work will be to design the discrete space that will approx-
imate H}(—1,1). Given a fixed integer K, we shall first consider a partition of (—1,1) in K subintervals Iy,
where

I = (ax, @e41), (5)

and the a; are (K + 1) points in (-1,1) such that
—l1=ap<a1<...<ag.1<ax =1,

(and the lengh ai4; — ai is supposed to be O(K~!).)
The spaces of discretization are imbedded in

Yy = {¢ € L*(-1,1); ¢1, € IPx(I)}, (6)

where N is some integer and IPy(A) denotes the set of all polynomials of degree < N over A. This space
will discretize L?(—1,1). In order to discretize H{(—1,1), let us introduce

Xy =Yy nNH}(-1,1), (7)

(which means that ¢y, (ax41) = ¢y1,,,(a4+1) and ¢ vanishes at +1.)
The second step in the discretization process is to define the discrete problem. As indicated in the
introduction, the point of departure is the following continuous variational formulation of the problem (1):

Find u € H}(-1,1) such that
a(u,v) = (f,v), Vve H(}(_ll 1), (8)

where the notation (.,.) stands for the L3(—1,1)-scalar product. Given an integer M, M > N, the discrete
problem is: Find uy € Xy such that

am(un,vn) = (fivn)m, Yoy € Xn. (9)

The definition of ax and (.,.)s from a and (.,.) will use a composed Gauss-Lobatto quadrature formula.
More precisely, this one is based on the data, over each segment I; of a set of M + 1 points £}

ar = €§ <EF <. <Ehoy <Eh =arg, (10)
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and a set of associated weights pf that are such that

K M
T e=3"Y ahet = /q»(z)dz, V& € Yans-1. (11)
aL I

k=0 =0

The definition of ap and (.,.)ar is now as follows:

am(un,UN) = ) PunsvNs + Y qunvn, Y(un,vN) € X3, (12)
GL GL
ar

Remark 2.1. The standard spectral element method utilizes a consistent Gauss-Lobatto quadrature rule,
iie. M = N. The case M > N corresponds to an overintegration with respect to the standard spectral
element method. Such an overintegration might be of interest to introduce in the case of non-constant
coefficients. The analysis that follows indicates the situations for which this is the case.

The interesting feature about (.,.)a is that it defines over Yy a discrete scalar product that is uniformly
equivalent to the L?(—1,1) one. Indeed, it has been proven in [4] that

The following Lemma is then completely standard

Lemma 2.1. There exists one and only one solution uy to problem (9) and there exists a constant C such
that
”“N“H‘(-x.l) < C“f||b°°(-1,1)

Proof: The Lemma follows easily from the constatation that aps is uniformly continuous and elliptic over
Xy, i.e. there exists two positive constants a and 7 such that

allunllf(-1,1) < am(un,un) < vllunlE-1 (15)
and can be deduced from (3), (4) and (14).

Our further analysis is devoted to the derivation of optimal error bounds for the numerical solution.
The following Lemma is also standard and follows from (15).

Lemma 2.2. There exists a constant C independent of N such that

: alu,vy)—apmluy,v
llv — unllai(-1,1) £ C[ inf {|lu — wn|lgr(~1,1) + sup (v, vw) (wn,vN)
wNEXN vNEXN “uN“H‘(—l,l)

4 wp Loow)—Uromdaey
ywEXy ”‘UN”H‘(—I,I)

(16)

The following Lemma proves that the last term in (16) is of the same order as the best L?(—1, 1)-fit of
f by polynomials of degree 2M — N. Let us first denote by Cj (-1, 1) the space

C?((—li 1) = {'/’ € Lz(—lt 1)» 3'/’1 € Co(fb)) \"II,. = ¢b} (17)
and similarly, for any u, by H}(—1,1) the space

HE(-1,1) = {$p € L}(-1,1), oy, € H*(LL)}, (18)

we have
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Lemma 2.3. Let p be a real number > 1/2. For any ¥ € Hi(-1,1), we have

sup (¥, vv) = (Yyon)M <C(2M - N)* EK: 9yrll e (n): (19)
wexn  lowlla-a =
(Y,on) - (¥, on)m _ EK

vN:lll’l:r-x ””N”L’(—l.l) . C(2M - N) ’ A=1 ”¢"~”H‘(t.). (20)

Proof: Let us first consider the case where M = N. Let us introduce, for any integer L, the L?(—1,1)-
projection ¥, = II(¥) of ¢ over IP (-1, 1), we have '

(¥yon) — (¥, on)n = [(¥,vw) — (O, ow)) + (¥, vw) — (YN, v )] (21)
+ (¥~ vn)N — (,vn)N]-

It is an easy matter to note that
(¥, vn) — (¥n, )| < CllY — ¥nllea-nllvnlia-1,1), (22)
Besides, let us denote by Zy the operator of interpolation from the set Cj(—1,1) onto Yy such that
Iny(EF) = v(€}), Vi=0o,...,N,Vk=1,...,K. (23)

then
[(¥n,vw)n — (¥, on)Nn| = |(¥8 — INY, vN)N]
1/3

< (8 = Ind, ¥n — INO)N (o, wn )N
which, thanks to (14), gives

(¥, vn)n = (Y, on)n] S Clln — InYllea-ay)llvnllea-1,1)
< C(ll¥ = ¥wllzary + 1Y — In¥llea-a,)llonllea-1,1)- (24)

It remains to estimate the middle term in (21). Let us first assume that K = 1, corresponding to a plain
spectral method with no domain decomposition. The term in question can then be written as follows

(¥w, "y) —(¥nvn)n = (YN On)(Eny In) = (Ln, Ly )N)

where, for any j € IN

+ (¥, Lj) _ (vw, Lj)
vi = (L;, L;)" % = (L, L;)' (25)

are the coefficients of ¥ (and thus of ¥) and vy respectively in the basis of the Legendre polynomials
(Lj)jemv. It is then an easy matter to note, from (14), that

(¥, o) — (¥, o8| < ClENONIILNIEa(- 1,1
< Cl¥n| ILnllLa-v,nlon] IZnlLa(-1,1)

Also, it follows easily that )
WNIIILNllLa-1,1) < ¥ — ¥ -1llLag-1,1)

and
[Bn LN llLa(-1,1) < llow — TNv_s(vn)liLo(-1,1)-

so that we deduce
(¥~ on) ~ (¥w,o8)w| < CllY - ¥n-1lla-1,)llvn — Dnv-1(vw)llea(-1,0)- (26)
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The multidomain case where K > 1 is treated similarly over each subdomain I, and the error is the same
(the notations are in this case just more complicated). Let us recall that we have for any p > 0, and any L

¢ — Mrdllea=1,1) < CL™?|$llr(-1,1), Vo € HP(-1,1). (27)
we derive by summarizing (21), (22), (24), and (26) that

sup (¢n ”N) - (¢1VN)N
vNEXN ”'”N“H‘(—l,l)

< 2l1% - wllea-HIY — Indllza-1a)
+CN7 Yy - ¢N-1||L=(-1.1)

This completes Lemma 2.3 in the case M = N, after we recall that for any p > 1/2, and any L, we have [16]
ll¢ ~ TedllLag-1,1) < CL™ P\l rs(-1,0), Vo € HP(-1,1). (28)

go that the contribution of N~!||¢ — ¥v_1]|za(_1,1) is much smaller than the other terms.

Let us now consider the case where M > N and let us use the same strategy as before, with ¥3p_n in
place of Y, where Yaam_n 18 some good approximation of ¥ of degree < 2M — N that will not be necessarily
its L3(—1, 1)-projection and will be precised in the following. In order to prove Lemma 2.3, we must now

estimate . . .
(¥, vn) — (¥, o) = (Y, vn) — (Yam—n, vn) + (Yam— N, vN) — (Y2 N, UN) M

- (29)
+ (Yam-n,vN )M = (¥, NN
The first term and the second term are treated exactely in the same way as previously and we obtain
(¥, vn) — (Banra—n,vw)| < ¥ = Yan-wllza-llvwllza-1,1), (30)
and _ _ )
(Yam-n,vN) — (Yam-n, N )M = Yar-NON[(Larg—N, Ln) — (Lara-n, LN) M) (31)
iFrom the basic properties of the Legendre polynomials we recall that that
26m,n

L,)= )
(L, Ln) 2n+1

Y(m,n),
and that

(n+ 1)Lpt1(z) = (2n 4 1)2Ln(z) — nLn_1(z).
A reiterate use of these two formulas yields

4M -2N-1N+1
(Lasa-ny In)m = —pr—m—an g (Lam-n-n Iniadu = ..

<(Lm,Ln)m-

Now using (14), we derive that
(Lara-ny Ln)ue < 3l Lmllzaqon,0y < 3l Zas—wlla- )l llzag-1,),
so that, as before,
|($ar-n,v8) = (Bam—n,vn)ae) S CN Yy - ¢2M-N-1IIL=(_1,1)- (32)
The treatment of the last term in (29) has to be different. Indeed the same proceedure as before would result
in a bound of this term by the quantity ||$ — Za|[£3(-1,1) and thus a loss with respect to the optimality we

could expect from the other terms. Besides, the numerical experiments (8ee fig 2.1) clearly shows a behaviour
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like ||¢ — Yarm—n|lL3(=1,1)- In order to prove this type of convergence, let us go back to the case K =1 and
note that (28) yields, for any pu > 1/2

WTadlla(-1,1) < I1Bllea-1,0) + M7H||Qllarn(-1,1), Vo € H¥(-1,1). (33)
iFrom (14) it now follows that
(Pama-nyon)m — (Y, vn)i = (Pana-n — ¥, v8) M

< 3||Zae(Para-n — ¥)llLa-1,)llvwllLag-1,1)
< 3[|lPan-n — Yllzag-1,1) + M7 #|[$are-n — $llaw (-1, )lllen |l L3 1,1)-

At this point the correct 12'13”_ ~ will be chosen. We see that it has to be a good approximation of ¥ in the
H#(~1,1)-norm as well. This will be the case of the projection of y with respect to the H#(~1,1)-norm
over Yy. It is proven in [17] that this element satisfies

¥ — Pam-nllarg(-11) S CN*Hlllas -1 VW< (34)

and from (29), (30) and (32), the proof of Lemma 2.3 is complete also in the case where M > N.
The second inequality (20) is quite trivial since the middle terms in (21) and (289) simply vanish.

We are now in position to state the following

Theorem 2.4. Let us suppose that the solution u to problem (1) belongs to Hg (-1, 1), that p belongs
to Hy(—~1,1), g belongs to Hi(—1,1) and that f belongs to Hj(—1,1) and in addition that the four real
numbers o — 1, u, v and p are larger than 1/2. Then the following error estimate holds

= wnlars sy SCIN*=ullare(-1,1) + (2M = W)= Cme =3l g o iyl incesnin_y. 1)

ol aaylllomntnor-s.) + g ool o)
Proof: It is a direct application of Lemma 2.3 to derive
Juup (Uit < ot )21l oy (36)
Let us choose wy as being the best fit of u in the H!(—1,1)-norm. It follows from [17] that
llu — wallar(<1,1) < CNY°lullarg (-1,0)- (37)

If we now let Wy be any polynomial in Xy, it follows from (3) and (4) that,

lare (wn, vv) — an (B, va)l < Clpz, @a)|lwy — DNl (—a,)llvnllar(-11)
< C(pa, qa)lllu = willars(-1,1) + v = B llgs (-, lllvnllas - 1)

so that

sup a(u,vw) — am(wN,vN) < sup a(dn,vN) — anm (BN, V)
vNEXN llowllz(-1,1) yNEXN llowllars(~1,1) (38)
+ [llu = wallar o1,y + lfu — Bnla -1l
The interest of this decomposition is that we can now choose Wy, still close to u but such that the higher

norms (i.e. H%(—1,1)) is uniformly bounded. This will be the case if we choose Wy as being the projection
of u with respect to the H?(—1,1)-norm over Xy. It is proven in [17] that this element satisfies

llu — onllny(-1,0) S CNT"°|lullag (-1,0)0 VY <00 (39)
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i From the definition of a and aps we have
a(iby, uN) — ap (BN, vN) = (PBNe, UNa) — (PN, YN )M (40)
+ (N, vN) — (QON, N )M (41)

Using Lemma 2.3, first with ¢ = piiy, and then with ¥ = gy, we derive that
la(n, vw) — ar (b, vx)| < CI2M = N) "™ Dliptiy |y mintvir-13_y 5
+(2M = N) =500 | mintn oy y low i (-1,
< Cl(2M = N) =™ Dl | ymintesr -2y
+(2M — N)" ™ lgull yminerer_y ylllowllars - 1,1)
+ C[(2M — N)~™™e=Y|p(u — ﬁ’N)a”H:i"(V.'-l)(_l.l)
+ (M = N) ™50 g(us — o) gminte_y g Mo lars (1.1

Let us recall that min(v, 4,0 — 1) > 1/2 so that H?‘"“’"'”(—l, 1) and H;("‘"(“'a)(—l, 1) are algebras. This
proves that

la(®n, vn) = are(@w,vn )| < CI2M — N)™ ™0 Dlptg || yomintonr -1 _q 1
+(2M — N)™™ 0 lqul|ymintoiey_y Il llars(-1,0)
+C[(2M — N)™™" 4 Dlpllgry (-1, (8 — B e llggmintere-2(_y,1y
+(2M — N)™™ gl e 1)l (8 = B8 )l grmintsr g ylllow s -1,n)

which together with (39) and the fact that M > N (so that 2M — N > N) gives

la(Bn, vn) — ap(By, vi)| < C[(2M - N)_'"i"(y'a-l)||1’“=||H;"“""“’(—1.1)
+ (2M - N)—min(p,u)“qu”H;‘“(”.')(_1.1)]”1”\(””‘(_1.1)

+ [Nl-a||P||H;(—1,1)“““11:((—1,1)
+ Nl (-, pll8ll g (-1, nlllenllas-1,1)

Theorem 2.4 now follows from the fact that H"(—1,1) is an algebra when r > 1/2.

Corollary 2.5. Let us suppose that the hypothesis of theorem 2.4 are fullfilled and in addition let us suppose
that M = N.Then the following error estimate holds

llu — uN”H‘(-l,l) _gC[N"“'"("'“"""’)[HP"H;(-1.1)"“”y;"“"‘('“"’(-l,l)
+ “‘1”1{;(-1,1)”“||H'--'-(»--)(-1,1) + |1 flla2 (-1,1))

Remark 2.2 — Interpretation of the results: In the practical computations, the more common situation
is the one where the regularity of the solution is limited by the regularity of the non-constant data. More
precisely, and especially if we consider the extension to the 2-D case that will be treated in the forthcoming
section, we shall have 0 — 1 < min(v, 4, p). In this case, the estimates given in corollary 2.5 prove that
the optimality of the scheme is achieved with no use of overintegration. This statement is confirmed by the
numerical experiments shown in Figure 2.1. In the case where the regularity of the solution is better than
the regularity of the non-constant data, we expect, from theorem 2.4 that some amount of overintegration
is necessary to recover the optimality of the discretization. The numerical experiments of Figure 2.1 also
confirm this statement with exactly the rate theoretically proven. It is important to note that the possibility
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to include some amount of overintegration only is true in the case where the variational formulation is
the starting point of the discretization. The pure collocation method is incompatible with the concept of
overintegration.

2.2 — The Two Dimensional Case.

Let us suppose here that the problem is set on a square 2 = (—1,1)? and that no domain decomposition
is used. The extension of our results to the spectral element case is very simple and it is only for sake of
limitation of the notations that we restrict our analysis to this particular case. Let us consider now the
following test problem: Find u € H}(Q) such that

V.- A-Vu=f (42)

where f is a given force (supposed to be in L?(Q)), A = (a;;) is a 2 x 2 matrix with non-constant coefficients
and we assume, for sake of simplicity, that it is bounded, symmetric, positive and non-degenerate, i.e. such
that there exists 2 real numbers p; > 0 and p; > 0 such that

AV.V > p (V2 +V3), YV =(WV)eR (43)

laij| < pay Vi, i=1,2. (44)

The variational formulation of this problem : Find u € H}(f) such that
a(u,v) = ((f,¥)), Vv € H(9) (45)

will be used as a starting point to define the discrete problem. Here

((4,9) = / /n ($9)(x)dx, ¥(4,9) € (L(@)3,

a(u,v) = ((AVy, V), V(u,v) € (H'(Q))%.

The space of discretization, X, consists of all polynomials of degree < N in each variable (Py(£2)) that

vanish at the boundary
Xy = IPy(Q) 0 H{(N)

The quadrature formula is based on (M + 1)? points derived by a tensor product of the one dimensional
Gauss-Lobatto formula, and consists of the evaluation 3 5/ ) gy ; Where the index 1 and 2 refer to the
first and second spatial direction respectively. The discrete problem is then: Find uy € Xy such that

arm(un,vn) = ((fron))r, Yov € Xy (48)

where we have introduced the following discrete scalar product over IPy(Q2)

((B9)DM =Y. D ¢, Y(4,9)€ (IPn(D))? (47)

GL,1GL,3
and
am(un,vn) = ((AVuy, Voy))u.

It is standard to note that, from (43) and (44), this problem has a unique solution and that in the case where
M = N it is equivalent to a collocation problem based on the (N + 1)? Gauss-Lobatto points. The analysis
of the error will be based on Lemma 2.3 and on the following complement of this Lemma
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Lemma 2.6. Let p be a real number > 1/2. For any ¢ € Hi(-1,1), we have

K

(¢)UN)_(¢:1’N)M -
sup <C(2M —-N —-1)"*# Y »(10)* 48
emEYN ”vN”L’(—l,l) ( ) Z:l” lh.”H (In) ( )

Proof: This proof is derived from (28) by taking Y2ar_n_1 instead of Y30¢_n, which has the effect to cancel
the middle difference in the right hand side of (29).

Remark 2.3: It is an easy matter to note that (48) cannot be improved to yield a bound by the best fit by
polynomials of degree 2M — N as it was in Lemma 2.3.

We are now in position to give the following error estimate

Theorem 2.7. Let us suppose that the solution u to problem (42) belongs to H° (1), that the coefficients
(asj) of the matrix A belong to H*(QQ) and that f belongs to H?(1) and let us suppose in addition that the
real numbers pu,0 — 1, p are larger than 1. Then the following error estimate holds

3
llu — unllars(a) S CIV=2 llullsreay + (2M = N = 1)=™% 9= 3™ Jlagul g miaone- i)

§,j=1 (49)

+ (2M = N)7*[ I fllne (my)-
Proof: The proof is derived from Lemma 2.2 (with obvious changes in the notations) following exactly the

same lines as in the previous subsection. The only difference relies on the fact that Lemma 2.6 has to be
used in the analysis of the quantity

sup a(u,vy) — am(wa, vN)_ (50)
vNEXN llvwlla(a)

Here wy is a polynomial of degree N (and not N — 1) suitably chosen to be an optimal approximation of u
in the norm H?(Q), say, and in any other lower norm from the bidimensional equivalent to (39) (see [16]).
As in (38) we can write

sup a(u,vn) — ap(ww,vN) < sup a(wy,vn) — apm(wn, vn)

vNEXy “”N”H'(n) VNEXy ||”N||H*(n)
+ Cllu — wnllaia)-

The first term on the left-hand side is a sum of four terms that are similar. The first one reads a follows
((811wNz, ¥N2)) = ((@11WNz, VN:)) M
and can be bounded from Lemma 2.6 as
((@11WNz, vN2)) ~ ((811WNz, YN2))nr < C(2M — N — 1)~ =Djlgysu [l gmintune -1y ¥ || L3(n)
The reason why (20) is not sufficient to analyze this term is that in the second direction, vy, is of degree

<N.
It follows easily from the analysis in the one dimensional case that we can prove

sup (f)vN) —(frvN)

wwexy  |lvnlla-1n

X <cc@M - N\ flluray (51)

which allows to derive Theorem 2.7.

10
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Corollary 2.8. Let us suppose that the hypothesis of theorem 2.7 are fullfilled and let us suppose in addition
that M = N. Then the following error estimate holds

llu — unlms@) < CN-™ =22 A | goayllull e (a) + || Fll e ()}

Remark 2.4 — Interpretation of the results: As pointed out in the previous subsection, there is no need to
overintegrate in the general case where the solution has the same regularity as the non-constant coefficients.
In 2 dimensions this conclusion still holds, however more weakly. Indeed, we have only been able to prove
that the plain spectral or spectral element method provides the same accuracy as the best fit by polynomials
of degree one less. An overintegration with just one more point (M=N+1) is sufficient to recover the optimal
accuracy. Although the results are asymptotically the same, this remark could suggest the use an overin-
tegration. However, the associated increase in work makes it preferable to use a standard spectral element
method with polynomial degree of N+1 (instead of N) since this is less expensive than an overintegration
with M=N+1 (see appendix). It is only in the case where the spectral method would require much higher
values of N that overintegration, coupled with the preservation of the tensor product formula, could be of
interest. Finally, note that the numerical experiments again confirm the theoretical statements with an even
less important difference between the cases M = N+ 1 and M = N.
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3. ANALYSIS OF SPECTRAL APPROXIMATION IN DEFORMED GEOMETRIES.

Our purpose is now to extend the previous analysis in the case where the non-constant coefficients
are induced from the treatment of a non-rectangular geometry. Since the point here is not to analyze the
behaviour of the approximation when original non-constant coefficients are present in the equation, we shall
restrict our analysis to the simple problem of a Poisson equation in a deformed domain €@ which reads as

follows: Find u € H}(f) such that

/]Vqudzdy ﬂ fvdzdy Vv € Hj(Q). (52)

In order to explain an important issue related to the error analysis, let us first consider the simple case where
the geometry is rectilinear but not rectangular.

3.1 — Rectilinear Geometries.

Let us suppose that the domain 2 is the trapezoid with vertices A=(0,0), B=(4,0), C=(0,1), and D=(4-
4/a,1), where a is a real number > 1. It is an easy matter to check that the transformation F : (r,s) — (z,y)
with

=r{4 - é’)
z=r( o)l (53)
y=s,
is a one to one maping from the square Qi = (0,1)? onto the domain Q. We can now define a natural
correspondance between functions ¢ defined over 2 and functions $ defined over 2 as follows

&(rl’) = ¢(F(rl "))

This will allow to set the discrete problem. Indeed as we have indicated in the introduction, the spectral
metod has to be used on square domains. The other domains have to be mapped on such a reference
square in order to allow for a spectral computation (the spectral element method allows to deal with more
complex geometries, however, the elements must still be mapped to such a reference square). The variational
formulation transferred to the domain {2 is the following: Find & € H}({) such that

// syl g:szl(r, )+[§‘r‘ g: ‘Z:‘g”]w,(r,a)+—8—w3(r »)drds = [/ foI(r,8)drds, Vo € HA().
(54)

The coefficients J and w;, i = 1,2, 3, are respectively the Jacobian of the transformation F and some smooth
geometric factor given by .

1=am0, =045 w=- 2, w2y (55)

The discretization of the problem can now proceed and consists in the following: Find #x € Py () NHS(Q)

such that . .
ap(n, 9n) = ((Jf,9n))u, Vi € Py (52) (56)

where ((.,.))a has been defined in (47) and

n . _ Wy 3I.I,N 3‘DN w3y BﬂN 8ﬁ~
GM(‘UN,'UN)—((J or 4 ar )) ((] 81‘ ’ 86 ))M
(D F) 8u~ 3ﬁN w3 8ﬂN 8ﬁN
(733 M+ (G55 35 )
The coefficients in the right-hand side of (56) are extremely regular. We can deduce from the previous
analysis that no overintegration is required to compute accurately this term in order to achieve optimal
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approximation. On the contrary, the coefficients that arise in aps on the left-hand side, although analytic,
may give rise to problem since the factor w;/J has a pole where J vanishes, i.e. at s = a. This pole is not
n {2 but can be very close to it. The similarity of this problem with the one treated in the second section
(Figure 2.2) seems to imply that, when a is sufficently close to 1, an overintegration is required to compute
correctly aas in order to get an optimal aproximation. However, surprisingly, the experiments performed in
Figure 3.1 shows that no overintegration is required, even with those values of a that in the one-dimensional
case induced a big error associated with the consistency error (50). The interpretation of this fact can be
easily understood, a posteriori, as the pole of 1/J is compensated by the fact that the other part of the
integrand vanishes and makes the term

Wy o4 + w3 o4
Jor J or
more regular than it appears. In order to be more precise, let us state

Lemma 3.1. Let us assume that the solution u to problem (52) belongs to H°(Q) for some real number
o > 2. Then we have

a(i,dn) — ap (N, N)

sup < Cllla - onll +N7Y|a - dn||
owEPN(() “i}N””'(n) ' o e (57)
+(2M N - 1)1 a[”B “H' -1(f) Ilay“H' xm)]
Proof: Let us go back to the original equation (52) and remark that
o 5u a9 89
J[vuwsasai= [ 1200+ 2ol )2 4 22 s - s
and that a simple change of variable formula yields
du N 1di BvN
(3 5o ar = (330 D
4r Hu By W — 1 Bu Oy wy 84 By
((( oy’ or ))M (« 7 )a—: ar Du + ((-_,—3" —5;-))54
du iy wy 84 80N w3 04 80N
(4 = 3955 o = (P gm0 o Mae + (R gm0 oD
so that
a(u,vn) — am(dn,vn) = A1+ By + A3+ By + Baz + Aa+ Bay + Bapa (58)
where

du b du 89
Av= [ Gtr )G e, ehdrds - (G5 o Da

B= (35 e~ (G
2_[/ dy o (ry8 )(8UN(1' J)( ))drda_(((_ )g: 8::,))1!!
—1,.04% N ~ 1.0y Oy

Brs = (550 o = (25252, 2 ) )ae

At ddy w 8w~ ody

Bay = (F)g0 50 — (5 G 5
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t5= [[ 2 R ) - Rapirds (14 20 3%, 20

w3 8& 8y w3, 8y ﬁfw

Ban = (5) 5 5o Mae = (5) 5t 5o Nae

sa= ()5, ";’;' Mas — ((22) 208, 20y,

In the decomposition (58) the terms A_ are small from the accuracy of the quadrature formula; the terms
B_ are small since iy is a polynomial that is close to ii. More precisely, let us denote by C the supremum
of |1/J], |(1 —wy)/J|, lwa/J}, |wa/J], on €. It is an easy matter to derive that, for any index a, where
a=1,(2,1),(2,2),(3,1),(3,2) we have
0
|Bal < C“IM ( wN)”L’(O)“ﬁN”Hl(ﬁ))

where ¢ in the derivation stands for s or r. Usmg (33), with u =1, we derive
A . Y .
|Bal < Cll|& — dnllgiay + N 1”5(“ i 101 PPRYTAN 17| PRy

< Cllla — iy + NS = | gaga))llonll g ay- (59)
Let us denote now by é the supremum of 1, |(4 — 4s/a)|, |4r/al, on f}. We derive as in section 2.2 that

) o DU Bu

l4il < e2M = N = 1) [l =l e-s(a) + “3‘;||ur—x(n)]||ﬁlv“m(n) (60)

and the Lemma follows from (58), (59) and (60).
In order to analyse the error in the approximation of problem (52) with (56), we first note that (16)

(with obvious changes of notations) also holds in this case. This leads to the following:
Theorem 3.2. Let us suppose that the solution u of problem (52) belongs to H° (1) and that f belongs to
H?(Q) and let us suppose in addition that the real numbers 0 — 1, p are larger than 1. Then the following
inequality holds

18— an gy < CIN'Jullne (@) + C(2M = N = 1)'~°[jullg(q) (61)

+ C(2M — N)7*||f|| e (n)

Proof: This is an easy consequence of (48) and of Lemma 3.1, if we choose Wy as being the best fit of 4 in
H?(Q) by elements of IPy(£2).

3.2 — General deformations.

Let us suppose in this subsection that the domain £ is the image of f} by some mapping F : (r,s) s
(z = Fi(r,8),y = Fa(r,s)). We no longer assume that F is bilinear, nevertheless we assume it has some
regularity, more precisely, that it is in H “(ﬂ) for some g > 1, and that its Jacobian J is larger than some
p1 > 0. The problem (52) is transferred onto {2 as before and reads

Find 4 € H}() such that (54) is satisfied,

where the geometric factors w;, i = 1,2, 3 are defined as follows

]

0F, 0F, OF,0F,; (62)

wi=—l37 5 + 55 ar )
_0F .,  ,0F;,
wa = () + ()

The discrete problem is now:
Find iy € IPy(€1) 0 HA(Q) such that (56) is satisfied.

Using here the same technique as in the proof of Lemma 3.1, and theorem 2.4, we obtain

14
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Lemma 3.3. Let us suppose that the solution u to problem (52) belongs to H°(Q), for some real number
o > 2, that the deformation mapping F belongs to H“(ﬁ) for some real number pu > 1. Then the following
inequality holds

sup a(fi, in) — ap (Wn, Iy)

<Cllla - onl| + N-Y |6 — oy
On € Py () 1on 1 51ar) H(f) HA(0)

(64)

—

—min(p.a— du bu
+ (2M - N - 1) inie 1)[”F”H“(ﬂ)”E‘;”?{miw(u.'—l)(ﬁ) + ”5;":1'--‘-(».-4)(0)]]

Remark 3.2: It is important, at this stage, to note that the regularity of @ and the regularity of %l:-, where
t is either s or r is bounded by the regularity of both u and F, which means that

1 i — W —-min(u-1,0-1) ;
wuelgim)“" N || gga () S CNTTH IF N s eyl tell rmincmor 1) (65)

is the best result we can expect. Note also (but this is natural afier the analysis of section 3.1) that it is
only the regularity of F that is important and not at all the regularity of its inverse (as one could previously
fear from the factor 1/J).

¢From Lemma 3.3 and (65), we derive in a (now) standard manner the

Theorem 3.4. Let us suppose that the solution u belongs to problem (52), belongs to H°(f1), for some real
number o > 2, that the deformation mapping F belongs to H*(1) for some real number p > 1 and that the
forcing function f belongs to H*(§1) for some real number p > 1. Then the following inequality holds

8= anllgaa) < CLN LD R, o) lfullsmintn. ()
+(2M = N = 1) ™D Pl |6l rminte.e -1y (66)
+ (2M _ N)_m"n(l‘lp)“F”H‘.(n)"f“[{miu(n.l)(ﬂ)}

Remark 3.3: In the light of the previous theorem, it appears that there is no need to overintegrate in
the case where the deformation is responsible for non-constant coefficients in the formulation of the discrete
problem, even if the geometry is very distorted. This is readily seen by comparing the results obtained in the
theorem by choosing M >> N and M = N (the gain of just one degree is not, as explained in the remark
2.4 sufficient to start the overintegration machinery). We can explain it a posteriori now as overintegration
could allow to improve part of the consistency error term (57) in the case where the geometry mapping F is
less regular then the solution u itself ( contrary to the case in section 2, this can happen, especially if domain
decomposition is used). However, as pointed out in the previous remark, loss of regularity of F induces also
a loss of regularity of @ which is the function that is of importance since it is this one that is approximated
by polynomials.

Remark 3.4: We have not considered here the case where the geometry mapping F itself is approximated
by isoparametric polynomials. This effect can easily be analysed by following the same lines as previously
and including the standard arguments adapted to the finite element discretization [18]
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APPENDIX (in collaboration with A. T. PATERA.)

In this appendix we consider the computational cost of using overintegration. We show that the matrix-
vector products can still be evaluated efficiently using tensor product forms, and that for a fixed discretization
(polynomial degree N), the increase in operation count is at least a factor of d in IR?. Overintegration is
attractive to use only if the convergence rate (error as a function of polynomial degree) improves substantially.
In this case we can achieve a fixed accuracy either with a low polynomial degree and overintegration, or a
higher polynomial degree with consistent quadrature.

With no loss of generality we consider here the evaluation of the left hand side of (46),

am(un,vN) = ((quNVvN))M (67)

Here p represents a non-constant coefficient which either comes from the original strong formulation (as in
(42)), or represents a geometric factor in the case of deformed geometry, or both. The evaluation of (67)
represents the computationally most expensive part in an iterative solution of (46).

In order to implement (46) we require a basis for our high-order polynomial space Xn. The choice
of basis does not effect the error estimates, however it greatly effects the conditioning and sparsity of the
resulting set of algebraic equations, and is critical for the efficiency of parallel iterative solution procedures.
We choose an interpolant basis to represent wy € Xy,

N N
wy(r,8) = ZZw,qh},(r)hq(a), (68),

p=0¢=0

where (z,3) € Q@ — (r,8) €] — 1,1[*. Here the h,(z) are the one-dimensional N**-order Lagrangian inter-
polants through the Gauss-Lobatto Legendre points §, (hp € IPx(] — 1,1[), hp(€;) = 65,), and wy, is the
value of wy at the local node (§;,£,). In addition to (68) we require wy € Xy to honor the homogeneous
Dirichlet boundary conditions.

The bases (68) are now inserted into (67), and the test functions are systematically chosen to be unity
at one global node and zero at all the other Gauss-Lobatto Legendre points. We then arrive at the following
discrete statement,

M M N N
an(un,vN) = Z Z YY" parspapDailpj DamIpntimn + oo (69)
a=0g8=0m=0n=0

where we for convenience only have included the derivatives with respect to the first (local) spatial direction.
Here p, are the one-dimensional quadrature weights, and D and I are the one-dimensional derivative and
interpolation operators defined as:

Do = 6 (70)
Ipg = hy(&)- (71)

Using tensor-product sum-factorization techniques [5] we can now evaluate (69) efficiently as follows:

(Dai(Ipj(Paps (Pap(Dam(Isntimn)))))),

where the expression in the innermost partenthesis is evaluated first. An evaluation in this order results in
the following operation count,

MN? + M3N + M?* + M? + M?N + MN? = 2(M*N + MN? + M?).
In the case where M = N (no overintegration), the interpolation operator becomes I, = 6,, and (69)
reduces to the following expression,

M N
aN(uN;”N) = Z Z PanpajDaiDamurnj + ...

a=0m=0
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which can be efficiently evaluated in 2(N3 + N?) operations.

We are now in a position to compare the computational cost with and without overintegration. In the
case M = N +1 the operation count is approximately twice the cost of using consistent quadrature (M = N)
(in three dimensions the cost would increase with a factor of three). If M = 2N, say, the cost to evaluate
(67) is four times the cost with M = N. The factors which determine whether overintegration is economical
are the the difference in convergence rate with and without overintegration, and the specified accuracy of
the discrete solution.
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FIGURES

Figure 2.1. A plot of various numerical results relevant to the approximation of the one dimensional problem
(1), in order to analyze the effect of overintegration. We have considered here the case where ¢ = 0 and
different values of p and f are simulated and the effect of overintegration is adressed. The relation between
p and f are always chosen in such a way that the exact solution is u = sin(3xz)e™* (of course, we do not
use the knowledge of the exact solution in the simulations !1}. The discretization is based on K = 4 equal
spectral elements for different values of the polynomial degree, N. First of all, since this is the aim of the
numerical scheme, we have computed the best fit of u in H}(0,1) by piecewise polynomials of degree < N
(plot A); the plot proves a convergence better then exponential that is consistant with the fact that the
golution is entire. Next we consider the case p = 1 with no overintegration (plot o) and we can check that
the approximation is optimal and very close to the best fit.

We then choose p = ;h for various values of a. The case where a = .25, treated with no overintegration,
is represented on the plot @ and we can remark that the approximation is still very good. The convergence
rate does not however follow the best fit of u, but the best fit of p (consistently with the corollary 2.5) that is
a straight line in this scale since p has a pole outside (0,1). Let us now use a more singular p, corresponding
to a = .05. The plot © represents the results when no overintegration in used. It is very close to three other
plots representing the results when overintegration (M = 3N/2) is used to compute only the right-hand
side (the contribution of f) (O) or only the left-hand side (corresponding to p) (plot A), while the third
one represents the best fit of p (plot ) in the L?(0,1)-norm by the discrete functions. In order to recover
optimal results, overintegration must be used on both the left and the right-hand side of the equation (plot

o).
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Figure 2.2. This Figure represents the equivalent of the previous case in a two dimensional domain. The
equation is here (42) with A = pId and different values of p and f, computed so that the solution is always
u = sin(xz)y(l — e¥~!). The domain of computation (1 is (0,1)? and decomposed in four squares. The plot
o represents the case p=1with M = N, M = N+ 1, M = 3N (there is no difference between the two last
experiments and the first case is a bit less precise but cannot really be distinguished from the two last cases).
The plot o represents the experiment with p = ¢**¥ that is a very smooth function and a treatment with
no overintegration gives the same accuracy as the previous plot (that certainly also corresponds to the best
fit). Now comes the treatment of the case p = 1 + cos(2xz + 3xy) which is a smooth function but is worse
than u. The plot A corresponds to no overintegration and we clealy see that some degree of overintegration

is necessary to recover the optimal accuracy, as shown in the case where M = N + 1 (plot O) and M =3N
(plot A).

Figure 3.1. On this plot we prove that the singularity of the function m is not relevant for the need
of overintegration. We consider the problem is (52) for two different domain decompositions A and B. They

: —

A B

The three plots represent the discretisation error in the semi-norm with no overintegration. The plot o
corresponds to the solution u = sin(2y) for the two cases A and B. They both coincide since the deformation
is in the z-direction and the solution only depends on y. Next, we repeat the experiments with u = sin(})
and we arrive to the (a priori) surprising result: plot A for A, and O for B. We refer to section 3.1 for the
explanation. The fact that B is even better in this case is due to the fact that the discretisation on the two
domains is more equilibrated and that the left domain in case A is too long.
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Figure 3.2. This plot is to prove that the overintegration can even have a negative effect. Again we consider
equation (52) for p = 1, with a decomposition of 1 = [0, 7] x [0, 1] into two subdomains:

—

Peas

The interface is described by the equation z = ; - %Iyl’. This equation is not regular and its interpolant
is more rough when the degree is higher. Since this interpolant is the only geometric factor for the discrete
problem we can understand the plots A and A that correspond to M = N and M = 2N, respectively, for
the approximation of the solution u = sin(}). As before, if the deformation and the solution are in different
directions (this is a very particular case !!!), for example u = sin2y, the behaviour of the approximation is
particular also and this is the only case where overintegration can help (in the case of deformed geometries)
as is illustrated in the plots o and e corresponding to M = N and M = 2N respectively.

Figure 3.3. A plot of the discretisation error in the semi-norm when solving (52) with p = 0. The domain
f1 =[0,2] x [0, 1] is decomposed into two subdomains:

and this time the geometry is tortured in the following way. The subdomain on the left is mapped onto the
reference square by the mapping z = r + 0.5(|r| — 1)r?, while the mapping is affine in the other subdomain.
The plot A correspond to a solution u = sin($) that only depends on z and is treated both with M = N
and M = 2N. The plot o is corresponds again to a particular case as it is related to u = sin(2y) in both
cases M = N and M =2N.
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